High Variability and Dual Strategy in the Wintering Red Kites (Milvus milvus)
Abstract
:1. Introduction
2. Methods
2.1. Tagging and Data Collection
2.2. Spatial Parameters and Analysis
3. Results
3.1. Dual Strategy: One or Two Wintering Areas
3.2. Home Range Size
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Both, C.; Bouwhuis, S.; Lessells, C.M.; Visser, M.E. Climate change and population declines in a long distance migratory bird. Nature 2006, 441, 81–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, I. The Migration Ecology of Birds; Academic Press: London, UK, 2008. [Google Scholar]
- Jones, T.; Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change? J. Anim. Ecol. 2010, 79, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Urios, V.; Romero, M.; Mellone, U. The Use of Satellite Telemetry for the Study of the Movement Ecology of Raptors; Publicaciones de la Universidad de Alicante: Alicante, Spain, 2015. [Google Scholar]
- Limiñana, R.; Arroyo, B.; Terraube, J.; McGrady, M.; Mougeot, F. Using satellite telemetry and environmental niche modelling to inform conservation targets for a long-distance migratory raptor in its wintering grounds. Oryx 2014, 49, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Mellone, U.; López-López, P.; Limiñana, R.; Urios, V. Wintering habitats of Eleonora’s Falcons Falco eleonorae in Madagascar. Bird Study 2012, 59, 29–36. [Google Scholar] [CrossRef]
- Kassara, C.; Gangoso, L.; Mellone, U.; Piasevoli, G.; Hadjikyriakou, T.G.; Tsiopelas, N.; Giokas, S.; López-López, P.; Urios, V.; Figuerola, J. Current and future suitability of wintering grounds for a long-distance migratory raptor. Sci. Rep. 2017, 7, 8798. [Google Scholar] [CrossRef] [Green Version]
- García-Ripollés, C.; López-López, P.; Urios, V. First description of migration and wintering of adult Egyptian vultures Neophron percnopterus tracked by GPS satellite telemetry. Bird Study 2010, 57, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Mateo, J.; Urios, V. Ecología espacial en el período invernal. In Migración y Ecología Espacial de la Población Española de Águila Calzada. Monografía No. 2 del Programa Migra; Urios, V., Bermejo, A., Vidal-Mateo, J., De la Puente, J., Eds.; SEO/Birdlife: Madrid, Spain, 2017; pp. 63–72. [Google Scholar]
- Blanco, J.C.; Hiraldo, F.; Heredia, B. Variations in the diet and foraging behaviour of a wintering Red Kite (Milvus milvus) population in response to changes in food availability. Ardeola 1990, 37, 267–278. [Google Scholar]
- Heredia, B.; Alonso, J.C.; Hiraldo, F. Space and habitat use by Red Kites Milvus milvus during winter in the Guadalquivir marshes: A comparison between resident and wintering populations. Ibis 1991, 133, 374–381. [Google Scholar] [CrossRef]
- Hiraldo, F.; Heredia, B.; Alonso, J.C. Communal Roosting of Wintering Red Kites Milvus milvus (Aves, Accipitridae): Social Feeding Strategies for the Exploitation of Food Resources. Ethology 1993, 93, 117–124. [Google Scholar] [CrossRef]
- García, J.T.; Viñuela, J.; Sunyer, C. Geographic variation of the winter diet of the Red Kite Milvus milvus in the Iberian Peninsula. Ibis 1998, 140, 302–309. [Google Scholar] [CrossRef]
- Nachtigall, W.; Stubbe, M.; Herrmann, S. Aktionsraum und Habitatnutzung des Rotmilans (Milvus milvus) im Winter—Eine telemetrische Studie im Nordharzvorland. J. Ornithol. 2003, 144, 284–294. [Google Scholar] [CrossRef]
- Literák, I.; Raab, R.; Petretto, M.; Škrábal, J.; Spakovszky, P.; Steindl, J. Diverse natal dispersal in four sibling Red Kites originating from Austria, including wintering in Tunisia. Biología 2020, 75, 1399–1407. [Google Scholar] [CrossRef]
- Panter, C.T.; Literák, I.; Raab, R.; Tolhurst, B.A.; White, R.L. Age, landscape, and arrival date explain ranging behavior of wintering Red Kites in southwest Europe. J. Wildl. Manag. 2021, 86, e22147. [Google Scholar] [CrossRef]
- Molina, B. El Milano Real en España. III Censo Nacional. Población Invernante y Reproductora en 2014 y Método de Censo; SEO/BirdLife: Madrid, Spain, 2015. [Google Scholar]
- Viñuela, J.; Martí, R.; Ruiz, A. El Milano Real en España. Monografía No. 6; SEO/BirdLife: Madrid, Spain, 1999. [Google Scholar]
- Madroño, A.; González, C.; Atienza, J.C. Libro Rojo de las Aves de España; Dirección General para la Biodiversidad-SEO/BirdLife: Madrid, Spain, 2004. [Google Scholar]
- Seoane, J.; Viñuela, J.; Díaz-Delgado, R.; Bustamante, J. The effects of land use and climate on red kite distribution in the Iberian Peninsula. Biol. Conserv. 2003, 111, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Monclús, L.; Ballesteros-Cano, R.; De La Puente, J.; Lacorte, S.; Lopez-Bejar, M. Influence of persistent organic pollutants on the endocrine stress response in free-living and captive Red Kites (Milvus milvus). Environ. Pollut. 2018, 242, 329–337. [Google Scholar] [CrossRef]
- BirdLife International. Milvus milvus. The IUCN Red List of Threatened Species 2020, e.T22695072A181651010. 2021. Available online: https://www.birdlife.org/projects/iucn-red-list/ (accessed on 22 January 2022).
- Life Eurokite. Red Kite. Available online: https://www.life-eurokite.eu/en/projects/red-kite.html (accessed on 5 November 2021).
- IUCN Red List—Red Kite (Milvus milvus). Available online: https://www.iucnredlist.org/es/species/22695072/181651010#population (accessed on 5 October 2021).
- Del Hoyo, J.; Elliott, A.; Sargatal, J. Handbook of the Birds of the World. Volume 2: New World Vultures to Guineafowl; Lynx Editions: Barcelona, Spain, 1994. [Google Scholar]
- García-Macía, J.; Vidal-Mateo, J.; De La Puente, J.; Bermejo, A.; Raab, R.; Urios, V. Seasonal differences in migration strategies of Red Kites (Milvus milvus) wintering in Spain. J. Ornithol. 2022, 163, 27–36. [Google Scholar] [CrossRef]
- Aebischer, A. Distribution and recent population changes of the Red Kite in the Western Palaearctic—Results of a recent comprehensive inquiry. In Proceedings of the International Red Kite Symposium 2009, Monbéliard, France, 17–18 October 2009; LPO: Paris, France, 2010; pp. 12–14. [Google Scholar]
- Snow, D.W.; Perrins, C.M. The Birds of the Western Palearctic. Volume 1: Non-Passerines; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Visser, M.E.; Perdeck, A.C.; Van Balen, J.H.; Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 2009, 15, 1859–1865. [Google Scholar] [CrossRef] [Green Version]
- Heath, J.A.; Steenhof, K.; Foster, M.A. Shorter migration distances associated with higher winter temperatures suggest a mechanism for advancing nesting phenology of American Kestrels Falco sparverius. J. Avian Biol. 2012, 43, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Martín, B.; Onrubia, A.; Ferrer, M.A. Effects of climate change on the migratory behavior of the common buzzard Buteo buteo. Clim. Res. 2014, 60, 187–197. [Google Scholar] [CrossRef] [Green Version]
- García, V.; Iglesias-Lebrija, J.J.; Moreno-Opo, R. Null effects of Garcelon harnessing method and transmitter type on soaring raptors. Ibis 2021, 163, 899–912. [Google Scholar] [CrossRef]
- Kenward, R. A Manual for Wildlife Radio Tagging, 2nd ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Bodey, T.W.; Cleasby, I.R.; Bell, F.; Parr, N.; Schultz, A.; Votier, S.C.; Bearhop, S. A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods Ecol. Evol. 2018, 9, 946–955. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Pfeiffer, T.; Meyburg, B.U. Satellitentelemetrische Untersuchungen zum Zug- und Überwinterungsverhalten thüringischer Rotmilane Milvus milvus. Vogelwarte 2009, 47, 171–187. [Google Scholar]
- Mellone, U.; De La Puente, J.; López-López, P.; Limiñana, R.; Bermejo, A.; Urios, V. Migration routes and wintering areas of Booted Eagles Aquila pennata breeding in Spain. Bird Study 2013, 60, 409–413. [Google Scholar] [CrossRef]
- Jaffré, M.; Beaugrand, G.; Goberville, É.; Jiguet, F.; Kjellén, N.; Troost, G.; Dubois, P.J.; Leprêtre, A.; Luczak, C. Long-Term Phenological Shifts in Raptor Migration and Climate. PLoS ONE 2013, 8, e79112. [Google Scholar] [CrossRef]
- Washburn, B.E.; Martell, M.S.; Bierregaard, R.O.; Henny, C.J.; Dorr, B.S.; Olexa, T.J. Wintering ecology of adult North American Ospreys. J. Raptor Res. 2014, 48, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Kocina, M.; Aagaard, K. A Review of Home Range Sizes of Four Raptor Species of Regional Conservation Concern. West. N. Am. Nat. 2021, 81, 87–96. [Google Scholar] [CrossRef]
- Meyburg, B.U.; Mendelsohn, S.; Mendelsohn, J.; De Klerk, H.M. Revealing unexpected uses of space by wintering Aquila pomarina: How does satellite telemetry identify behaviour at different scales? J. Avian Biol. 2015, 46, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Marucci, G.; Romano, A.C.; Interisano, M.; Toce, M.; Pietragalla, I.; Collazzo, G.P.; Palazzo, L. Trichinella pseudospiralis in a Red Kite (Milvus milvus) from Italy. Parasitol. Res. 2021, 120, 2287–2290. [Google Scholar] [CrossRef]
n | Days of Wintering * | MCP (km2) | 95% Kernel (km2) | 75% Kernel (km2) | 50% Kernel (km2) | |
---|---|---|---|---|---|---|
overall | 82 | 95 ± 30 (32–139) | 2173 ± 3519 (27–20340) | 1158 ± 2182 (11–13176) | 438 ± 899 (5–4904) | 158 ± 344 (0.1–2056) |
one area | 62 | 96 ± 27 (33–138) | 2315 ± 3776 (27–20340) | 979 ± 2030 (11–13176) | 373 ± 810 (5–4216) | 130 ± 291 (0.1–1517) |
two areas (considered separate) | 10*2 | 97 ± 34 (39–139) | 1655 ± 2377 (54–9998) | 1774 ± 2609 (45–10891) | 659 ± 1155 (11–4904) | 257 ± 482 (3–2056) |
adults | 60 | 94 ± 29 (32–138) | 1614 ± 2825 (27–16827) | 796 ± 1380 (21–8550) | 271± 504 (5–3107) | 111 ± 230 (0.08–1518) |
immatures | 22 | – – | 3586 ± 4632 (521–20340) | 2111 ± 3379 (11–13175) | 877 ± 1440 (8–4904) | 282 ± 528 (3–2056) |
males | 19 | 119± 13 (101–127) | 2828 ± 4510 (32–16828) | 918 ± 1270 (21–4995) | 292 ± 475 (7–1959) | 98 ± 181 (0.1–743) |
females | 14 | 92 ± 29 (33–139) | 830 ± 1204 (27–4381) | 646 ± 921 (53–2753) | 223 ± 323 (26–1128) | 86 ± 121 (7–396) |
Individual (Age) | Season | First Area | Days in First Area | Second Area | Days in Second Area | Travelling Days Between Areas | Distance Between Areas (km) | Direction | When Area Changed |
---|---|---|---|---|---|---|---|---|---|
Segovia 03 (A) | 2012/2013 | Segovia | - | Pamplona | 61 | 1 | 290 | S -> N | before spring migration |
Álava 04 (A) | 2014/2015 | Southern France | 48 | Álava | 60 | 1 | 530 | N -> S | after autumn migration |
Álava 05 (A) | 2016/2017 | Southern France | 45 | Southern France | 37 | 2 | 267 | N -> S | after autumn migration |
Toledo 01 (A) | 2016/2017 | Toledo | 27 | Badajoz | 111 | 1 | 108 | NE -> SW | before spring migration |
Ecotone 31 (I) | 2018/2019 | Huesca | >99 | Southern France | 23 | 1 | 187 | S -> N | before spring migration |
Ecotone 106 (I) | 2018/2019 | Segovia | >66 | Salamanca | 23 | 2 | 207 | N-> S | before spring migration |
Ornitela 79 (A) | 2019/2020 | Segovia | 25 | Pamplona | 28 | 5 | 250 | S -> N | before spring migration |
Ornitela 154 (I) | 2019/2020 | Álava | - | Southern France | - | - | ~400 | S -> N -> S | wandering movements;first, it moved to the French area; then, it returned to first area before migration |
Ornitela 157 (I) | 2019/2020 | Álava | - | Southern France | 43 | 2 | 465 | S -> N | before spring migration |
Ornitela 194 (A) | 2019/2020 | Álava | - | Southern France | 27 | 10 | 412 | S -> N | before spring migration |
Fixed Factor (n) | Variable | Factor | Estimate | SE | Df | t Value | p Value |
---|---|---|---|---|---|---|---|
Number of areas (one/two) (n = 82). | kernel 95% | intercept | 1396.10 | 303.86 | 32.33 | 4.595 | <0.001 |
no areas (1) | −400.88 | 296.08 | 61.27 | −1.354 | 0.181 | ||
kernel 75% | intercept | 529.17 | 128.25 | 24.46 | 4.126 | <0.001 | |
no areas (1) | −140.40 | 123.46 | 55.65 | −1.137 | 0.260 | ||
kernel 50% | intercept | 195.69 | 47.84 | 30.26 | 4.090 | <0.001 | |
no areas (1) | −63.10 | 46.64 | 59.76 | −1.353 | 0.181 | ||
MCP | intercept | 2101.89 | 532.26 | 45.07 | 3.95 | <0.001 | |
no areas (1) | 250.05 | 488.71 | 72.57 | 0.512 | 0.61 | ||
Age (n = 82) | kernel 95% | intercept | 796.10 | 277.50 | 78.0 | 2.869 | 0.0053 |
age (immatures) | 1315.10 | 529.20 | 78.0 | 2.485 | 0.0151 | ||
kernel 75% | intercept | 271.10 | 113.2 | 78.0 | 2.394 | 0.0191 | |
age (immatures) | 605.80 | 215.9 | 78.0 | 2.806 | 0.0063 | ||
kernel 50% | intercept | 111.42 | 44.29 | 78.0 | 2.516 | 0.0139 | |
age (immatures) | 170.93 | 84.45 | 78.0 | 2.024 | 0.0464 | ||
MCP | intercept | 1553.90 | 528.37 | 44.93 | 2.941 | 0.005 | |
age (immatures) | 2140.75 | 861.46 | 77.61 | 2.485 | 0.015 | ||
Sex (n = 32) | kernel 95% | intercept | 889.215 | 333.246 | 10.521 | 2.668 | 0.0226 |
sex (female) | −329.996 | 552.939 | 7.105 | −0.597 | 0.5692 | ||
kernel 75% | intercept | 283.624 | 121.982 | 10.886 | 2.325 | 0.0404 | |
sex (female) | −92.647 | 202.523 | 7.418 | −0.457 | 0.6604 | ||
kernel 50% | intercept | 95.548 | 45.931 | 11.033 | 2.080 | 0.0616 | |
sex (female) | −21.549 | 76.115 | 7.463 | −0.283 | 0.7848 | ||
MCP | intercept | 2664.53 | 1144.579 | 11.143 | 2.328 | 0.0397 | |
sex (female) | −1982.23 | 1982.92 | 9.382 | −0.987 | 0.3484 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Macía, J.; De La Puente, J.; Bermejo-Bermejo, A.; Raab, R.; Urios, V. High Variability and Dual Strategy in the Wintering Red Kites (Milvus milvus). Diversity 2022, 14, 117. https://doi.org/10.3390/d14020117
García-Macía J, De La Puente J, Bermejo-Bermejo A, Raab R, Urios V. High Variability and Dual Strategy in the Wintering Red Kites (Milvus milvus). Diversity. 2022; 14(2):117. https://doi.org/10.3390/d14020117
Chicago/Turabian StyleGarcía-Macía, Jorge, Javier De La Puente, Ana Bermejo-Bermejo, Rainer Raab, and Vicente Urios. 2022. "High Variability and Dual Strategy in the Wintering Red Kites (Milvus milvus)" Diversity 14, no. 2: 117. https://doi.org/10.3390/d14020117
APA StyleGarcía-Macía, J., De La Puente, J., Bermejo-Bermejo, A., Raab, R., & Urios, V. (2022). High Variability and Dual Strategy in the Wintering Red Kites (Milvus milvus). Diversity, 14(2), 117. https://doi.org/10.3390/d14020117