Evaluating the Trace Element Concentration in Sediments and Assessing Their Genotoxicity in Ichthyofauna of a Coastal Lagoon in Southeastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Analysis
2.3. Analysis of Trace Elements in Sediment
2.3.1. Determination of Sediment Organic Matter (OM) (Loss on Ignition Calcination Method)
2.3.2. Preparation of Sediment Samples to Determine Trace Elements
2.3.3. Sample Preparation
2.3.4. Determination of Trace Elements and Quality Control
2.4. Genotoxicity Analysis
2.4.1. Fish Collection
2.4.2. Sample Preparation
2.4.3. Micronucleus Test
2.4.4. Comet Assay
2.5. Statistical Analyses
3. Results
3.1. Water Quality
3.2. Concentrations of Trace Elements in Sediment
3.3. Genotoxicity
4. Discussion
4.1. Water Quality
4.2. Concentrations of Trace Elements in Sediments
4.3. Genotoxicity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamala-Kannan, S.; Prabhu Dass Batvari, B.; Lee, K.J.; Kannan, N.; Krishnamoorthy, R.; Shanthi, K.; Jayaprakash, M. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 2008, 71, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Benincá, C.; Ramsdorf, W.; Vicari, T.; De Oliveira Ribeiro, C.A.; De Almeida, M.I.; Silva de Assis, H.C.; Cestari, M.M. Chronic genetic damages in Geophagus brasiliensis exposed to anthropic impact in Estuarine Lakes at Santa Catarina Coast-Southern of Brazil. Environ. Monit. Assess. 2012, 184, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Rank, J.; Jensen, K.; Jespersen, P.H. Monitoring DNA damage in indigenous blue mussels (Mytilus edulis) sampled from coastal sites in Denmark. Mutat. Res. 2005, 585, 33–42. [Google Scholar] [CrossRef]
- Smith, W.S.; Espíndola, E.L.G.; Rocha, O. Environmental gradient in reservoirs of the medium and low Tietê River: Limnological differences through the habitat sequence. Environ. Limnol. Bras. 2014, 26, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Venturoti, G.P.; Veronez, A.C.; Salla, R.V.; Gomes, L.C. Phosphorus, total ammonia nitrogen and chlorophyll a from fish cages in a tropical lake (Lake Palminhas, Espirito Santo, Brazil). Aquac. Res. 2016, 47, 409–423. [Google Scholar] [CrossRef]
- Venturoti, G.P.; Veronez, A.C.; Salla, R.V.; Gomes, L.C. Variation of limnological parameters in a tropical lake used for tilapia cage farming. Aquac. Rep. 2015, 2, 152–157. [Google Scholar] [CrossRef] [Green Version]
- de la Torre, F.R.; Salibián, A.; Ferrari, L. Assessment of the pollution impact on biomarkers of effect of a freshwater fish. Chemosphere 2007, 68, 1582–1590. [Google Scholar] [CrossRef]
- Buschini, A.; Carboni, P.; Martino, A.; Poli, P.; Rossi, C. Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutat. Res. 2003, 537, 81–92. [Google Scholar] [CrossRef]
- Çavaş, T.; Ergene-Gözükara, S. Micronucleus test in fish cells: A bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environ. Mol. Mutagen. 2005, 46, 64–70. [Google Scholar] [CrossRef]
- Pellacani, C.; Buschini, A.; Furlini, M.; Poli, P.; Rossi, C. A battery of in vivo and in vitro tests useful for genotoxic pollutant detection in surface waters. Aquat. Toxicol. 2006, 77, 1–10. [Google Scholar] [CrossRef]
- Carney Almroth, B.; Albertsson, E.; Sturve, J.; Förlin, L. Oxidative stress, evident in antioxidant defences and damage products, in rainbow trout caged outside a sewage treatment plant. Ecotoxicol. Environ. Saf. 2008, 70, 370–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoliar, O.B.; Lushchak, V.I. Environmental Pollution and Oxidative Stress in Fish. In Oxidative Stress-Environmental Induction and Dietary Antioxidants; InTech: London, UK, 2012; pp. 131–166. [Google Scholar]
- Pereira, A.A.; Van Hattum, B.; Brouwer, A.; Van Bodegom, P.M.; Rezende, C.E.; Salomons, W. Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon. J. Soils Sediments 2008, 8, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Shah, A. Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere 2008, 70, 1845–1856. [Google Scholar] [CrossRef]
- Gopal, V.; Achyuthan, H.; Jayaprakash, M. Assessment of trace elements in Yercaud Lake sediments, southern India. Environ. Earth Sci. 2017, 76, 63. [Google Scholar] [CrossRef]
- Grahn, E.; Karlsson, S.; Düker, A. Sediment reference concentrations of seldom monitored trace elements (Ag, Be, In, Ga, Sb, Tl) in four Swedish boreal lakes—Comparison with commonly monitored elements. Sci. Total Environ. 2006, 367, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, P.; Prearo, M.; Bertoli, M.; Abete, M.C.; Dondo, A.; Salvi, G.; Zaccaroni, A.; Elia, A.C.; Pizzul, E. Accumulation of As, Cd, Pb, and Zn in sediment, chironomids and fish from a high-mountain lake: First insights from the Carnic Alps. Sci. Total Environ. 2020, 729, 139007. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, L.Y.; Chuai, X.M.; Chen, X.F.; Zhao, H.Y.; Wu, Q.L. Comparison of metal(loid) concentrations in water, sediments and fish from two large shallow lakes. Int. J. Environ. Sci. Technol. 2013, 10, 1209–1218. [Google Scholar] [CrossRef]
- Li, X.; Liu, E.; Zhang, E.; Lin, Q.; Yu, Z.; Nath, B.; Yuan, H.; Shen, J. Spatio-temporal variations of sedimentary metals in a large suburban lake in southwest China and the implications for anthropogenic processes. Sci. Total Environ. 2020, 707, 135650. [Google Scholar] [CrossRef]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef]
- Scott, G.R.; Sloman, K.A. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 2004, 68, 369–392. [Google Scholar] [CrossRef]
- Deutschmann, B.; Kolarevic, S.; Brack, W.; Kaisarevic, S.; Kostic, J.; Kracun-Kolarevic, M.; Liska, I.; Paunovic, M.; Seiler, T.B.; Shao, Y.; et al. Longitudinal profile of the genotoxic potential of the River Danube on erythrocytes of wild common bleak (Alburnus alburnus) assessed using the comet and micronucleus assay. Sci. Total Environ. 2016, 573, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Lacaze, E.; Geffard, O.; Bony, S.; Devaux, A. Genotoxicity assessment in the amphipod Gammarus fossarum by use of the alkaline comet assay. Mutat. Res. 2010, 700, 32–38. [Google Scholar] [CrossRef]
- Fatima, M.; Usmani, N.; Mobarak Hossain, M.; Siddiqui, M.F.; Zafeer, M.F.; Firdaus, F.; Ahmad, S. Assessment of genotoxic induction and deterioration of fish quality in commercial species due to heavy-metal exposure in an urban reservoir. Arch. Environ. Contam. Toxicol. 2014, 67, 203–213. [Google Scholar] [CrossRef]
- Sukumaran, S.; Grant, A. Differential responses of sexual and asexual Artemia to genotoxicity by a reference mutagen: Is the comet assay a reliable predictor of population level responses? Ecotoxicol. Environ. Saf. 2013, 91, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Bücker, A.; Carvalho, W.; Alves-Gomes, J.A. Avaliation of mutagenicity and gentotoxicity in Eigenmannia virescens (Teleostei: Gymnotiformes) exposed to benzene. Acta Amaz. 2006, 36, 357–364. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Villar, S.; Acuña Plavan, A. Micronucleus test in fishes as indicators of environmental quality in subestuaries of the Río de la Plata (Uruguay). Mar. Pollut. Bull. 2015, 91, 518–523. [Google Scholar] [CrossRef] [PubMed]
- De Andrade Brito, I.; Arruda Freire, C.; Yamamoto, F.Y.; Silva de Assis, H.C.; Rodrigues Souza-Bastos, L.; Cestari, M.M.; de Castilhos Ghisi, N.; Prodocimo, V.; Filipak Neto, F.; de Oliveira Ribeiro, C.A. Monitoring water quality in reservoirs for human supply through multi-biomarker evaluation in tropical fish. J. Environ. Monit. 2012, 14, 615–625. [Google Scholar] [CrossRef]
- Giri, S.K.; Yadav, A.; Kumar, A.; Dev, K.; Gupta, R.; Aggarwal, N.; Seth, N.; Gautam, S.K. Association of GSTM1 and GSTT1 polymorphisms with DNA damage in coal-tar workers. Sci. Total Environ. 2011, 409, 4465–4469. [Google Scholar] [CrossRef]
- Lee, R.F.; Steinert, S. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat. Res. 2003, 544, 43–64. [Google Scholar] [CrossRef]
- Fasulo, S.; Marino, S.; Mauceri, A.; Maisano, M.; Giannetto, A.; D’Agata, A.; Parrino, V.; Minutoli, R.; De Domenico, E. A multibiomarker approach in coris julis living in a natural environment. Ecotoxicol. Environ. Saf. 2010, 73, 1565–1573. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Bonassi, S.; Znaor, A.; Ceppi, M.; Lando, C.; Chang, W.P.; Holland, N.; Kirsch-Volders, M.; Zeiger, E.; Ban, S.; Barale, R.; et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 2007, 28, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.A. Science as a way of knowing-Evolutionary biology. Integr. Comp. Biol. 1984, 24, 467–534. [Google Scholar] [CrossRef] [Green Version]
- Flammarion, P.; Devaux, A.; Nehls, S.; Migeon, B.; Noury, P.; Garric, J. Multibiomarker responses in fish from the Moselle River (France). Ecotoxicol. Environ. Saf. 2002, 51, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Varanasi, U.; Reichert, W.L.; Le Eberhart, B.T.; Stein, J.E. Formation and persistence of benzo[a]pyrene-diolepoxide-DNA adducts in liver of English sole (Parophrys vetulus). Chem. Biol. Interact. 1989, 69, 203–216. [Google Scholar] [CrossRef]
- Mitchelmore, C.L.; Chipman, J.K. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat. Res. 1998, 399, 135–147. [Google Scholar] [CrossRef]
- Ciazela, J.; Siepak, M.; Wojtowicz, P. Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland. Sci. Total Environ. 2018, 616–617, 996–1006. [Google Scholar] [CrossRef]
- Żarczyński, M.; Wacnik, A.; Tylmann, W. Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland). Sci. Total Environ. 2019, 657, 585–596. [Google Scholar] [CrossRef]
- Noli, F.; Tsamos, P. Seasonal variations of natural radionuclides, minor and trace elements in lake sediments and water in a lignite mining area of North-Western Greece. Environ. Sci. Pollut. Res. 2018, 25, 12222–12233. [Google Scholar] [CrossRef]
- Apha. Standard Methods for the Examination of Water and Wastewater, 21st ed; American Public Health Association, American Water Works Association, Water Environmental Federation: Washington, DC, USA, 2005. [Google Scholar]
- Valderrama, J.C. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem. 1981, 10, 109–122. [Google Scholar] [CrossRef]
- Apha. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association, Water Environmental Federation: Washington, DC, USA, 1998. [Google Scholar]
- Davies, B.E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 1974, 38, 150–151. [Google Scholar] [CrossRef]
- U.S. EPA. Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. U.S. Environmental Protection Agency: Washington, DC, USA, 2007; 1–30. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis; Thomson Brooks/Cole: Belmont, CA, USA, 2007. [Google Scholar]
- Guevara, Y.Z.C.; De Souza, J.J.L.L.; Veloso, G.V.; Veloso, R.W.; Rocha, P.A.; Abrahão, W.A.P.; Fernandes Filho, E.I. Reference values of soil quality for the Rio Doce Basin. Rev. Bras. Cienc. Solo 2018, 42, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Diemer, O.; Neu, D.H.; Bittencourt, F.; Signor, A.; Boscolo, W.R.; Feiden, A. Eugenol as anesthetic for silver catfish (Rhamdia voulezi) with different weight. Semin. Ciências Agrárias 2012, 33, 1495–1500. [Google Scholar] [CrossRef] [Green Version]
- Grisolia, C.K. A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutat. Res. 2002, 518, 145–150. [Google Scholar] [CrossRef]
- Grisolia, C.K.; Cordeiro, C.M.T. Variability in micronucleus induction with different mutagens applied to several species of fish. Genet. Mol. Biol. 2000, 23, 235–239. [Google Scholar] [CrossRef]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.; Sasaki, Y.F. Single Cell Gel/Comet Assay: Guidelines for In Vitro and In Vivo Genetic Toxicology Testing. Environ. Mol. Mutagen. 2000, 221, 206–221. [Google Scholar] [CrossRef]
- Grisolia, C.K.; Rivero, C.L.G.; Starling, F.L.R.M.; da Silva, I.C.R.; Barbosa, A.C.; Dorea, J.G. Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. Genet. Mol. Biol. 2009, 32, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Brasil, C.N.; do, M.A. Resolução n 357, 18 de março de 2005. Diário Of. 2005, 58–63. [Google Scholar]
- Cao, Y.; Langdon, P.; Chen, X.; Huang, C.; Yan, Y.; Yang, J.; Zeng, L. Regime shifts in shallow lake ecosystems along an urban-rural gradient in central China. Sci. Total Environ. 2020, 733, 139309. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Ahmed, T.; Swami, K.; Judd, C.D.; Bari, A.; Dutkiewicz, V.A.; Husain, L. History of atmospheric deposition of trace elements in lake sediments, ~1880 to 2007. J. Geophys. Res. Atmos. 2015, 120, 5658–5669. [Google Scholar] [CrossRef]
- Vieira, L.M.; Neto, D.M.; do Couto, E.V.; Lima, G.B.; Peron, A.P.; Halmeman, M.C.R.; Froehner, S. Contamination assessment and prediction of 27 trace elements in sediment core from an urban lake associated with land use. Environ. Monit. Assess. 2019, 191, 236. [Google Scholar] [CrossRef]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef] [PubMed]
- Comber, S.D.W.; Gunn, A.M. Heavy Metals Entering Sewage-Treatment Works from Domestic Sources. Water Environ. J. 1996, 10, 137–142. [Google Scholar] [CrossRef]
- Shah, R.A.; Achyuthan, H.; Lone, A.M.; Lone, S.A.; Malik, M.S. Environmental Risk Assessment of Lake Surface Sediments Using Trace Elements: A Case Study, the Wular Lake. J. Geol. Soc. India 2020, 95, 145–151. [Google Scholar] [CrossRef]
- Poznanović Spahić, M.M.; Sakan, S.M.; Glavaš-Trbić, B.M.; Tančić, P.I.; Škrivanj, S.B.; Kovačević, J.R.; Manojlović, D.D. Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). J. Environ. Sci. Heal.-Part A Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 219–230. [Google Scholar] [CrossRef]
- Havig, J.R.; McCormick, M.L.; Hamilton, T.L.; Kump, L.R. The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim. Cosmochim. Acta 2015, 165, 389–406. [Google Scholar] [CrossRef]
- Brasil, C.N.; do, M.A. Resolução No 454, de 01 de Novembro de 2012; Diário Oficial da União: Brasília, Brazil, 2012. [Google Scholar]
- Simonyan, A.; Gabrielyan, B.; Minasyan, S.; Hovhannisyan, G.; Aroutiounian, R. Genotoxicity of Water Contaminants from the Basin of Lake Sevan, Armenia Evaluated by the Comet Assay in Gibel Carp (Carassius auratus gibelio) and Tradescantia Bioassays. Bull. Environ. Contam. Toxicol. 2016, 96, 309–313. [Google Scholar] [CrossRef]
- Fernandes, V.D.O.; Cavati, B.; de Souza, B.D.; Machado, R.G.; Costa, A.G. Lagoa Mãe-Bá (Guarapari-Anchieta, Es): Um ecossistema com potencial de floração de cianobactérias? Oecologia Aust. 2009, 13, 366–381. [Google Scholar] [CrossRef]
- Mosesso, P.; Angeletti, D.; Pepe, G.; Pretti, C.; Nascetti, G.; Bellacima, R.; Cimmaruta, R.; Jha, A.N. The use of cyprinodont fish, Aphanius fasciatus, as a sentinel organism to detect complex genotoxic mixtures in the coastal lagoon ecosystem. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2012, 742, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, P.; Pacheco, M.; Lourdes Pereira, M.; Mendo, S.; Rotchell, J.M. Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination. Environ. Pollut. 2010, 158, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
Element | Wavelengths nm | LOD μL L−1 | PLOQ mg kg−1 | Recovery % |
---|---|---|---|---|
Cr | 267.71 | 2.34 | 0.47 | 119 |
Ni | 231.60 | 6.62 | 0.92 | 89 |
Cd | 214.44 | 0.64 | 0.13 | 86 |
Pb | 220.35 | 0.68 | 0.18 | 102 |
Co | 228.61 | 2.02 | 0.20 | 101 |
Zn | 213.85 | 3.24 | 0.65 | 88 |
Mn | 259.37 | 0.32 | 0.06 | 102 |
Sites/Species | A. bimaculatus | G. brasiliensis | O. niloticus |
---|---|---|---|
Southern | 27 | 5 | 9 |
Central | 27 | 3 | 7 |
Northern | 22 | 9 | 4 |
Trace Element | p-Value | Southern Region (N = 30) | Central Region (N = 30) | Northern Region (N = 30) | Nova Guarapari Lagoon (N = 24) | CONAMA no. 454 | MacDonald et al. (2000) [54] 3 | |
---|---|---|---|---|---|---|---|---|
(Level 1) 1 | (Level 2) 2 | |||||||
Cr | 0.260 | 59.62 ± 15.517 | 13.52 ± 24.611 | 64.95 ± 13.679 | 69.51 ± 15.260 | 37.3 | 90.00 | 111.00 |
Ni | 0.347 | 29.65 ± 10.482 | 3.89 ± 16.625 | 31.27 ± 9.240 | 39.57 ± 10.308 | 18.00 | 35.90 | 48.60 |
Cd | 0.284 | 0.02 | 0.02 | 0.00 | 0.01 | 0.60 | 3.50 | 4.98 |
Pb | 0.006 | 2.76ab ± 0.340 | 1.14c ± 0.539 | 2.37b ± 0.300 | 3.36a ± 0.334 | 35.00 | 91.30 | 128.00 |
Cu | 0.047 | 3.81 ± 0.294 | 3.06 ± 0.466 | 4.50 ± 0.259 | 4.10 ± 0.289 | 35.7 | 197.00 | 149.00 |
Mn | 0.038 | 38.84b ± 4.600 | 60.55a ± 7.296 | 36.45b ± 4.055 | 39.19b ± 4.523 | - | - | - |
Co | 0.007 | 0.75b ± 0.108 | 0.97a ± 0.172 | 1.25a ± 0.095 | 0.88b ± 0.107 | - | - | - |
Fe | 0.001 | 13945 ± 1080 | 22303 ± 1080 | 18990 ± 1080 | 21168 ± 1080 | - | - | - |
K | 0.062 | 358.15a ± 34.910 | 181.47b ± 55.370 | 286.95a ± 30.774 | 306.96a ± 34.330 | - | - | - |
Ca | 0.200 | 623.77 ± 70.755 | 861.06 ± 112.220 | 590.57 ± 62.375 | 676.79 ± 69.582 | - | - | - |
Mg | 0.141 | 686.67 ± 77.134 | 358.48 ± 122.340 | 532.08 ± 67.998 | 551.49 ± 75.855 | - | - | - |
Zn | 0.412 | 9.08 ± 0.865 | 9.71 ± 1.373 | 9.20 ± 0.763 | 10.89 ± 0.851 | 123.00 | 315.00 | 459.00 |
OM | 0.001 | 14.98c ± 2.090 | 59.16a ± 3.315 | 20.54b ± 1.842 | 19.63bc± 2.055 | - | - | - |
Species/Test | Micronucleus Test (‰) | Damage Index | Class I (%) | Class II (%) | Class III (%) | Class IV (%) | N |
---|---|---|---|---|---|---|---|
A. bimaculatus | 0.64 ± 1.028 | 151.78 ± 42.305 | 7.28 ± 15.573 | 30.94 ± 33.133 | 12.64 ± 15.249 | 49.12 ± 39.226 | 76 |
G. brasiliensis | 0.18 ± 0.393 | 139.91 ± 44.263 | 10.21 ± 24.246 | 38.09 ± 36.294 | 13.38 ± 18.626 | 38.32 ± 36.029 | 17 |
O. niloticus | 0.40 ± 0.400 | 135.49 ± 46.510 | 10.10 ± 21.222 | 44.25 ± 38.987 | 12.22 ± 17.153 | 33.92 ± 38.323 | 20 |
p-Value * | 0.179 | 0.372 | 0.781 | 0.428 | 0.733 | 0.217 |
Region/Test | Micronucleus Test (‰) | Damage Index | Class I (%) | Class II (%) | Class III (%) | Class IV (%) | N |
---|---|---|---|---|---|---|---|
South | 0.63 ± 1.000 | 139.55 ± 46.311 | 12.55 ± 23.711 | 34.52 ± 35.135 | 15.17 ± 16.979 | 38.00 ± 36.800 | 41 |
Center | 0.50 ± 0.816 | 149.71 ± 46.009 | 7.99 ± 17.638 | 34.20 ± 37.204 | 8.11 ± 13.624 | 49.68 ± 41.838 | 37 |
North | 0.43 ± 0.850 | 153.21 ± 36.795 | 3.40 ± 5.650 | 34.37 ± 32.615 | 14.59 ± 16.472 | 47.63 ± 37.702 | 35 |
p-Value * | 0.398 | 0.355 | 0.137 | 0.841 | 0.079 | 0.336 |
Data/Test | Micronucleus Test (‰) | Damage Index | Class I (%) | Class II (%) | Class III (%) | Class IV (%) | N |
---|---|---|---|---|---|---|---|
1 | 0.34 ± 0.598 | 109.31a ± 39.871 | 30.03e ± 34.707 | 36.84cd ± 26.926 | 17.59bc ± 19.387 | 15.531ab ± 26.478 | 16 |
2 | 0.65 ± 0.964 | 160.21b ± 36.305 | 8.73bcd ± 17.224 | 18.26bc ± 15.658 | 16.85bc ± 14.509 | 56.147cd ± 30.408 | 17 |
3 | 0.62 ± 0.866 | 101.89a ± 14.719 | 6.94cde ± 8.173 | 85.62e ± 17.001 | 4.16a ± 11.704 | 3.281a ± 12.474 | 16 |
4 | 0.46 ± 1.305 | 118.15a ± 33.048 | 9.58de ± 12.989 | 64.87de ± 33.719 | 5.21a ± 10.953 | 20.333ab ± 29.562 | 12 |
5 | 0.85 ± 1.107 | 190.97cd ± 11.080 | 0.10a ± 0.316 | 0.80a ± 0.422 | 15.75abc ± 21.888 | 83.250de ± 21.959 | 10 |
6 | 0.45 ± 0.568 | 159.43bc ± 32.433 | 2.77abc ± 5.811 | 31.64bcd ± 25.830 | 9.54abc ± 8.493 | 56.045cd ± 30.848 | 11 |
7 | 0.92 ± 0.917 | 181.46bcd ± 16.331 | 0.75ab ± 1.837 | 7.67ab ± 12.148 | 19.50bc ± 17.487 | 72.083cde ± 23.094 | 6 |
8 | 0.04 ± 0.144 | 193.94d ± 7.358 | 0.54ab ± 0.498 | 3.37a ± 5.059 | 3.58ab ± 6.424 | 92.458 e ± 9.969 | 12 |
9 | 0.61 ± 1.102 | 155.63b ± 34.591 | 2.42ab ± 4.041 | 30.23bc ± 30.211 | 24.08c ± 17.124 | 44.038bc ±35.510 | 13 |
p-Value | 0.162 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo Filho, C.B.; dos Santos, A.R.; Ferrari, J.L.; Preto, B.d.L.; Kunz, S.H.; Senhorelo, A.P.; Burak, D.L.; Rossi Junior, J.L. Evaluating the Trace Element Concentration in Sediments and Assessing Their Genotoxicity in Ichthyofauna of a Coastal Lagoon in Southeastern Brazil. Diversity 2022, 14, 151. https://doi.org/10.3390/d14020151
Camargo Filho CB, dos Santos AR, Ferrari JL, Preto BdL, Kunz SH, Senhorelo AP, Burak DL, Rossi Junior JL. Evaluating the Trace Element Concentration in Sediments and Assessing Their Genotoxicity in Ichthyofauna of a Coastal Lagoon in Southeastern Brazil. Diversity. 2022; 14(2):151. https://doi.org/10.3390/d14020151
Chicago/Turabian StyleCamargo Filho, Claudio Barberini, Alexandre Rosa dos Santos, Jéferson Luiz Ferrari, Bruno de Lima Preto, Sustanis Horn Kunz, Adriano Posse Senhorelo, Diego Lang Burak, and João Luiz Rossi Junior. 2022. "Evaluating the Trace Element Concentration in Sediments and Assessing Their Genotoxicity in Ichthyofauna of a Coastal Lagoon in Southeastern Brazil" Diversity 14, no. 2: 151. https://doi.org/10.3390/d14020151
APA StyleCamargo Filho, C. B., dos Santos, A. R., Ferrari, J. L., Preto, B. d. L., Kunz, S. H., Senhorelo, A. P., Burak, D. L., & Rossi Junior, J. L. (2022). Evaluating the Trace Element Concentration in Sediments and Assessing Their Genotoxicity in Ichthyofauna of a Coastal Lagoon in Southeastern Brazil. Diversity, 14(2), 151. https://doi.org/10.3390/d14020151