Defining Management Units for Wild Nile Tilapia Oreochromis niloticus from Nine River Basins in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Sampling and DNA Extraction
2.2. Polymerase Chain Reaction and Genotyping
2.3. Data Analysis
3. Results
3.1. Genetic Diversity within Wild Populations
3.2. Genetic Differentiation among Wild Populations
4. Discussion
4.1. Genetic Diversity within Wild O. niloticus Populations: Evidence of Recent Bottlenecks
4.2. Genetic Differentiation among Wild Populations: Barriers to Dispersal and a Unique Dispersal Mechanism
4.3. Defining Conservation Units for Wild Oreochromis niloticus from Nine River Basins in Ghana
4.4. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO) of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Eknath, A.E.; Tayamen, M.M.; Palada-de Vera, M.S.; Danting, J.C.; Reyes, R.A.; Dionisio, E.E.; Capili, J.B.; Bolivar, H.L.; Abella, T.A.; Circa, A.V.; et al. Genetic improvement of farmed tilapias: The growth performance of eight strains of Oreochromis niloticus tested in different farm environments. Aquaculture 1993, 111, 171–188. [Google Scholar] [CrossRef]
- Eknath, A.E.; Dey, M.M.; Rye, M.; Gjerde, B.; Abella, T.A.; Sevilleja, R.; Tayamen, M.M.; Reyes, R.A.; Bentsen, H.B. Selective breeding of Nile tilapia for Asia. In Proceedings of the 6th World Congress of Genetics Applied to Livestock Production, Armidale, Australia, 11–16 January 1998; ICLARM Contribution No. 1397. International Center for Living Aquatic Resources Management: Manila, Philippines, 1998. [Google Scholar]
- Falk, T.M.; Abban, E.K. Genetic diversity of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae) from the Volta System in Ghana. In Biodiversity, Management and Utilization of West African Fishes, WorldFish Center Conference Proceedings; Abban, E.K., Casal, C.M.V., Dugan, P., Falk, T.M., Eds.; WorldFish Center: Penang, Malaysia, 2004; pp. 13–15. [Google Scholar]
- Rognon, X.; Andriamanga, M.; McAndrew, B.; Guyomard, R. Allozyme variation in natural and cultured populations in two tilapia species: Oreochromis niloticus and Tilapia zillii. Heredity 1996, 76, 640–650. [Google Scholar] [CrossRef] [Green Version]
- Vreven, E.J.; Adepo-Gourene, B.; Agnèse, J.-F.; Teugels, G.G. Morphometric and allozyme variation in natural populations and cultured strains of Nile tilapia Oreochromis niloticus (Telesotei, Cichlidae). Belg. J. Zool. 1998, 128, 23–34. [Google Scholar]
- Agnèse, J.-F.; Adepo-Gourene, B.; Abban, E.K.; Fermon, Y. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 1997, 79, 89–96. [Google Scholar] [CrossRef]
- Bezault, E.; Balaresque, P.; Toguyeni, A.; Fermon, A.; Araki, H.; Baroiller, J.-F.; Rognon, X. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC Genet. 2011, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Kocher, T.D. Microsatellite DNA markers for genetic mapping in Oreochromis niloticus. J. Fish Biol. 1996, 49, 169–171. [Google Scholar] [CrossRef]
- Carleton, K.L.; Streelman, J.T.; Lee, B.-Y.; Garnhart, N.; Kidd, M.; Kocher, T.D. Rapid isolation of CA microsatellites from the tilapia genome. Anim. Genet. 2002, 33, 140–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streelman, J.T.; Kocher, T.D. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol. Genomics 2002, 9, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, C. Defining ‘evolutionary significant units’ for conservation. Trends Ecol. Evol. 1994, 9, 373–375. [Google Scholar] [CrossRef]
- Waples, R.S. Pacific salmon, Oncorynchus spp., and the definition of “species” under the Endangered Species Act. Mar. Fish. Rev. 1991, 53, 11–22. [Google Scholar]
- Frimpong, E.A.; Amisah, S.; Anane-Taabeah, G.; Ampofo-Yeboah, A.; Hallerman, E. Identifying Local Strains of Oreochromis Niloticus that Are Adapted to Future Climate Conditions; Report Submitted to United States Agency for International Development (USAID); Aquaculture Innovation Lab, Oregon State University: Corvallis, OR, USA, 2016; p. 27. [Google Scholar]
- Mireku, K.K.; Kassam, D.; Changadeya, W.; Attipoe, F.Y.K.; Adinortey, C.A. Assessment of genetic variations of Nile tilapia (Oreochromis niloticus L.) in the Volta Lake of Ghana using microsatellite markers. Afr. J. Biotechnol. 2017, 16, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Lind, C.E.; Agyakwah, S.K.; Attipoe, F.Y.; Nugent, C.; Crooijmans, R.P.M.A.; Toguyeni, A. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci. Rep. 2019, 9, 16767. [Google Scholar] [CrossRef] [Green Version]
- Ansah, Y.B. Characterization of Pond Effluents and Biological and Physicochemical Assessment of Receiving Waters in Central Ghana. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2010. [Google Scholar]
- Dunz, A.R.; Schliewen, U. Description of a new species of Tilapia Smith, 1840 (Teleosti: Cichlidae) from Ghana. Zootaxa 2010, 2548, 1–21. [Google Scholar] [CrossRef]
- McCartney, M.; Forkuor, G.; Sood, A.; Amisigo, B.; Hattermann, F.; Muthuwatta, L. The Water Resource Implications of Changing Climate in the Volta River Basin; IWMI Research Report; International Water Management Institute: Colombo, Sri Lanka, 2012; Volume 146, p. 40. [Google Scholar] [CrossRef] [Green Version]
- Rognon, X.; Guyomard, R. Large extent of mitochondrial DNA transfer from Oreochromis aureus to O. niloticus in West Africa. Mol. Ecol. 2003, 12, 435–445. [Google Scholar] [CrossRef]
- Anane-Taabeah, G. Characterization of the Molecular Genetic Variation in Wild and Farmed Nile Tilapia (Oreochromis niloticus) in Ghana for Conservation and Aquaculture Development. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2018. [Google Scholar]
- Anane-Taabeah, G.; Frimpong, E.A.; Hallerman, E. Aquaculture-mediated invasion of the Genetically Improved Farmed Tilapia (GIFT) into the Lower Volta Basin of Ghana. Diversity 2019, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Cnaani, A.; Hallerman, E.M.; Ron, M.; Weller, J.I.; Kashi, Y.; Gall, G.A.E.; Hulata, G. A chromosomal region with quantitative trait loci affecting cold tolerance and fish size in an F2 tilapia hybrid. Aquaculture 2003, 223, 117–128. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Willis, D.P.M.; Shipley, P. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman: New York, NY, USA, 1994. [Google Scholar]
- Excoffier, L.; Laval, G.; Schneider, S. ARLEQUIN, version 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Thompson, E. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M.; Excoffier, L. Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity 1996, 76, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Goudet, J. Fstat (ver. 2.9.4), a Program to Estimate and Test Population Genetics Parameters; Lausanne, Switzerland, 2003; Available online: http://www.unil.ch/izea/softwares/fstat (accessed on 15 November 2021).
- Garza, J.C.; Williamson, E.G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 2001, 10, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillet, B.J.; Ovenden, J.R. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1997, 144, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution and the Genetics of Populations, Vol. 4: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978. [Google Scholar]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Hedrick, P.W. A standardized genetic differentiation measure. Evolution 2005, 59, 1633–1638. [Google Scholar] [CrossRef]
- Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREE2: Software for constructing population trees from allele frequency data and computing some other population statistics with Windows interface. Mol. Biol. Evol. 2010, 27, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Wen, W. Documentation for STRUCTURE Software: Version 2; University of Chicago Press: Chicago, IL, USA, 2003; Available online: http://web.stanford.edu/group/pritchardlab/software/structure2_1.html (accessed on 12 March 2018).
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for 676 identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 12 March 2018).
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Benestan, L.M.; Ferchaud, A.L.; Hohenlohe, P.A.; Garner, B.A.; Naylor, G.J.; Baums, I.B.; Schwartz, M.K.; Kelley, J.L.; Luikart, G. Conservation genomics of natural and managed populations: Building a conceptual and practical framework. Mol. Ecol. 2016, 25, 2967–2977. [Google Scholar] [CrossRef]
- Gilbert, K.J.; Andrew, R.L.; Bock, D.G.; Franklin, M.T.; Kane, N.C.; Moore, J.-S.; Moyers, B.T.; Renaut, S.; Rennison, D.J.; Veen, T.; et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program STRUCTURE. Mol. Ecol. 2012, 21, 4925–4930. [Google Scholar] [CrossRef]
- Dankwa, H.R.; Biney, C.A.; De Graft-Johnson, A.A. Impact of mining operations on the ecology of River Offin in Ghana. West Afr. J. Appl. Ecol. 2005, 7, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Philippart, J.C.; Ruwet, J.C. Ecology and distribution of tilapias. The Biology and Culture of Tilapias. In ICLARM (International Center for Living Aquatic Resources Management) Conference Proceedings; Pullin, R.S.V., Lowe-McConnell, R.H., Eds.; International Center for Living Aquatic Resources Management: Bellagio, Italy, 1982; Volume 7, pp. 15–59. [Google Scholar]
- Stickney, R. Tilapia tolerance in saline waters: A review. Prog. Fish-Cult. 1986, 48, 61–67. [Google Scholar] [CrossRef]
- Watanabe, W.O.; Kuo, C.-M.; Huang, M.-C. Salinity tolerance of Nile tilapia fry (Oreochromis niloticus), spawned and hatched at various salinities. Aquaculture 1985, 48, 159–176. [Google Scholar] [CrossRef]
- Likongwe, J.S.; Stecko, T.D.; Stauffer, J.R., Jr.; Carline, R.F. Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture 1996, 146, 37–46. [Google Scholar] [CrossRef]
- Kamal, A.H.M.M.; Mair, G.C. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 2005, 247, 189–201. [Google Scholar] [CrossRef]
- Li, C.; Corrigan, S.; Yang, L.; Straube, N.; Harris, M.; Hofreiter, M.; White, W.T.; Naylor, G.J.P. DNA capture reveals transoceanic gene flow in endangered river sharks. Proc. Natl. Acad. Sci. USA 2015, 112, 13302–13307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Basin | Sampling Location | Year Sampled | Population ID | N | Ho | He | A | Ar | PrA | Range | M-Ratio | FIS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Afram River | Aframso | 2014; 2015 | AF | 30 | 0.75 | 0.73 | 9.00 | 6.75 | 2 | 15.55 | 0.49 | −0.03 |
White Volta River | Binaba | 2014; 2015 | WB | 30 | 0.65 | 0.72 | 7.38 | 5.87 | 0 | 16.75 | 0.41 | 0.10 |
White Volta River | Kulugu | 2014; 2015 | WK | 30 | 0.63 | 0.70 | 8.38 | 6.27 | 3 | 17.63 | 0.44 | 0.09 |
Oti River | Sabare | 2014; 2015 | OT | 30 | 0.67 | 0.68 | 8.63 | 6.07 | 4 | 19.88 | 0.41 | 0.02 |
Pra River | Twifo-Praso | 2017 | PR | 30 | 0.67 | 0.65 | 8.38 | 6.10 | 2 | 18.00 | 0.46 | −0.03 |
Ankobra River | Ankobra | 2017 | AN | 30 | 0.60 | 0.58 | 6.63 | 4.90 | 1 | 16.75 | 0.39 | −0.02 |
Tano River | Asuhyea | 2017 | TA | 30 | 0.65 | 0.64 | 5.88 | 4.78 | 0 | 15.63 | 0.37 | −0.02 |
Tano River | Elubo | 2017 | TE | 18 | 0.82 | 0.79 | 8.38 | 7.48 | 5 | 18.50 | 0.45 | −0.04 |
Juen Lagoon | Jehwi-Wharf | 2017 | JU | 12 | 0.69 | 0.74 | 7.63 | 7.63 | 6 | 18.13 | 0.39 | 0.07 |
Black Volta River | Kantu ** | 2017 | BV | 39 | 0.60 | 0.71 | 9.25 | 6.37 | 8 | 20.75 | 0.45 | 0.16 |
Lower Volta River | Notreku-Akuse | 2017 | LV | 33 | 0.69 | 0.72 | 9.75 | 6.77 | 4 | 18.13 | 0.39 | 0.05 |
Population ID | Estimated Ne |
---|---|
AF | 43.3 (25.1, 102.6) |
WB | 21.4 (14.0, 36.2) |
WK | ∞ (104.4, ∞) |
OT | 46.4 (23.7, 182.2) |
PR | 1184.4 (52.8, ∞) |
AN | ∞ (58.1, ∞) |
TA | ∞ (120.3, ∞) |
TE | 28.1 (15.8, 74.1) |
JU | 50.1 (12.4, ∞) |
BV | 22.8 (14.9, 37.6) |
LV | 178.2 (43.2, ∞) |
Population | p_sign_IAM | p_sign_SMM | p_stdv_IAM | p_stdv_SMM | p_W_1t_IAM | p_W_1t_SMM | p_W_2t_IAM | p_W_2t_SMM |
---|---|---|---|---|---|---|---|---|
AF | 0.309 | 0.058 | 0.183 | 0.000 | 0.156 | 0.990 | 0.313 | 0.027 |
WB | 0.097 | 0.186 | 0.035 | 0.027 | 0.020 | 0.770 | 0.039 | 0.547 |
WK | 0.580 | 0.001 | 0.292 | 0.000 | 0.156 | 1.000 | 0.313 | 0.004 |
OT | 0.429 | 0.001 | 0.489 | 0.000 | 0.578 | 1.000 | 0.945 | 0.004 |
PR | 0.407 | 0.001 | 0.047 | 0.000 | 0.727 | 1.000 | 0.641 | 0.004 |
AN | 0.455 | 0.010 | 0.183 | 0.000 | 0.680 | 0.996 | 0.742 | 0.012 |
TA | 0.252 | 0.426 | 0.065 | 0.007 | 0.027 | 0.809 | 0.055 | 0.461 |
TE | 0.106 | 0.054 | 0.059 | 0.031 | 0.010 | 0.986 | 0.020 | 0.039 |
JU | 0.595 | 0.052 | 0.463 | 0.001 | 0.527 | 0.986 | 1.000 | 0.039 |
BV | 0.574 | 0.001 | 0.469 | 0.000 | 0.320 | 1.000 | 0.641 | 0.004 |
LV | 0.173 | 0.010 | 0.303 | 0.000 | 0.680 | 0.994 | 0.742 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anane-Taabeah Attu, G.; Frimpong, E.A.; Hallerman, E.M. Defining Management Units for Wild Nile Tilapia Oreochromis niloticus from Nine River Basins in Ghana. Diversity 2022, 14, 73. https://doi.org/10.3390/d14020073
Anane-Taabeah Attu G, Frimpong EA, Hallerman EM. Defining Management Units for Wild Nile Tilapia Oreochromis niloticus from Nine River Basins in Ghana. Diversity. 2022; 14(2):73. https://doi.org/10.3390/d14020073
Chicago/Turabian StyleAnane-Taabeah Attu, Gifty, Emmanuel A. Frimpong, and Eric M. Hallerman. 2022. "Defining Management Units for Wild Nile Tilapia Oreochromis niloticus from Nine River Basins in Ghana" Diversity 14, no. 2: 73. https://doi.org/10.3390/d14020073
APA StyleAnane-Taabeah Attu, G., Frimpong, E. A., & Hallerman, E. M. (2022). Defining Management Units for Wild Nile Tilapia Oreochromis niloticus from Nine River Basins in Ghana. Diversity, 14(2), 73. https://doi.org/10.3390/d14020073