Modeling the Potential Distribution of Two Species of Shrews (Chodsigoa hypsibia and Anourosorex squamipes) under Climate Change in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Data
2.2. Current and Future Environmental Variables
2.3. Modeling Procedures and Validations
3. Results
3.1. Model Performance
3.2. Important Environmental Variables of Chodsigoa hypsibia and Anourosorex squamipes
3.3. The Percentage Area of Current and Future Suitable Habitat of C. hypsibia and A. squamipes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Mohajan, H. Greenhouse Gas Emissions, Global Warming and Climate Change. In Proceedings of the 15th Chittagong Conference on Mathematical Physics, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), Chittagong, Bangladesh, 16 March 2017. [Google Scholar]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Levinsky, I.; Skov, F.; Svenning, J.-C.; Rahbek, C. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers. Conserv. 2007, 16, 3803–3816. [Google Scholar] [CrossRef]
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 1010–1035. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, S.A.; Griffiths, G.; Obiakara, M.C.; Esparza-Estrada, C.E.; Lukac, M. Evidence of ecological niche shift in Rhododendron ponticum (L.) in Britain: Hybridization as a possible cause of rapid niche expansion. Ecol. Evol. 2020, 10, 2040–2050. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Feng, L.; Zhao, Y.; Feng, L.; Wu, D.; Zhu, C. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
- Renard, Q.; Pélissier, R.; Ramesh, B.; Kodandapani, N. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int. J. Wildland Fire 2012, 21, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Zhang, P.; Shang, Y. The potential global distribution and dynamics of wheat under multiple climate change scenarios. Sci. Total Environ. 2019, 688, 1308–1318. [Google Scholar] [CrossRef]
- Wan, J.; Qi, G.-j.; Ma, J.; Ren, Y.; Wang, R.; McKirdy, S. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 2020, 19, 2072–2082. [Google Scholar] [CrossRef]
- Merow, C.; Silander, J.A.; Warton, D. A comparison of Maxlike and Maxent for modelling species distributions. Methods Ecol. Evol. 2014, 5, 215–225. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Gilg, O.; Sittler, B.T.; Hanski, I. Climate change and cyclic predator–prey population dynamics in the high Arctic. Glob. Change Biol. 2009, 15, 2634–2652. [Google Scholar] [CrossRef]
- McCain, C.M.; Colwell, R.K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 2011, 14, 1236–1245. [Google Scholar] [CrossRef]
- Brown, C.R.; Hunter, E.M.; Baxter, R.M. Metabolism and thermoregulation in the forest shrew Myosorex varius (Soricidae: Crocidurinae). Comp. Biochem. Physiol. Part A Physiol. 1997, 118, 1285–1290. [Google Scholar] [CrossRef]
- Wells, K.; Pfeiffer, M.; Lakim, M.; Linsenmair, K.E. Use of arboreal and terrestrial space by a small mammal community in a tropical rain forest in Borneo, Malaysia. J. Biogeogr. 2004, 31, 641–652. [Google Scholar] [CrossRef]
- Umetsu, F.; Metzger, J.; Pardini, R. Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: A test with Atlantic forest small mammals. Ecography 2008, 31, 359–370. [Google Scholar] [CrossRef]
- Andrew, T.S.; Yan, X.; Robert, S.H.; Darrin, L.; John, M.; Don, E.W.; Wozencraft, W.C. A Guide to the Mammals of China; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- He, K.; Hu, N.Q.; Chen, X.; Li, J.T.; Jiang, X.L. Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China. Heredity 2016, 116, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-Z.; He, K.; Huang, C.; Wan, T.; Lin, L.-K.; Liu, S.-Y.; Jiang, X.-L. Integrative systematic analyses of the genus Chodsigoa (Mammalia: Eulipotyphla: Soricidae), with descriptions of new species. Zool. J. Linn. Soc. 2017, 180, 694–713. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Ashoori, A.; Kafash, A.; Varasteh Moradi, H.; Yousefi, M.; Kamyab, H.; Behdarvand, N.; Mohammadi, S. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: Application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 2018, 85, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Farashi, A.; Erfani, M. Modeling of habitat suitability of Asiatic black bear (Ursus thibetanus gedrosianus) in Iran in future. Acta Ecol. Sin. 2018, 38, 9–14. [Google Scholar] [CrossRef]
- Liang, T.; Feng, Q.; Yu, H.; Huang, X.; Lin, H.; An, S.; Ren, J. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassl. Sci. 2012, 58, 208–220. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ebrahimi, E.; Shahriari Moghadam, M.; Bosso, L. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol. Inform. 2019, 52, 7–13. [Google Scholar] [CrossRef]
- Bosso, L.; Smeraldo, S.; Rapuzzi, P.; Sama, G.; Garonna, A.P.; Russo, D. Nature protection areas of Europe are insufficient to preserve the threatened beetleRosalia alpine (Coleoptera: Cerambycidae): Evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 2018, 43, 192–203. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Rowe, K.C.; Rowe, K.M.; Tingley, M.W.; Koo, M.S.; Patton, J.L.; Conroy, C.; Perrine, J.D.; Beissinger, S.R.; Moritz, C. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141857. [Google Scholar] [CrossRef] [Green Version]
- Baltensperger, A.P.; Huettmann, F. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective. PLoS ONE 2015, 10, e0132054. [Google Scholar] [CrossRef]
- Bobretsov, A.V.; Lukyanova, L.E.; Bykhovets, N.M.; Petrov, A.N. Impact of climate change on population dynamics of forest voles (Myodes) in northern Pre-Urals: The role of landscape effects. Contemp. Probl. Ecol. 2017, 10, 215–223. [Google Scholar] [CrossRef]
- Harris, R.B. A Guide to the Mammals of China by A. T. Smith and Y. Xie (eds.). J. Mammal. 2009, 90, 520–521. [Google Scholar] [CrossRef]
- McCain, C.M. Elevational Gradients in Diversity of Small Mammals. Ecology 2005, 86, 366–372. [Google Scholar] [CrossRef]
- Pearson, O.P. Metabolism of Small Mammals, With Remarks on the Lower Limit of Mammalian Size. Science 1948, 108, 44. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.-C.; Gégout, J.-C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef]
- Hutterer, R. Order Soricomorpha. In Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed.; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005. [Google Scholar]
- He, K.; Li, Y.J.; Brandley, M.C.; Lin, L.K.; Wang, Y.X.; Zhang, Y.P.; Jiang, X.L. A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Mol. Phylogenetics Evol. 2010, 56, 734–746. [Google Scholar] [CrossRef]
- Xu, D.; Zhuo, Z.; Wang, R.; Ye, M.; Pu, B. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Glob. Ecol. Conserv. 2019, 19, e00691. [Google Scholar] [CrossRef]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Lortie, C.J.; Brooker, R.W.; Choler, P.; Kikvidze, Z.; Michalet, R.; Pugnaire, F.I.; Callaway, R.M. Rethinking plant community theory. Oikos 2004, 107, 433–438. [Google Scholar] [CrossRef]
- Warren, M.S.; Hill, J.K.; Thomas, J.A.; Asher, J.; Fox, R.; Huntley, B.; Roy, D.B.; Telfer, M.G.; Jeffcoate, S.; Harding, P.; et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 2001, 414, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Vellend, M.; Verheyen, K.; Flinn, K.M.; Jacquemyn, H.; Kolb, A.; Van Calster, H.; Peterken, G.; Graae, B.J.; Bellemare, J.; Honnay, O.; et al. Homogenization of forest plant communities and weakening of species? Environment relationships via agricultural land use. J. Ecol. 2007, 95, 565–573. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006, 34, 102–117. [Google Scholar] [CrossRef]
- Bohl, C.L.; Kass, J.M.; Anderson, R.P. A new null model approach to quantify performance and significance for ecological niche models of species distributions. J. Biogeogr. 2019, 46, 1101–1111. [Google Scholar] [CrossRef]
Code | Bioclimatic Variables |
---|---|
BIO 1 | Annual mean temperature (°C) |
BIO 2 | Mean diurnal range (Mean of monthly (max temp–min temp)) (°C) |
BIO 3 | Isothermality ((BIO2/BIO7) *100) (°C) |
BIO 4 | Temperature seasonality (standard deviation *100) (°C) |
BIO 5 | Maximum temperature of warmest month (°C) |
BIO 6 | Minimum temperature of coldest month (°C) |
BIO 7 | Temperature annual range (BIO5–BIO6) (°C) |
BIO 8 | Mean temperature of wettest quarter (°C) |
BIO 9 | Mean temperature of driest quarter (°C) |
BIO 10 | Mean temperature of warmest quarter (°C) |
BIO 11 | Mean temperature of coldest quarter (°C) |
BIO 12 | Annual precipitation (mm) |
BIO 13 | Precipitation of wettest month (mm) |
BIO 14 | Precipitation of driest month (mm) |
BIO 15 | Precipitation seasonality (standard deviation *100) (°C) |
BIO 16 | Precipitation of wettest quarter (mm) |
BIO 17 | Precipitation of driest quarter (mm) |
BIO 18 | Precipitation of warmest quarter (mm) |
BIO 19 ELEV | Precipitation of coldest quarter (mm) Elevation (m) |
Species | Model | AUC | Percent Contribution of the First Four Variables |
---|---|---|---|
C. hypsibia | Current (1970–2000) | 0.90 | BIO11(47.4%), BIO1(24.7%), BIO17(21.1%), BIO3(6%) |
Future (2041–2060)-RCP2.6 | 0.91 | BIO17(41.7%), BIO11(36.3%), BIO1(16.8%), BIO14(4.7%) | |
Future (2041–2060)-RCP8.5 | 0.92 | BIO17(41.6%), BIO11(32.5%), BIO1(18.3%), BIO19(3.2%) | |
A. squamipes | Current (1970–2000) | 0.91 | BIO12(42.9%), BIO14(28.1%), BIO1(14.8%), BIO4(12.6%) |
Future (2041–2060)-RCP2.6 | 0.92 | BIO12(29.6%), BIO17(22.8%), BIO14(20.1%), BIO4(13.5%) | |
Future (2041–2060)-RCP8.5 | 0.93 | BIO14(58.8%), BIO12(25.4%), BIO2(7.9%), BIO1(5.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Onditi, K.O.; Jiang, X.; Wu, H.; Chen, Z. Modeling the Potential Distribution of Two Species of Shrews (Chodsigoa hypsibia and Anourosorex squamipes) under Climate Change in China. Diversity 2022, 14, 87. https://doi.org/10.3390/d14020087
Hu W, Onditi KO, Jiang X, Wu H, Chen Z. Modeling the Potential Distribution of Two Species of Shrews (Chodsigoa hypsibia and Anourosorex squamipes) under Climate Change in China. Diversity. 2022; 14(2):87. https://doi.org/10.3390/d14020087
Chicago/Turabian StyleHu, Wenhao, Kenneth Otieno Onditi, Xuelong Jiang, Hailong Wu, and Zhongzheng Chen. 2022. "Modeling the Potential Distribution of Two Species of Shrews (Chodsigoa hypsibia and Anourosorex squamipes) under Climate Change in China" Diversity 14, no. 2: 87. https://doi.org/10.3390/d14020087
APA StyleHu, W., Onditi, K. O., Jiang, X., Wu, H., & Chen, Z. (2022). Modeling the Potential Distribution of Two Species of Shrews (Chodsigoa hypsibia and Anourosorex squamipes) under Climate Change in China. Diversity, 14(2), 87. https://doi.org/10.3390/d14020087