Damage and Tolerability Thresholds for Remaining Trees after Timber Harvesting: A Case Study from Southwest Romania
Abstract
:1. Introduction
2. Materials and Methods
- Variant V1: harvesting sites with thinnings; two harvesting sites on each relief form;
- Variant V2: harvesting sites with first-intervention cuttings; preparatory and seed-cutting from shelterwood systems or selection systems; two harvesting sites on each relief form;
- Variant V3: harvesting sites with cuttings to increase light availability for regeneration from shelterwood systems; two harvesting sites on each relief form;
- Variant V4: harvesting sites with final cuttings from the shelterwood system; two harvesting sites on each relief form.
- Galling: partial removal of bark or rind without affecting the cambial area;
- Barking: removing parts of the bark up to the wood;
- Splintering: removing parts of bark and wood;
- Breaking branches or the trunk;
- Partial or total uprooting.
3. Results
3.1. Tree Damage and Healed Damage
3.2. Tolerance Thresholds concerning Types of Forestry Work and Species
- -
- V1—Thinnings: w × C−1 = 0.09;
- -
- V2—First-intervention cuttings: w × C−1 = 0.10;
- -
- V3—Cuttings to increase light availability for regeneration: w × C−1 = 0.09;
- -
- V4—Final cuttings: w × C−1 = 0.09.
- -
- In V1, r = −0.21—weak correlation;
- -
- In V2, r = −0.33—weak correlation;
- -
- In V3, r = −0.57—reasonable correlation;
- -
- In V4, r = −0.20—weak correlation.
3.3. Tolerance Threshold and the Orientation of Damage
- -
- N, r = −0.23—weak correlation;
- -
- NE, r = −0.13—very weak correlation;
- -
- E, r = −0.21—weak correlation;
- -
- SE, r = −0.29—weak correlation;
- -
- S, r = −0.54—reasonable correlation;
- -
- SW, r = −0.44—reasonable correlation;
- -
- On V, r = −0.31—weak correlation;
- -
- On NV, r = −0.32—weak correlation.
4. Discussion
4.1. Tree Damage and Tolerance Thresholds
4.2. Discussion and Recommendations Regarding Good Practices for Logging Management and Respecting Tolerance Thresholds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- V1—harvesting sites with thinnings from:
- o
- Plains: Forest department (OS) Bocşa Română—Production unit (UP) II, management unit (u.a.) 58A and UP III, u.a. 49;
- o
- Hill: OS Bocşa Montană—UP VI, u.a. 95A and OS Moldova Nouă—UP III, u.a. 15B;
- o
- Mountain: OS Băile Herculane—UP II, u.a. 23 and Caransebeş experimental basis (BE)—UP VI, u.a. 99A.
- V2—harvesting sites with first-intervention cuttings—preparatory and seed-cutting from shelterwood system or selections system, from:
- o
- Plains: OS Bocşa Română—UP I, u.a. 11C and UP II, u.a. 55;
- o
- Hill: OS Bocşa Montană—UP IV, u.a. 62B and OS Moldova Nouă—UP III, u.a. 212A;
- o
- Mountain: OS Văliug—UP VI, u.a. 15A and u.a. 16A.
- V3—harvesting sites with cuttings to increase light availability for regeneration from shelterwood system, from:
- o
- Plains: OS Bocşa Română—UP III, u.a. 28B and 76A;
- o
- Hill: BE Caransebeş—UP II, u.a. 30B and OS Moldova Nouă—UP III, u.a. 176A;
- o
- Mountain: OS BăileHerculane—UP II, u.a. 99A and 100A.
- V4—harvesting sites with final cuttings from shelterwood system, from:
- o
- Plains: OS Bocşa Română—UPI, u.a. 1E and 14A;
- o
- Hill: BECaransebeş—UP I, u.a 46D şi OS Moldova Nouă—UP III, u.a. 15B;
- o
- Mountain: OS BăileHerculane—UP IV, u.a. 98A şi BE Caransebeş—UP V, u.a. 16A.
Appendix B
Variant | Harvesting Site—Forest District, Production Unit, Management Unit | Healed Damage | Total number of Injuries in Sample Plots | from Which: | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial Assessment | Revaluation | ||||||||||
Number of Healed Injuries | Ratio between the Initial Damage Width and Tree Circumference | Number of Healed Injuries | Ratio between the Initial Damage Width and Tree Circumference | Galling | Barking | Splintering | Breaking | Uprooting | |||
V1 | h1—Bocșa Română, III, 49 | 0 | 0 | 1 | 0.07 | 38 | 2 | 33 | 3 | 0 | 0 |
h2—Bocș aRomână, II, 58A | 0 | 0 | 1 | 0.08 | 18 | 2 | 15 | 0 | 1 | 0 | |
h3—Bocșa Montană, VI, 95A | 0 | 0 | 1 | 0.03 | 92 | 18 | 70 | 1 | 1 | 2 | |
h4—Moldova Nouă, III, 15B | 0 | 0 | 6 | 0.04 | 229 | 28 | 190 | 11 | 0 | 0 | |
h5—Băile Herculane, II, 23 | 6 | 0.08 | 9 | 0.08 | 230 | 2 | 189 | 39 | 0 | 0 | |
h6—Caransebeș, VI, 99A | 28 | 0.12 | 14 | 0.08 | 207 | 8 | 162 | 32 | 4 | 1 | |
Total plain | 0 | 0.00 | 2 | 0.08 | 56 | 4 | 48 | 3 | 1 | 0 | |
Total hill | 0 | 0.00 | 7 | 0.04 | 321 | 46 | 260 | 12 | 1 | 2 | |
Total mountain | 34 | 0.11 | 23 | 0.08 | 437 | 10 | 351 | 71 | 4 | 1 | |
Total thinnings | 34 | 0.11 | 32 | 0.07 | 814 | 60 | 659 | 86 | 6 | 3 | |
V2 | h1—Bocșa Română, II, 55 | 0 | 0 | 0 | 0 | 14 | 0 | 12 | 2 | 0 | 0 |
h2—Bocșa Română, I, 11C | 0 | 0 | 0 | 0 | 36 | 0 | 33 | 2 | 0 | 1 | |
h3—Bocșa Montană, IV, 62B | 0 | 0 | 0 | 0 | 40 | 4 | 33 | 3 | 0 | 0 | |
h4—Moldova Nouă, III, 212A | 1 | 0.04 | 5 | 0.08 | 87 | 20 | 57 | 10 | 0 | 0 | |
h5—Văliug, VI, 15A | 3 | 0.22 | 9 | 0.11 | 118 | 5 | 90 | 23 | 0 | 0 | |
h6—Văliug, VI, 16A | 8 | 0.17 | 10 | 0.12 | 89 | 7 | 67 | 12 | 3 | 0 | |
Total plain | 0 | 0.00 | 0 | 0.00 | 50 | 0 | 45 | 4 | 0 | 1 | |
Total hill | 1 | 0.04 | 5 | 0.08 | 127 | 24 | 90 | 13 | 0 | 0 | |
Total mountain | 11 | 0.18 | 19 | 0.12 | 207 | 12 | 157 | 35 | 3 | 0 | |
Total first-intervention cuttings | 12 | 0.17 | 24 | 0.11 | 384 | 36 | 292 | 52 | 3 | 1 | |
V3 | h1—Bocșa Română, III, 76A | 0 | 0 | 0 | 0 | 53 | 0 | 39 | 8 | 4 | 2 |
h2—Bocșa Română, III, 28B | 0 | 0 | 1 | 0.08 | 18 | 1 | 13 | 1 | 3 | 0 | |
h3—Moldova Nouă, III, 176A | 0 | 0 | 13 | 0.09 | 105 | 15 | 79 | 10 | 1 | 0 | |
h4—Caransebeș, II, 30B | 0 | 0 | 0 | 0 | 43 | 1 | 38 | 2 | 2 | 0 | |
h5—Băile Herculane, II, 99 | 2 | 0.05 | 3 | 0.08 | 76 | 2 | 60 | 12 | 2 | 0 | |
h6—Băile Herculane, II, 100A | 2 | 0.04 | 11 | 0.10 | 106 | 12 | 78 | 9 | 4 | 3 | |
Total plain | 0 | 0.00 | 1 | 0.08 | 71 | 1 | 52 | 9 | 7 | 2 | |
Total hill | 0 | 0.00 | 13 | 0.09 | 148 | 16 | 117 | 12 | 3 | 0 | |
Total mountain | 4 | 0.05 | 14 | 0.10 | 182 | 14 | 138 | 21 | 6 | 3 | |
Total cuttings to increase light availability for regeneration | 4 | 0.05 | 28 | 0.09 | 401 | 31 | 307 | 42 | 16 | 5 | |
V4 | h1—Bocșa Română, I, 1E | 0 | 0 | 0 | 0 | 32 | 2 | 28 | 1 | 1 | 0 |
h2—Bocșa Română, I, 14A | 0 | 0 | 0 | 0 | 27 | 1 | 23 | 2 | 1 | 0 | |
h3—Moldova Nouă, III, 162B | 1 | 0.26 | 6 | 0.17 | 75 | 9 | 56 | 8 | 1 | 1 | |
h4—Caransebeș, I, 46D | 5 | 0.09 | 8 | 0.05 | 91 | 7 | 68 | 13 | 3 | 0 | |
h5—Băile Herculane, IV, 98A | 2 | 0.15 | 5 | 0.04 | 65 | 1 | 58 | 4 | 2 | 0 | |
h6—Caransebeș, V, 16A | 6 | 0.05 | 5 | 0.17 | 56 | 4 | 43 | 6 | 2 | 1 | |
Total plain | 0 | 0.00 | 0 | 0.00 | 59 | 3 | 51 | 3 | 2 | 0 | |
Total hill | 6 | 0.12 | 14 | 0.10 | 166 | 16 | 124 | 21 | 4 | 1 | |
Total mountain | 8 | 0.08 | 10 | 0.11 | 121 | 5 | 101 | 10 | 4 | 1 | |
Total final cuttings | 14 | 0.09 | 24 | 0.10 | 346 | 24 | 276 | 34 | 10 | 2 | |
TOTAL | 64 | 0.12 | 108 | 0.09 | 1945 | 151 | 1534 | 214 | 35 | 11 |
References
- Dincă, L.; Badea, O.; Guiman, G.; Bragă, C.; Crișan, V.; Greavu, V.; Murariu, G.; Georgescu, L. Monitoring of soil moisture in Long-Term Ecological Research (LTER) sites of Romanian Carpathians. Ann. For. Res. 2018, 61, 171–188. [Google Scholar] [CrossRef]
- Murariu, G.; Dinca, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Dragu, M.D.; Rosu, B.; Mocanu, G.D. Structural Characteristics of the Main Resinous Stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Meadows, J.S. Logging damage to residual trees following partial cutting in a green ash-sugarberry stand in the Mississippi Delta. In Proceedings of the 9th Central Hardwood Forest Conference, West Lafayette, IN, USA, 8–10 March 1993; USDA Forest Service, Southern Forest Experiment Station: Washington, DC, USA, 1993; pp. 248–260. [Google Scholar]
- Pinard, M.A.; Barker, M.G.; Tay, J. Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia. For. Ecol. Manag. 2000, 130, 213–225. [Google Scholar] [CrossRef]
- Nystrand, O.; Granström, A. Predation on Pinus sylvestris seeds and juvenile seedlings in Swedish boreal forest in relation to stand disturbance by logging. J. Appl. Ecol. 2000, 37, 449–463. [Google Scholar] [CrossRef]
- Hawthorne, W.D.; Marshall, C.A.M.; Juam, M.A.; Agyeman, V.K. The Impact of Logging Damage on Tropical Rainforest, Their Recovery and Regeneration: An Annotated Bibliography; Oxford Forestry Institute, Department of Plant Sciences: Oxford, UK, 2011; p. 123. [Google Scholar]
- Kasenene, J.M.; Murphy, P.G. Post-logging tree mortality and major branch losses in Kibale Forest, Uganda. For. Ecol. Manag. 1991, 46, 295–307. [Google Scholar] [CrossRef]
- Putz, F.E.; Sist, P.; Fredericksen, T.; Dykstra, D. Reduced-impact logging: Challenges and opportunities. For. Ecol. Manag. 2008, 256, 1427–1433. [Google Scholar] [CrossRef]
- Nichols, M.T.; Lemin, R.C., Jr.; Ostrofsky, W.D. The impact of two harvesting systems on residual stems in a partially cut stand of northern hardwoods. Can. J. For. Res. 1994, 24, 350–357. [Google Scholar] [CrossRef]
- Pinard, M.A.; Putz, F.E. Retaining forest biomass by reducing logging damage. Biotropica 1996, 28, 278–295. [Google Scholar] [CrossRef]
- Guillemette, F.; Bédard, S.; Fortin, M. Evaluation of a tree classification system in relation to mortality risk in Québec northern hardwoods. For. Chron. 2008, 84, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Bakken, P.; Carlson, D.; Frelich, L.E.; Friedman, S.K.; Grigal, D.F. Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests. Ecology 2001, 82, 2731–2748. [Google Scholar] [CrossRef]
- Brown, K.A.; Gurevitch, J. Long-term impacts of logging on forest diversity in Madagascar. Proc. Natl. Acad. Sci. USA 2004, 101, 6045–6049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putz, F.E.; Redford, K.H.; Robinson, J.G.; Fimbel, R.; Blate, G.M. Biodiversity Conservation in the Context of Tropical Forest Management; The International Bank for Reconstruction and Development/THE WORLD BANK: Washington, DC, USA, 2000; p. 80. [Google Scholar]
- Fedorca, A.; Popa, M.; Jurj, R.; Ionescu, G.; Ionescu, O.; Fedorca, M. Assessing the regional landscape connectivity for multispecies to coordinate on-the-ground needs for mitigating linear infrastructure impact in Brasov—Prahova region. J. Nat. Conserv. 2020, 58, 125903. [Google Scholar] [CrossRef]
- Fedorca, A.; Fedorca, M.; Ionescu, O.; Jurj, R.; Ionescu, G.; Popa, M. Sustainable landscape planning to mitigate wildlife-vehicle collisions. Land. 2021, 10, 737. [Google Scholar] [CrossRef]
- Edwards, D.P.; Woodcock, P.; Edwards, F.A.; Larsen, T.H.; Hsu, W.W.; Benedick, S.; Wilcove, D.S. Reduced-impact logging and biodiversity conservation: A case study from Borneo. Ecol. Appl. 2012, 22, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Wilcove, D.S.; Giam, X.; Edwards, D.P.; Fisher, B.; Koh, L.P. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 2013, 28, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Augustynczik, A.L.; Asbeck, T.; Basile, M.; Jonker, M.; Knuff, A.; Yousefpour, R.; Hanewinkel, M. Reconciling forest profitability and biodiversity conservation under disturbance risk: The role of forest management and salvage logging. Environ. Res. Lett. 2020, 15, 0940a3. [Google Scholar] [CrossRef]
- Crișan, V.E.; Dincă, L.C.; Oneț, A.; Bragă, C.I.; Enescu, R.A.; Teușdea, A.C.; Oneț, C. Impact of windthrows disturbance on chemical and biological properties of the forest soils from Romania. Environ. Eng. Manag. J. 2021, 20, 1163–1172. [Google Scholar]
- Tudose, N.C.; Ungurean, C.; Davidescu, Ș.; Clinciu, I.; Marin, M.; Nita, M.D.; Adorjani, A.; Davidescu, A. Torrential flood risk assessment and environmentally friendly solutions for small catchments located in the Romania Natura 2000 sites Ciucas, Postavaru and Piatra Mare. Sci. Total Environ. 2020, 698, 134271. [Google Scholar] [CrossRef]
- Ducci, F.; De Rogatis, A.; Proietti, R.; Curtu, L.A.; Marchi, M.; Belletti, P. Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba in central Apennines. Ann. For. Res. 2021, 64, 33–66. [Google Scholar] [CrossRef]
- Kutnar, L.; Kermavnar, K.; Pintar, A.M. Climate change and disturbances will shape future temperate forests in the transition zone between Central and SE Europe. Ann. For. Res. 2021, 64, 67–86. [Google Scholar] [CrossRef]
- Vlad, R.; Constandache, C.; Dincă, L.; Tudose, N.C.; Sidor, C.G.; Popovici, L.; Ispravnic, A. Influence of climatic, site and stand characteristics on some structural parameters of scots pine (Pinus sylvestris) forests situated on degraded lands from east Romania. Range Manag. Agrofor. 2019, 40, 40–48. [Google Scholar]
- Gullison, R.E.; Hardner, J.J. The effects of road design and harvest intensity on forest damage caused by selective logging: Empirical results and a simulation model from the Bosque Chimanes, Bolivia. For. Ecol. Manag. 1993, 59, 1–14. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Zenner, E.K.; Tsioras, P.A. Effect of skid trail curvature on residual tree damage. Aust. For. 2019, 82, 1–8. [Google Scholar] [CrossRef]
- Hwang, K.; Han, H.S.; Marshall, S.E.; Page-Dumroese, D.S. Amount and location of damage to residual trees from cut-to-length thinning operations in a young redwood forest in Northern California. Forests 2018, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Akay, A.E.; Yilmaz, M.; Tonguc, F. Impact of mechanized harvesting machines on forest ecosystem: Residual stand damage. J. Appl. Sci. 2006, 6, 2414–2419. [Google Scholar]
- Han, H.S.; Kellogg, L.D. Damage characteristics in young Douglas-fir stands from commercial thinning with four timber harvesting systems. West. J. Appl. For. 2000, 15, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Danilović, M.; Kosovski, M.; Gačić, D.; Stojnić, D.; Antonić, S. Damage to residual trees and regeneration during felling and timber extraction in mixed and pure beech stands. Šumar. List 2015, 139, 253–262. [Google Scholar]
- Naghdi, R.; Raafatnia, N.; Sobhany, H.; Jalali, G.; Hossieni, M. Evaluation of tree length and assortment logging methods with respect to residual damage and productivity in Caspian forest (north of Iran). Nauk. Vìsn. NLTU Ukr. 2004, 14, 296–302. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber harvesting methods in Eastern European countries: A review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Dămăceanu, C.; Gava, M. Cercetări Privind Stabilirea Pragurilor de Vătămare a Arborilor, Semințișului și Solului Prin Lucrările de Exploatări Forestiere; ROMSILVA, Institutul de Cercetări și Amenajări Silvice, Seria a II-a, Centrul de Material Didactic și Propaganda Agricolă, Redacția de Propaganda Tehnică Agricolă: București, Romania, 1991; p. 99. [Google Scholar]
- Tavankar, F.; Picchio, R.; Lo Monaco, A.; Nikooy, M.; Venanzi, R.; Bonyad, A.E. Wound healing rate in oriental beech trees following logging damage. Drewno 2019, 62, 5–22. [Google Scholar]
- Picchio, R.; Magagnotti, N.; Sirna, A.; Spinelli, R. Improved winching technique to reduce logging damage. Ecol. Eng. 2012, 47, 83–86. [Google Scholar] [CrossRef]
- Mund, M.; Schulze, E. Impacts of forest management on the carbon budget of European beech (Fagus sylvatica) forests. Allg. Forst Jagdztg. 2006, 177, 47–63. [Google Scholar]
- Agenţia Pentru Fianţarea Investiţiilor Rurale. Available online: https://portal.afir.info/informatii_institutionale_structuri_teritoriale_oficii_judetene_ojfir_caras_severin (accessed on 21 September 2021).
- Interferențe…Sursa ta de Cunoaștere. Available online: http://www.interferente.ro/harta-romaniei-pe-regiuni-judete-si-orase.html (accessed on 21 September 2021).
- Knežević, J.; Gurda, S.; Musić, J.; Halilović, V.; Sokolović, D.; Bajrić, M. The Impact of Animal Logging on Residual Trees in Mixed Fir and Spruce Stands. South-East Eur. For. 2018, 9, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Ciubotaru, A. Exploatareapădurilor; Editura Lux Libris: Braşov, Romania, 1998; p. 351. [Google Scholar]
- Gill, R.M.A. A review of damage by mammals in north temperate forests: 3. Impact on trees and forests. Forestry 1992, 65, 363–388. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Magagnotti, N.; Nati, C. Benchmarking the impact of traditional small-scale logging systems used in Mediterranean forestry. For. Ecol. Manag. 2010, 260, 1997–2001. [Google Scholar] [CrossRef]
- Behjou, F.K. Effects of wheeled cable skidding on residual trees in selective logging in Caspian forests. Small-Scale For. 2014, 13, 367–376. [Google Scholar] [CrossRef]
- Mental Modeller. Available online: https://www.mentalmodeller.com (accessed on 15 December 2021).
- Bertault, J.G.; Sist, P. An experimental comparison of different harvesting intensities with reduced-impact and conventional logging in East Kalimantan, Indonesia. For. Ecol. Manag. 1997, 94, 209–218. [Google Scholar] [CrossRef]
- Camp, A. Damage to residual trees by four mechanized harvest systems operating in small-diameter, mixed-conifer forests on steep slopes in Northeastern Washington: A case study. West. J. Appl. For. 2002, 17, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Nikooy, M.; Lo Monaco, A.; Latterini, F.; Venanzi, R.; Picchio, R. Short-term recovery of residual tree damage during successive thinning operations. Forests 2020, 11, 731. [Google Scholar] [CrossRef]
- Vasiliauskas, R. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry 2001, 74, 319–336. [Google Scholar] [CrossRef] [Green Version]
- David, E.C.; Enache, L.N. Research concerning the frequency of the external defects for poplar (Populus nigra L.) from alignments. Bul. Trans. Univers. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2011, 4, 21. [Google Scholar]
- Johns, J.S.; Barreto, P.; Uhl, C. Logging damage during planned and unplanned logging operations in the eastern Amazon. For. Ecol. Manag. 1996, 89, 59–77. [Google Scholar] [CrossRef]
- Chisăliţă, I. Tehnologii Ecoproductive în Exploatările Forestiere; Eurobit: Timişoara, Romania, 2011; p. 172. [Google Scholar]
- Horodnic, S. Sisteme Tehnologice Forestiere cu Impact Ecologic Redus; Editura Universităţii Suceava: Suceava, Romania, 2014; p. 174. [Google Scholar]
- Fjeld, D.; Granhus, A. Injuries after selection harvesting in multi-stored spruce stands–the influence of operating systems and harvest intensity. J. For. Eng. 1998, 9, 33–40. [Google Scholar]
- Karaszewski, Z.; Giefing, D.F.; Mederski, P.S.; Bembenek, M.; Dobek, A.; Stergiadou, A. Stand damage when harvesting timber using a tractor for extraction. For. Res. Pap. 2013, 74, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental impact assessment of different logging methods in pine forests thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Picchio, R.; Neri, F.; Maesano, M.; Savelli, S.; Sirna, A.; Blasi, S.; Baldini, S.; Marchi, E. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. For. Ecol. Manag. 2011, 262, 237–243. [Google Scholar] [CrossRef]
- Jonkers, W.B.J. Logging Damage and Efficiency: A Study on the Feasibility of Reduced Impact Logging in Cameroon; Wageningen University: Wageningen, The Netherlands, 2000; p. 57. [Google Scholar]
- Jackson, S.M.; Fredericksen, T.S.; Malcolm, J.R. Area disturbed and residual stand damage following logging in a Bolivian tropical forest. For. Ecol. Manag. 2002, 166, 271–283. [Google Scholar] [CrossRef]
Variant | Harvesting Site | Forest District, Production Unit, Management Unit | Average Tree Volume (m3) | Total Number of Extracted Trees/ha (pcs.) | Trunk Volume of the Harvested Trees (m3) | Extracted Wood Volume per ha (m3) | Number of Trees per ha (pcs.) | Slope in the Sample Surface (%) |
---|---|---|---|---|---|---|---|---|
V1—Thinnings | h1 | Bocșa Română, III, 49 | 0.52 | 35 | 166.6 | 18.4 | 554 | 2 |
h2 | Bocșa Română, II, 58A | 0.13 | 133 | 22.8 | 17.5 | 762 | 5 | |
h3 | Bocșa Montană, VI, 95A | 0.19 | 500 | 34.4 | 93 | 1246 | 22 | |
h4 | Moldova Nouă, III, 15B | 0.10 | 28 | 176.6 | 28.1 | 1440 | 30 | |
h5 | Băile Herculane, II, 23 | 0.32 | 286 | 466.1 | 91 | 903 | 23 | |
h6 | Caransebeș, VI, 99A | 0.29 | 101 | 324.7 | 30 | 1390 | 30 | |
V2—First-intervention cuttings | h1 | Bocșa Română, II, 55 | 0.6 | 161 | 160.7 | 100 | 525 | 5 |
h2 | Bocșa Română, I, 11C | 0.7 | 137 | 136.9 | 88.9 | 319 | 13 | |
h3 | Bocșa Montană, IV, 62B | 0.9 | 139 | 139.2 | 126 | 306 | 26 | |
h4 | Moldova Nouă, III, 212A | 1.1 | 105 | 105.1 | 116 | 308 | 22 | |
h5 | Văliug, VI, 15A | 1.19 | 15 | 379.9 | 18 | 263 | 25 | |
h6 | Văliug, VI, 16A | 1.39 | 29 | 741.6 | 40 | 336 | 25 | |
V3—Cuttings to increase light availability for regeneration | h1 | Bocșa Română, III, 76A | 0.9 | 137 | 136.5 | 121.4 | 429 | 6 |
h2 | Bocșa Română, III, 28B | 1 | 141 | 140.8 | 135.7 | 282 | 0 | |
h3 | Moldova Nouă, III, 176A | 1 | 79 | 79.3 | 75.4 | 143 | 30 | |
h4 | Caransebeș, II, 30B | 0.8 | 114 | 113.7 | 90.4 | 235 | 23 | |
h5 | Băile Herculane, II, 99 | 1.19 | 107 | 606.8 | 127 | 224 | 30 | |
h6 | Băile Herculane, II, 100A | 2.24 | 44 | 1638.4 | 99 | 123 | 29 | |
V4—Final cuttings | h1 | Bocșa Română, I, 1E | 1.2 | 192 | 191.6 | 230.1 | 163 | 14 |
h2 | Bocșa Română, I, 14A | 0.6 | 167 | 166.5 | 92.5 | 150 | 14 | |
h3 | Moldova Nouă, III, 162B | 1.7 | 74 | 74.1 | 122.8 | 36 | 25 | |
h4 | Caransebeș, I, 46D | 0.9 | 234 | 234.1 | 218.6 | 238 | 30 | |
h5 | Băile Herculane, IV, 98A | 3 | 40 | 1122.3 | 120 | 25 | 28 | |
h6 | Caransebeș, V, 16A | 3.27 | 114 | 3134.8 | 371 | 58 | 32 |
Galling | |||||
Statistical indicator | Minimum value of w × C−1 | Maximum value of w × C−1 | Average value of w × C−1 | Standard deviation | Variation coefficient |
V1—Thinnings | 0.0164 | 0.2128 | 0.0696 | 0.0493 | 70.8320 |
V2—First-intervention cuttings | 0.0192 | 0.2963 | 0.1047 | 0.0799 | 76.2434 |
V3—Cuttings to increase light availability for regeneration | 0.0195 | 0.2286 | 0.0868 | 0.0595 | 68.5909 |
V4—Final cuttings | 0.0323 | 0.2429 | 0.0914 | 0.0676 | 73.9230 |
TOTAL | 0.0164 | 0.2963 | 0.0896 | 0.0650 | 72.5425 |
Barking | |||||
Statistical indicators | Minimum value of w × C−1 | Maximum value of w × C−1 | Average value of w × C−1 | Standard deviation | Variation coefficient |
V1—Thinnings | 0.0088 | 0.2222 | 0.0889 | 0.0529 | 59.5267 |
V2—First-intervention cuttings | 0.0244 | 0.3684 | 0.1265 | 0.1002 | 79.1722 |
V3—Cuttings to increase light availability for regeneration | 0.0137 | 0.1852 | 0.0734 | 0.0547 | 74.5544 |
V4—Final cuttings | 0.0072 | 0.2653 | 0.0954 | 0.0797 | 83.6130 |
TOTAL | 0.0072 | 0.3684 | 0.0969 | 0.0729 | 75.2008 |
Splintering | |||||
Statistical indicators | Minimum value of w × C−1 | Maximum value of w × C−1 | Average value of w × C−1 | Standard deviation | Variation coefficient |
V1—Thinning | 0.0781 | 0.3214 | 0.1792 | 0.1268 | 70.7651 |
V4—Final cuttings | 0.0606 | 0.3846 | 0.2226 | 0.2291 | 10.9195 |
TOTAL | 0.0606 | 0.3846 | 0.1965 | 0.1474 | 74.9960 |
Amount of total damage | |||||
Statistical indicators | Minimum value of w × C−1 | Maximum value of w × C−1 | Average value of w × C−1 | Standard deviation | Variation coefficient |
V1—Thinnings | 0.0088 | 0.3214 | 0.0886 | 0.0592 | 66.7758 |
V2—First-intervention cuttings | 0.0192 | 0.3684 | 0.1186 | 0.0908 | 76.6220 |
V3—Cuttings to increase light availability for regeneration | 0.0137 | 0.2286 | 0.0827 | 0.0564 | 68.2538 |
V4—Final cuttings | 0.0072 | 0.3846 | 0.0994 | 0.0869 | 87.4290 |
TOTAL | 0.0072 | 0.3846 | 0.0971 | 0.0744 | 76.6439 |
Variant | χ2 Values | Confidence Level | Degree of Freedom | Critical Values of χ2 |
---|---|---|---|---|
V1—Thinnings | 3.109 | 95% | 64 | 63.335 |
V2—First-intervention cuttings | 3.451 | 95% | 41 | 56.943 |
V3—Cuttings to increase light availability for regeneration | 1.107 | 95% | 30 | 43.773 |
V4—Final cuttings | 4.777 | 95% | 37 | 52.192 |
Damage Orientation | Amount of Healed Damage | Total Amount of Damage | Percentage of Healed Damage Based on Orientation (%) |
---|---|---|---|
N | 35 | 260 | 13.5 |
NE | 19 | 184 | 10.3 |
E | 26 | 310 | 8.4 |
SE | 17 | 188 | 9.0 |
S | 19 | 226 | 8.4 |
SW | 12 | 191 | 6.3 |
W | 21 | 337 | 6.2 |
NW | 23 | 203 | 11.3 |
Damage Orientation | Average | Standard Deviation | Variation Coefficient |
---|---|---|---|
N | 0.101 | 0.101 | 100.000 |
NE | 0.076 | 0.045 | 59.278 |
E | 0.091 | 0.081 | 88.792 |
SE | 0.087 | 0.058 | 66.173 |
S | 0.075 | 0.053 | 70.198 |
SW | 0.138 | 0.094 | 67.941 |
W | 0.110 | 0.082 | 74.216 |
NW | 0.106 | 0.076 | 71.802 |
Damage Orientation | N | NE | E | SE | S | SW | W | NW |
---|---|---|---|---|---|---|---|---|
N | 1 | 0.207 | 0.635 | 0.532 | 0.221 | 0.192 | 0.705 | 0.836 |
NE | 0.207 | 1 | 0.440 | 0.519 | 0.952 | 0.016 * | 0.111 | 0.129 |
E | 0.636 | 0.440 | 1 | 0.845 | 0.446 | 0.114 | 0.446 | 0.519 |
SE | 0.532 | 0.519 | 0.845 | 1 | 0.527 | 0.084 | 0.349 | 0.407 |
S | 0.221 | 0.952 | 0.446 | 0.527 | 1 | 0.024 * | 0.130 | 0.147 |
SW | 0.192 | 0.016 * | 0.114 | 0.084 | 0.024 * | 1 | 0.384 | 0.261 |
W | 0.705 | 0.111 | 0.446 | 0.349 | 0.130 | 0.384 | 1 | 0.851 |
NW | 0.836 | 0.129 | 0.519 | 0.407 | 0.147 | 0.261 | 0.851 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cântar, I.-C.; Ciontu, C.-I.; Dincă, L.; Borlea, G.F.; Crişan, V.E. Damage and Tolerability Thresholds for Remaining Trees after Timber Harvesting: A Case Study from Southwest Romania. Diversity 2022, 14, 193. https://doi.org/10.3390/d14030193
Cântar I-C, Ciontu C-I, Dincă L, Borlea GF, Crişan VE. Damage and Tolerability Thresholds for Remaining Trees after Timber Harvesting: A Case Study from Southwest Romania. Diversity. 2022; 14(3):193. https://doi.org/10.3390/d14030193
Chicago/Turabian StyleCântar, Ilie-Cosmin, Cătălin-Ionel Ciontu, Lucian Dincă, Gheorghe Florian Borlea, and Vlad Emil Crişan. 2022. "Damage and Tolerability Thresholds for Remaining Trees after Timber Harvesting: A Case Study from Southwest Romania" Diversity 14, no. 3: 193. https://doi.org/10.3390/d14030193
APA StyleCântar, I. -C., Ciontu, C. -I., Dincă, L., Borlea, G. F., & Crişan, V. E. (2022). Damage and Tolerability Thresholds for Remaining Trees after Timber Harvesting: A Case Study from Southwest Romania. Diversity, 14(3), 193. https://doi.org/10.3390/d14030193