New Insights into a Mediterranean Sea Benthic Habitat: High Diversity of Epiphytic Bryozoan Assemblages on Phyllophora crispa (Rhodophyta) Mats
Abstract
:1. Introduction
- What are the abundances and diversity of bryozoans inside P. crispa mats compared to P. oceanica meadows?
- Which are the most abundant families in the investigated habitats, and which families are unique to P. crispa mats?
- What is the spatial variability of the bryozoan assemblages inside P. crispa mats?
2. Materials and Methods
2.1. Location and Sampling Procedure
2.2. Species Identification and Abundance Assessment
2.3. Diversity Descriptors and Statistical Analysis
3. Results
3.1. Bryozoan Richness and Abundance
3.2. Diversity Indices
3.3. Structure of Bryozoan Assemblages
4. Discussion
4.1. Differences in Bryozoan Abundances and Diversity between Phyllophora crispa Mats and Posidonia oceanica Sub-Habitats
4.2. Spatio-Temporal Variability of the Bryozoan Community inside Phyllophora crispa Mats
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PERMANOVA broyzoan assemblages P. crispa all sites | |||||||
Source | Df | SS | R2 | F | p | ||
Site | 3 | 0.9441 | 0.40007 | 2.6674 | 0.018 | ||
Residual | 12 | 1.4158 | 0.59993 | ||||
Total | 15 | 2.3599 | 1 | ||||
PERMANOVA broyzoan assemblages P. crispa, northern sites | |||||||
Source | Df | SS | R2 | F | p | ||
Site | 2 | 0.35393 | 0.2497 | 1.4976 | 0.192 | ||
Residual | 9 | 1.06348 | 0.7503 | ||||
Total | 11 | 1.41741 | 1 | ||||
Pairwise comparison all sites | |||||||
pairs | Df | SS | F | R2 | p | p adj | |
SiteMix | SitePC3 | 1 | 0.258842 | 2.391555 | 0.284995 | 0.097 | 0.582 |
SiteMix | SitePC2 | 1 | 0.295435 | 2.6252 | 0.304364 | 0.109 | 0.654 |
SiteMix | SitePC1 | 1 | 0.127757 | 1.11843 | 0.157118 | 0.359 | 1 |
SitePC3 | SitePC2 | 1 | 0.685668 | 5.632692 | 0.484212 | 0.029 | 0.174 |
SitePC3 | SitePC1 | 1 | 0.412804 | 3.344677 | 0.357923 | 0.09 | 0.54 |
SitePC2 | SitePC1 | 1 | 0.107701 | 0.843212 | 0.123219 | 0.444 | 1 |
Pairwise comparison (sub-) habitats, northern sites | |||||||
pairs | Df | SS | F | R2 | p | p adj | |
P. oceanica shoot | P. oceanica leaf | 1 | 3.10581 | 14.89658 | 0.287044 | 0.001 | 0.003 |
P. oceanica shoot | P. crispa mat | 1 | 1.654007 | 9.524627 | 0.24098 | 0.001 | 0.003 |
P. oceanica leaf | P. crispa mat | 1 | 1.923498 | 10.44726 | 0.264841 | 0.001 | 0.003 |
Authors | Year | Title |
---|---|---|
Ryland, J. S. & Hayward, P. J. | 1977 | British Anascan Bryozoans |
Hayward, P. J. & Ryland, J. S. | 1979 | British Ascophoran Bryozoans |
Hayward, P. J. & Ryland, J. S. | 1985 | Cyclostome Bryozoans |
Hayward, P. J. | 1985 | Ctenostome Bryozoans |
Zabala, M. & Maluquer, P. | 1988 | Treballs del museu de zoologia–illustrated keys for the classification of Mediterranean Bryozoa |
Hayward, P. J. & Ryland, J. S. | 1995 | Handbook of the Marine Fauna of North-West Europe |
Hayward, P. J. & Ryland, J. S. | 1998 | Cheilostomatous Bryozoa: Part 1 Aeteoidea-Cribrilinoidea |
Hayward, P. J. & Ryland, J. S. | 1999 | Cheilostomatous Bryozoa: Part 2 Hippothooidae - Celleporoidae |
Bedini, R. | 2003 | Gli animali delle praterie a Poseidonia oceanica: dai macroinvertebrati ai pesci |
References
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Medail, F.; Quezel, P. Biodiversity Hotspots in the Mediterranean Basin: Setting Global Conservation Priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Bonhomme, P.; Charbonnel, E.; Diviacco, G.; Meinesz, A.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Tunesi, L. Préservation et Conservation des Herbiers à Posidonia Oceanica; Ramoge: Marseille, France, 2006; ISBN 2905540303. [Google Scholar]
- Mazzella, L.; Buia, M.C.; Gambi, M.M.C.; Lorenti, M.; Russo, G.F.; Scipione, M.B.; Zupo, V. Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: A review. Plant-Anim. Interact. Mar. Benthos 1992, 46, 165–187. [Google Scholar] [CrossRef]
- Ballesteros, E. Mediterranean coralligenous assemblages: A synthesis of present knowledge. In Oceanography and Marine Biology: An Annual Review; Gibson, R.N., Atkinson, R.J.A., Gordon, J.D.M., Eds.; Taylor & Francis: London, UK, 2006; pp. 123–195. [Google Scholar]
- Ingrosso, G.; Abbiati, M.; Badalamenti, F.; Bavestrello, G.; Belmonte, G.; Cannas, R.; Benedetti-Cecchi, L.; Bertolino, M.; Bevilacqua, S.; Bianchi, C.N.; et al. Mediterranean Bioconstructions Along the Italian Coast, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 79, ISBN 9780128151013. [Google Scholar]
- Borum, J.; Duarte, C.M.; Krause-Jensen, D.; Greve, T.M. (Eds.) European Seagrasses: An Introduction to Monitoring and Management; The M&MS Project: New York, NY, USA, 2004; ISBN 8789143213. [Google Scholar]
- Donnarumma, L.; Lombardi, C.; Cocito, S.; Gambi, M.C. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: An approach with mimics. Mediterr. Mar. Sci. 2014, 15, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Cocito, S. Bioconstruction and biodiversity: Their mutual influence. Sci. Mar. 2004, 68, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Lepoint, G.; Balancier, B.; Gobert, S. Seasonal and depth-related biodiversity of leaf epiphytic Cheilostome Bryozoa in a Mediterranean Posidonia oceanica meadow. Cah. Biol. Mar. 2014, 55, 57–67. [Google Scholar]
- Lepoint, G.; Gobert, S.; Bouquegneau, J.M.; Havelange, S.; Gobert, S.; Bouquegneau, J.M. Fauna vs. flora contribution to the leaf epiphytes biomass in a Posidonia oceanica seagrass bed (Revellata Bay, Corsica). Hydrobiologia 1999, 394, 63–67. [Google Scholar] [CrossRef]
- Pardi, G.; Piazzi, L.; Balata, D.; Papi, I.; Cinelli, F.; Benedetti-Cecchi, L. Spatial variability of Posidonia oceanica (L.) Delile epiphytes around the mainland and the islands of Sicily (Mediterranean Sea). Mar. Ecol. 2006, 27, 397–403. [Google Scholar] [CrossRef]
- Balata, D.; Nesti, U.; Piazzi, L. Patterns of spatial variability of seagrass epiphytes in the north-west Mediterranean Sea Patterns of spatial variability of seagrass epiphytes in the north-west Mediterranean Sea. Mar. Biol. 2007, 151, 2025–2035. [Google Scholar] [CrossRef]
- Nesti, U.; Piazzi, L.; Balata, D. Variability in the structure of epiphytic assemblages of the Mediterranean seagrass Posidonia oceanica in relation to depth. Mar. Ecol. 2009, 30, 276–287. [Google Scholar] [CrossRef]
- Gluhak, T.; Lewis, J.E.; Popijac, A. Bryozoan fauna of Green Island, Taiwan: First indications of biodiversity. Zool. Stud. 2007, 46, 397–426. [Google Scholar]
- Rosso, A.; Gerovasileiou, V.; Sanfilippo, R.; Guido, A. Bryozoan assemblages from two submarine caves in the Aegean Sea (Eastern Mediterranean). Mar. Biodivers. 2019, 49, 707–726. [Google Scholar] [CrossRef]
- Rosso, A.; Di Martino, E. Bryozoan diversity in the Mediterranean Sea: An update. Mediterr. Mar. Sci. 2016, 17, 567–607. [Google Scholar] [CrossRef]
- Harmelin, J.G. Bryozoan facies in the coralligenous community: Two assemblages with contrasting features at Port-Cros Archipelago (Port-Cros National Park, France, Mediterranean). Sci. Rep. Port-Cros. Natl. Park 2017, 31, 105–123. [Google Scholar]
- Buchsbaum, R.; Buchsbaum, M.; Pearse, M.; Pearse, V. Animals Without Backbones, 3rd ed.; University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]
- McKinney, F.; Jackson, J. Bryozoan Evolution; University of Chicago Press: Chicago, IL, USA, 1989. [Google Scholar]
- Peterson, B.J.; Frankovich, T.A.; Zieman, J.C. Response of seagrass epiphyte loading to field manipulations of fertilization, gastropod grazing and leaf turnover rates. J. Exp. Mar. Biol. Ecol. 2007, 349, 61–72. [Google Scholar] [CrossRef]
- Casoli, E.; Nicoletti, L.; Mastrantonio, G.; Jona-Lasinio, G.; Belluscio, A.; Ardizzone, G.D. Scuba diving damage on coralligenous builders: Bryozoan species as an indicator of stress. Ecol. Indic. 2017, 74, 441–450. [Google Scholar] [CrossRef]
- Reverter-Gil, O.; Souto, J. Watersiporidae (Bryozoa) in Iberian waters: An update on alien and native species. Mar. Biodivers. 2019, 49, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, C.; Taylor, P.D.; Cocito, S. Bryozoan Constructions in a Changing Mediterranean Sea. In The Mediterranean Sea: Its History and Present Challenges; Goffredo, S., Dubinsky, Z., Eds.; Springer Science and Business Media, LLC: Dordrecht, The Netherlands, 2014; pp. 373–384. ISBN 9789400767041. [Google Scholar]
- Lombardi, C.; Gambi, M.C.; Vasapollo, C.; Taylor, P.; Cocito, S. Skeletal alterations and polymorphism in a Mediterranean bryozoan at natural CO2 vents. Zoomorphology 2011, 130, 135–145. [Google Scholar] [CrossRef]
- Lombardi, C.; Cocito, S.; Gambi, M.; Cisterna, B.; Flach, F.; Taylor, P.; Keltie, K.; Freer, A.; Cusack, M. Effects of ocean acidification on growth, organic tissue and protein profile of the Mediterranean bryozoan Myriapora truncata. Aquat. Biol. 2011, 13, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Hageman, S.J.; Bone, Y.; Mcgowran, B.; James, N.P. Bryozoan colonial growth-forms as paleoenvironmental indicators: Evaluation of methodology. Palaios 1997, 12, 405–419. [Google Scholar] [CrossRef]
- Cigliano, M.; Cocito, S.; Gambi, M.C. Epibiosis of Calpensia nobilis (Esper) (Bryozoa: Cheilostomida) on Posidonia oceanica (L.) Delile rhizomes: Effects on borer colonization and morpho-chronological features of the plant. Aquat. Bot. 2007, 86, 30–36. [Google Scholar] [CrossRef]
- Gili, J.M.; Coma, R. Benthic suspension feeders: Their paramount role in littoral marine food webs. Trends Ecol. Evol. 1998, 13, 316–321. [Google Scholar] [CrossRef]
- Belloni, B.; Sartoretto, S.; Cresson, P.; Bouchoucha, M.; Guillou, G.; Lebreton, B.; Ruitton, S.; Harmelin-Vivien, M. Food Web Structure of a Mediterranean Coralligenous System. In Proceedings of the 3rd Mediterranean Symposium on the Conservation of Coralligenous & Other Calcareous Bio-Concretions, Antalya, Turkey, 15–16 January 2019; p. 30. [Google Scholar]
- Kostylev, E.F.; Tkachenko, F.P.; Tretiak, I.P. Establishment of “Zernov’s Phyllophora field” marine reserve: Protection and restoration of a unique ecosystem. Ocean Coast. Manag. 2010, 53, 203–208. [Google Scholar] [CrossRef]
- Navone, A.; Bianchi, C.N.; Orru, P.; Ulzega, A. Saggio di cartografia geomorfologica e bionomica nel parco marino di Tavolara-Capo Coda di Cavallo (Sardegna nord-orientale). Oebalia 1992, XVII, 469–478. [Google Scholar]
- Bianchi, C.N.; Morri, C.; Navone, A. I popolamenti delle scogliere rocciose sommerse dell’Area Marina Protetta di Tavolara Punta Coda Cavallo (Sardegna nord-orientale). Sci. Rep. Port-Cros Natl. Park 2010, 24, 39–85. [Google Scholar]
- Bonifazi, A.; Ventura, D.; Gravina, M.F.; Lasinio, G.J.; Belluscio, A.; Ardizzone, G.D. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: Benthic assemblages along a depth gradient in the Central Mediterranean Sea. Estuar. Coast. Shelf Sci. 2017, 185, 77–93. [Google Scholar] [CrossRef]
- Casoli, E.; Bonifazi, A.; Ardizzone, G.; Gravina, M.F. How algae influence sessile marine organisms: The tube worms case of study. Estuar. Coast. Shelf Sci. 2016, 178, 12–20. [Google Scholar] [CrossRef]
- Rossbach, F.I.; Casoli, E.; Beck, M.; Wild, C. Mediterranean Red Macro Algae Mats as Habitat for High Abundances of Serpulid Polychaetes. Diversity 2021, 40, 265. [Google Scholar] [CrossRef]
- Kikuchi, T. Handbook of Seagrass Biology: An Ecosystem Perspective; Phillips, R.C., McRoy, C.P., Eds.; Garland STPM Press: New York, NY, USA, 1980. [Google Scholar]
- Kikuchi, T.; Pérès, J.M. Animal communities in seagrass beds: A review. In Seagrass Ecosystems: A Scientific Perspective; McRoy, C.P., Helfferich, C., Eds.; Marcel Dekker: New York, NY, USA, 1967; pp. 147–193. [Google Scholar]
- Rossbach, F.I.; Merk, B.; Wild, C. High Diversity and Abundance of Foraminifera Associated with Mediterranean Benthic Red Algae Mats. Diversity 2021, 14, 21. [Google Scholar] [CrossRef]
- Çinar, M.E.; Féral, J.P.; Arvanitidis, C.; David, R.; Taşkin, E.; Sini, M.; Dailianis, T.; Doğan, A.; Gerovasileiou, V.; Evcen, A.; et al. Coralligenous assemblages along their geographical distribution: Testing of concepts and implications for management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1578–1594. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Technol. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.r-project.org (accessed on 24 June 2021).
- Pisano, E.; Boyer, M. Development pattern of an infralittoral bryozoan community in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 1985, 27, 195–202. [Google Scholar] [CrossRef]
- Schmidt, N.; El-khaled, Y.C.; Rossbach, F.I.; Wild, C. Fleshy red algae mats influence their environment in the Mediterranean Sea. Front. Mar. Sci. 2021, 8, 721626. [Google Scholar] [CrossRef]
- Terrados, J.; Duarte, C.M. Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow. J. Exp. Mar. Biol. Ecol. 2000, 243, 45–53. [Google Scholar] [CrossRef]
- Gacia, E.; Duarte, C.M. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 2001, 52, 505–514. [Google Scholar] [CrossRef]
- Gacia, E.; Granata, T.C.; Duarte, C.M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 1999, 65, 255–268. [Google Scholar] [CrossRef]
- Wendt, D.E.; Woollacott, R.M. Ontogenies of Phototactic Behavior and Metamorphic Competence in Larvae of Three Species of Bugula (Bryozoa). Invertebr. Biol. 1999, 118, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Kocak, F.; Balduzzi, A.; Benli, H.A. Epiphytic bryozoan community of Posidonia oceanica (L.) Delile meadow in the northern Cvorus (Eastern Mediterranean). Indian J. Mar. Sci. 2002, 31, 235–238. [Google Scholar]
- Mckinney, F.K.; Taylor, P.D.; Lidgard, S. Predation on Bryozoans and its Reflection in the Fossil Record. In Predator-Prey Interactions in the Fossil Record; Kelley, P., Kowalewski, M., Hansen, T.A., Eds.; Springer: New York, NY, USA, 2003; pp. 239–261. ISBN 978-1-4615-0161-9. [Google Scholar]
- Harvell, C.D. Why Nudibranchs are Partial Predators: Intracolonial Variation in Bryozoan Palatability. Ecology 1984, 65, 716–724. [Google Scholar] [CrossRef]
- Harvell, C.D. Predator-induced defense in a marine bryozoan. Science 1984, 224, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Dietz, L.; Dömel, J.S.; Leese, F.; Lehmann, T.; Melzer, R.R. Feeding ecology in sea spiders (Arthropoda: Pycnogonida): What do we know? Front. Zool. 2018, 15, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisano, A.; Fanelli, C.; Nardelli, B.B. Mediterranean Sea Anomaly Time Series of Sea Surface Temperature. Available online: https://marine.copernicus.eu/de/node/6323 (accessed on 24 June 2021).
- Harmelin, J.G. Diversity of bryozoans in a Mediterranean sublittoral cave with bathyal-like conditions: Role of dispersal processes and local factors. Mar. Ecol. Prog. Ser. 1997, 153, 139–152. [Google Scholar] [CrossRef]
- Boero, F.; De Leo, F.; Fraschetti, S.; Ingrosso, G. The Cells of Ecosystem Functioning: Towards a Holistic Vision of Marine Space, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 82. [Google Scholar]
- Harmelin, J.G.; Capo, S. Effects of sewage on bryozoan diversity in Mediterranean rocky bottoms. In Proceedings of the Bryozoan Studies 2001: Proceedings of the 12th International Bryozoology Association Conference, Dublin, Ireland, 16–21 July 2002; Swets & Zeitlinger: Sassenheim, The Netherlands; pp. 151–158. [Google Scholar]
- Piazzi, L.; Bonaviri, C.; Castelli, A.; Ceccherelli, G.; Costa, G.; Curini-Galletti, M.; Langeneck, J.; Manconi, R.; Montefalcone, M.; Pipitone, C.; et al. Biodiversity in canopy-forming algae: Structure and spatial variability of the Mediterranean Cystoseira assemblages. Estuar. Coast. Shelf Sci. 2018, 207, 132–141. [Google Scholar] [CrossRef]
- Evseeva, O.Y.; Ishkulova, T.G.; Dvoretsky, A.G. Environmental Drivers of an Intertidal Bryozoan Community in the Barents Sea: A Case Study. Animals 2022, 12, 552. [Google Scholar] [CrossRef]
- Bračun, S.; Wagner, M.; Koblmüller, S. Spatio-temporal occurrence patterns of epibiota along the leaves of the seagrass Cymodocea nodosa in the Northern Adriatic Sea. Mar. Biol. Res. 2021, 17, 592–602. [Google Scholar] [CrossRef]
- Lejeusne, C.; Chevaldonné, P.; Pergent-Martini, C.; Boudouresque, C.F.; Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 2010, 25, 250–260. [Google Scholar] [CrossRef]
- Marbà, N.; Jordà, G.; Agustí, S.; Girard, C.; Duarte, C.M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2015, 2, 56. [Google Scholar] [CrossRef]
- Rivetti, I.; Fraschetti, S.; Lionello, P.; Zambianchi, E.; Boero, F. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE 2014, 9, e115655. [Google Scholar] [CrossRef] [Green Version]
- Giampaoletti, J.; Cardone, F.; Corriero, G.; Gravina, M.F.; Nicoletti, L. Sharing and Distinction in Biodiversity and Ecological Role of Bryozoans in Mediterranean Mesophotic Bioconstructions. Front. Mar. Sci. 2020, 7, 581292. [Google Scholar] [CrossRef]
- Casoli, E.; Bonifazi, A.; Giandomanico, A.; Gravina, M.F.; Russo, G.F.; Sandulli, R.; Donnarumma, L. Comparative Analysis of Mollusc Assemblages from Different Hard Bottom Habitats in the Central Tyrrhenian Sea. Diversity 2019, 11, 74. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, E.; Donnarumma, L.; Appolloni, L.; Miccio, A.; Russo, G.F.; Franzese, P.P. Marine natural capital and ecosystem services: An environmental accounting model. Ecol. Modell. 2020, 424, 109029. [Google Scholar] [CrossRef]
- Verdura, J.; Linares, C.; Ballesteros, E.; Coma, R.; Uriz, M.J.; Bensoussan, N.; Cebrian, E. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 2019, 9, 5911. [Google Scholar] [CrossRef]
- Mazaris, A.D.; Kallimanis, A.; Gissi, E.; Pipitone, C.; Danovaro, R.; Claudet, J.; Rilov, G.; Badalamenti, F.; Stelzenmüller, V.; Thiault, L.; et al. Threats to marine biodiversity in European protected areas. Sci. Total Environ. 2019, 677, 418–426. [Google Scholar] [CrossRef]
- Miu, I.V.; Rozylowicz, L.; Popescu, V.D.; Anastasiu, P. Identification of areas of very high biodiversity value to achieve the EU biodiversity strategy for 2030 key commitments. PeerJ 2020, 8, e10067. [Google Scholar] [CrossRef]
P. crispa 2018 | P. crispa 2019 | P. oceanica Leaves 2019 | P. oceanica Shoots 2019 | |||||
---|---|---|---|---|---|---|---|---|
Family | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
Aetidae | 15,976 | 5887 | 112,140 | 13,312 | 52,535 | 12,360 | 45,064 | 5863 |
Candidae | 268,368 | 93,217 | 5183 | 2343 | 0 | 0 | 37,916 | 5463 |
Chlidoniidae | 1,287,926 | 276,738 | 1,250,665 | 445,419 | 0 | 0 | 131,954 | 46,711 |
Crisiidae | 192,089 | 22,353 | 347,948 | 54,644 | 48,945 | 14,288 | 64,743 | 9896 |
Haplopomidae | 4674 | 1652 | 56,640 | 20,818 | 155,149 | 36,106 | 0 | 0 |
Tubuliporidae | 240,495 | 33,541 | 200,127 | 31,551 | 63,966 | 19,210 | 33,656 | 7157 |
Watersiporidae | 212,608 | 37,342 | 24,788 | 5333 | 0 | 0 | 0 | 0 |
Unknown | 113,593 | 50,098 | 130,742 | 22,592 | 183,536 | 36,544 | 3628 | 1166 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossbach, F.I.; Casoli, E.; Plewka, J.; Schmidt, N.; Wild, C. New Insights into a Mediterranean Sea Benthic Habitat: High Diversity of Epiphytic Bryozoan Assemblages on Phyllophora crispa (Rhodophyta) Mats. Diversity 2022, 14, 346. https://doi.org/10.3390/d14050346
Rossbach FI, Casoli E, Plewka J, Schmidt N, Wild C. New Insights into a Mediterranean Sea Benthic Habitat: High Diversity of Epiphytic Bryozoan Assemblages on Phyllophora crispa (Rhodophyta) Mats. Diversity. 2022; 14(5):346. https://doi.org/10.3390/d14050346
Chicago/Turabian StyleRossbach, Felix Ivo, Edoardo Casoli, Julia Plewka, Neele Schmidt, and Christian Wild. 2022. "New Insights into a Mediterranean Sea Benthic Habitat: High Diversity of Epiphytic Bryozoan Assemblages on Phyllophora crispa (Rhodophyta) Mats" Diversity 14, no. 5: 346. https://doi.org/10.3390/d14050346
APA StyleRossbach, F. I., Casoli, E., Plewka, J., Schmidt, N., & Wild, C. (2022). New Insights into a Mediterranean Sea Benthic Habitat: High Diversity of Epiphytic Bryozoan Assemblages on Phyllophora crispa (Rhodophyta) Mats. Diversity, 14(5), 346. https://doi.org/10.3390/d14050346