Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Bronmark, C. Interactions between epiphytes, macrophytes and freshwater snails: A review. J. Molluscan Stud. 1989, 55, 299–311. [Google Scholar] [CrossRef]
- Sagrario, M.A.G.; Balseiro, E. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biol 2010, 55, 2153–2166. [Google Scholar] [CrossRef]
- Manatunge, J.; Asaeda, T.; Priyadarshana, T. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environ. Biol. Fishes 2000, 58, 425–438. [Google Scholar] [CrossRef]
- Jerling, H.; Wooldridge, T. Plankton distribution and abundance in the Sundays River, South Africa with comments on potential feeding interactions. S. Afr. J. Mar. Sci. 1995, 15, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Froneman, P.W. Feeding ecology of the mysid, Mesopodopsis wooldridgei, in a temperate estuary along the eastern seaboard of South Africa. J. Plankton Res. 2002, 9, 999–1008. [Google Scholar] [CrossRef]
- Froneman, P.W.; Cuthbert, R.N. Ratio-independent prey preferences by an estuarine mysid. J. Plankton Res. 2022, 42, 398–401. [Google Scholar] [CrossRef]
- Connell, A.D.; Grindley, J.R. Two new species of Acartia (Copepoda, Calanoidea) from South African estuaries. Ann. S. Afr. Mus. 1974, 65, 89–97. [Google Scholar]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Dick, J.T.A.; Alexander, M.E.; Jeschke, J.M.; Ricciardi, A.; MacIsaac, H.J.; Robinson, T.B.; Kumschick, S.; Weyl, O.L.F.; Dunn, A.M.; Hatcher, M.J.; et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 2014, 16, 735–753. [Google Scholar] [CrossRef] [Green Version]
- Englund, G.; Öhlund, G.; Hein, C.L.; Diehl, S. Temperature dependence of the functional response. Ecol. Lett. 2011, 14, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Rall, B.C.; Brose, U.; Hartvig, M.; Kalinkat, G.; Schwarzmüller, F.; Vucic-Pestic, O.; Petchey, O.L. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2923–2934. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, R.N.; Wasserman, R.J.; Dalu, T.; Kaiser, H.; Weyl, O.L.F.; Dick, J.T.A.; Sentis, A.; McCoy, M.W.; Alexander, M.E. Influence of intra- and interspecific variations in predator-prey body size ratios on trophic interaction strengths. Ecol. Evolut. 2020, 10, 5946–5962. [Google Scholar] [CrossRef] [PubMed]
- Kalinoski, R.M.; DeLong, J.P. Beyond body mass: How prey traits improve predictions of functional response parameters. Oecologia 2016, 180, 543–550. [Google Scholar] [CrossRef]
- Li, Y.; Rall, B.C.; Kalinkat, G. Experimental duration and predator satiation levels systematically affect functional response parameters. Oikos 2018, 127, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Uiterwaal, S.F.; DeLong, J.P. Multiple factors, including arena size, shape the functional responses of ladybird beetles. J. Appl. Ecol. 2018, 55, 2429–2438. [Google Scholar] [CrossRef]
- Barrios-O’Neill, D.; Dick, J.T.A.; Emmerson, M.C.; Ricciardi, A.; MacIsaac, H.J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 2015, 29, 377–384. [Google Scholar] [CrossRef]
- Barrios-O’Neill, D.; Kelly, R.; Dick, J.T.A.; Ricciardi, A.; MacIsaac, H.J.; Emmerson, M.C. On the context-dependent scaling of consumer feeding rates. Ecol. Lett. 2016, 19, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, R.J.; Alexander, M.E.; Weyll, O.L.F.; Barrios-O’Neill, N.; Froneman, P.W.; Dalu, T. Emergent effects of structural complexity and temperature on predator-prey interactions. Ecosphere 2016, 72, 1239. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, R.N.; Dalu, T.; Wasserman, R.J.; Callaghan, A.; Weyl, O.L.F.; Dick, T.A. Using functional responses to quantify notonectid predatory impacts across increasingly complex environments. Acta Oecol. 2019, 95, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, R.N.; Dalu, T.; Wasserman, R.J.; Weyl, O.L.; Callaghan, A.; Froneman, W.; Dick, J.T. Sex skewed trophic impacts in ephemeral wetlands. Freshw. Biol. 2019, 64, 369–370. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Fox, J.; Weisberg, S. Multivariate linear models in R. In An Appendix to An R Companion to Applied Regression, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Lenth, R.V. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Juliano, S.A. Nonlinear curve fitting: Predation and functional responses curves. In Design and Analysis of Ecological Experiments, 2nd ed.; Scheiner, S.M., Gurvich, J., Eds.; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Rogers, D. Random search and insect population models. J. Anim. Ecol. 1972, 41, 369–383. [Google Scholar] [CrossRef]
- Hassell, M.; Lawton, J.; Beddington, J. Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 1977, 46, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Real, L.A. The Kinetics of Functional Response. Am. Nat. 1977, 111, 289–300. [Google Scholar] [CrossRef]
- Pritchard, D.W.; Paterson, R.A.; Bovey, H.C.; Barria-O’Neill, D. Frair: An R package for fitting and comparing functional responses. Methods Ecol. Evol. 2017, 8, 1528–1534. [Google Scholar] [CrossRef]
- Burnham, K.P.; Andersen, D.R. Model Selection and Multi-Model Interference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bolker, B.M. Emdbook: Ecologiocal Models and Data in R; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Gotceitas, V.; Colgan, P. Predator foraging success and habitat complexity: Quantitative test of the threshold hypothesis. Oecologia 1989, 80, 158–166. [Google Scholar] [CrossRef]
- DeRoy, E.M.; Scott, N.; Hussey, N.E.; Macissac, H.J. Density dependence mediates the ecological impact of an invasive fish. Divers. Distrib. 2020, 26, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Barrios-ONeill, D.; Dick, J.T.A.; Emmerson, M.C.; Hugh, A.R.; Macissac, H.J.; Alexander, M.E.; Bovy, H.C. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator. J. Anim. Ecol. 2013, 83, 693–701. [Google Scholar] [CrossRef]
- Kolar, V.; Boukal, D.S.; Sentis, A. Predation risk and habitat complexity modify intermediate predator feeding rates and energetic efficiencies in a tri-trophic system. Freshw. Biol. 2019, 64, 1480–1491. [Google Scholar] [CrossRef]
- Kleka, J.; Boukal, D.S. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 2014, 176, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Convey, P. Competition for perches between larval damselflies: The influence of perch use on feeding efficiency, growth rate and predator avoidance. Freshw. Biol. 1988, 19, 15–28. [Google Scholar] [CrossRef]
- Savino, J.F.; Stein, R.A. Behavior of fish predators and their prey: Habitat choice between open water and dense vegetation. Environ. Biol. Fishes 1989, 24, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Kreuzinger-Janik, B.; Bruchner-Huttemann, H.; Traunspurger, W.W. Effect of prey size and structural complexity on the functional response in a nematode- nematode system. Sci. Rep. 2019, 9, 5696. [Google Scholar] [CrossRef] [PubMed]
- Fulton, R.S. Predatory feeding of two marine mysids. Mar. Biol. 1982, 72, 183–191. [Google Scholar] [CrossRef]
- Alexander, M.E.; Dick, J.T.A.; O’Connor, N.E.; Haddaway, N.R.; Farnsworth, K.D. Functional responses of the intertidal amphipod Echinogammarus marinus: Effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 2012, 468, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Dunn, R.P.; Hovel, K.A. Predator type influences the frequency of functional responses to prey in marine habitats. Biol. Lett. 2020, 16, 20190758. [Google Scholar] [CrossRef]
- Uszko, W.; Diel, S.; Pitsch, N.; Lengfeller, K.; Muller, T.R. When is a type III functional response stabilizing? Theory and practice of predicting plankton dynamics under enrichment. Ecology 2015, 96, 3243–3256. [Google Scholar] [CrossRef]
- Daugaard, U.; Petchy, O.L.; Pennekamp, F. Warming can destabalise predator-prey interaction by shifting the functional response from Type III to type II. J. Anim. Ecol. 2018, 88, 1575–1586. [Google Scholar] [CrossRef]
- Wasserman, R.J.; Cuthbert, R.N.; Alexander, M.E.; Dalu, T. Shifting interaction strength between estuarine mysid species across a temperature gradient. Mar. Environ. Res. 2018, 140, 390–393. [Google Scholar] [CrossRef] [Green Version]
Sex | Habitat | First-Order Term, p | Attack Rate, p | Handling Time, p |
---|---|---|---|---|
Female | 0% | −0.14, <0.001 | 6.33, 0.15 | 0.16, <0.001 |
25% | −0.07, 0.05 | 1.33, 0.06 | 0.11, 0.01 | |
50% | −0.07, 0.04 | 1.01, 0.07 | 0.12, 0.02 | |
75% | −0.04, 0.26 | 0.46, 0.06 | 0.11, 0.27 | |
100% | −0.04, 0.28 | 0.65, 0.15 | 0.13, 0.18 | |
Male | 0% | −0.12, <0.001 | 3.65, 0.09 | 0.14, <0.001 |
25% | −0.09, 0.01 | 1.99, 0.14 | 0.15, <0.001 | |
50% | −0.11, 0.002 | 2.29, 0.20 | 0.18, <0.001 | |
75% | −0.06, 0.14 | 0.62, 0.12 | 0.15, 0.11 | |
100% | −0.07, 0.05 | 0.86, 0.12 | 0.16, 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froneman, P.W.; Cuthbert, R.N. Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem. Diversity 2022, 14, 431. https://doi.org/10.3390/d14060431
Froneman PW, Cuthbert RN. Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem. Diversity. 2022; 14(6):431. https://doi.org/10.3390/d14060431
Chicago/Turabian StyleFroneman, Pierre William, and Ross Noel Cuthbert. 2022. "Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem" Diversity 14, no. 6: 431. https://doi.org/10.3390/d14060431
APA StyleFroneman, P. W., & Cuthbert, R. N. (2022). Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem. Diversity, 14(6), 431. https://doi.org/10.3390/d14060431