Macrobenthic Assemblages, Distribution and Functional Guilds from a Freshwater-Dominated Tropical Estuary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Benthos Sample Collection, Identification and Classification of Feeding Guilds
2.3. Measurement of Environmental Parameters
2.4. Statistical Analysis
3. Results
3.1. Physico-Chemical Characteristics
3.2. Composition, Diversity and Assemblages of Macrobenthos
3.3. Trophic Structure of Macrobenthic Community
3.4. Relationship between Biological and Physico-Chemical Drivers
4. Discussion
4.1. Macrobenthic Community Structure
4.2. Functional and Trophic Structure of Macrobenthos
4.3. Relationship between Macrobenthos and Physico-Chemical Variables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carcedo, M.C.; Fiori, S.M.; Piccolo, M.C.; Abbate, M.C.L.; Bremec, C.S. Variations in macrobenthic community structure in relation to changing environmental conditions in sandy beaches of Argentina. Estuar. Coast. Shelf. Sci. 2015, 166, 56–64. [Google Scholar] [CrossRef]
- Currie, D.R.; Small, K.J. Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar. Coast. Shelf. Sci. 2005, 63, 315–331. [Google Scholar] [CrossRef]
- Lercari, D.; Defeo, O. Effects of freshwater discharge in sandy beach populations: The mole crab Emerita brasiliensis in Uruguay. Estuar. Coast. Shelf Sci. 1999, 49, 457–468. [Google Scholar] [CrossRef]
- Lercari, D.; Defeo, O. Variation of a sandy beach macrobenthic community along a human-induced environmental gradient. Estuar. Coast. Shelf Sci. 2003, 58, 17–24. [Google Scholar] [CrossRef]
- Lercari, D.; Defeo, O. Large-scale diversity and abundance trends in sandy beach macrofauna along full gradients of salinity and morphodynamics. Estuar. Coast. Shelf Sci. 2006, 68, 27–35. [Google Scholar] [CrossRef]
- Doi, H.; Chang, K.H.; Ando, T.; Imai, H.; Nakano, S.I.; Kajimoto, A.; Katano, I. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia 2008, 156, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Herman, P.M.J.; Middelburg, J.J.; Van de Koppel, J.; Heip, C.H.R. Ecology of estuarine macrobenthos. Adv. Ecol. Res. 1999, 29, 195–240. [Google Scholar]
- Uddin, M.H.; Shahjahan, M.; Amin, A.R.; Haque, M.M.; Islam, M.A.; Azim, M.E. Impacts of organophosphate pesticide, sumithion on water quality and benthic invertebrates in aquaculture ponds. Aquac. Rep. 2016, 3, 88–92. [Google Scholar] [CrossRef]
- Snelgrove, P.V. Getting to the bottom of marine biodiversity: Sedimentary habitats: Ocean bottoms are the most widespread habitat on earth and support high biodiversity and key ecosystem services. BioScience 1999, 49, 129–138. [Google Scholar] [CrossRef]
- Gaston, G.R.; Nasci, J.C. Trophic structure of macrobenthic communities in the Calcasieu Estuary, Louisiana. Estuaries 1988, 11, 201. [Google Scholar] [CrossRef]
- Kremen, C. Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol. Appl. 1992, 2, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Bulger, A.J.; Hayden, B.P.; Monaco, M.E.; Nelson, D.M.; McCormick-Ray, M.G. Biologically-based estuarine salinity zones derived from a multivariate analysis. Estuaries 1993, 16, 311–322. [Google Scholar] [CrossRef]
- Warwick, R.M.; Clarke, K.R. Increased variability as a symptom of stress in marine communities. J. Exp. Mar. Biol. Ecol. 1993, 172, 215–226. [Google Scholar] [CrossRef]
- Brown, S.S.; Gaston, G.R.; Rakocinski, C.F.; Heard, R.W. Effects of sediment contaminants and environmental gradients on macrobenthic community trophic structure in Gulf of Mexico estuaries. Estuaries 2000, 23, 411–424. [Google Scholar] [CrossRef]
- White, P.S.; Pickett, S.T. Natural Disturbance and Patch Dynamics: An Introduction; Academic Press: London, UK, 1985; p. 472. [Google Scholar]
- Dolbeth, M.; Cardoso, P.G.; Ferreira, S.M.; Verdelhos, T.; Raffaelli, D.; Pardal, M.A. Anthropogenic and natural disturbance effects on a macrobenthic estuarine community over a 10-year period. Mar. Pollut. Bull. 2007, 54, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Whomersley, P.; Huxham, M.; Bolam, S.; Schratzberger, M.; Augley, J.; Ridland, D. Response of intertidal macrofauna to multiple disturbance types and intensities–an experimental approach. Mar. Environ. Res. 2010, 69, 297–308. [Google Scholar] [CrossRef]
- Baeta, A.; Niquil, N.; Marques, J.C.; Patrício, J. Modelling the effects of eutrophication, mitigation measures and an extreme flood event on estuarine benthic food webs. Ecol. Model. 2011, 222, 1209–1221. [Google Scholar] [CrossRef]
- Soto, E.; Quiroga, E.; Ganga, B.; Alarcón, G. Influence of organic matter inputs and grain size on soft-bottom macrobenthic biodiversity in the upwelling ecosystem of central Chile. Mar. Biodivers. 2017, 47, 433–450. [Google Scholar] [CrossRef]
- Sanvicente-Añorve, L.; Leprêtre, A.; Davoult, D. Large-scale spatial pattern of the macrobenthic diversity in the eastern English Channel. J. Mar. Biolog. Assoc. UK 1996, 76, 153–160. [Google Scholar] [CrossRef]
- Sanvicente-Añorve, L.; Leprêtre, A.; Davoult, D. Diversity of benthic macrofauna in the eastern English Channel: Comparison among and within communities. Biodivers. Conserv. 2002, 11, 265–282. [Google Scholar] [CrossRef]
- Rees, H.L.; Pendle, M.A.; Waldock, R.; Limpenny, D.S.; Boyd, S.E. A comparison of benthic biodiversity in the North Sea, English Channel, and Celtic Seas. ICES J. Mar. Sci. 1999, 56, 228–246. [Google Scholar] [CrossRef]
- Ellingsen, K.E. Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Mar. Ecol. Prog. Ser. 2002, 232, 15–27. [Google Scholar] [CrossRef]
- Morrisey, D.J.; Howitt, L.; Underwood, A.J.; Stark, J.S. Spatial variation in soft-sediment benthos. Mar. Ecol. Prog. Ser. 1992, 81, 197–204. [Google Scholar] [CrossRef]
- Morrisey, D.J.; Underwood, A.J.; Howitt, L.; Stark, J.S. Temporal variation in soft-sediment benthos. J. Exp. Mar. Biol. Ecol. 1992, 164, 233–245. [Google Scholar] [CrossRef]
- Van Hoey, G.; Degraer, S.; Vincx, M. Macrobenthic community structure of soft-bottom sediments at the Belgian Continental Shelf. Estuar. Coast. Shelf Sci. 2004, 59, 599–613. [Google Scholar] [CrossRef]
- Bolam, S.G.; Eggleton, J.; Smith, R.; Mason, C.; Vanstaen, K.; Rees, H. Spatial distribution of macrofaunal assemblages along the English Channel. J. Mar. Biolog. Assoc. UK 2008, 88, 675–687. [Google Scholar] [CrossRef]
- Shumchenia, E.J.; King, J.W. Comparison of methods for integrating biological and physical data for marine habitat mapping and classification. Cont. Shelf Res. 2010, 30, 1717–1729. [Google Scholar] [CrossRef]
- Pearson, T.H.; Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. 1978, 16, 229–311. [Google Scholar]
- Ysebaert, T.; Herman, P.M.J.; Meire, P.; Craeymeersch, J.; Verbeek, H.; Heip, C.H.R. Large-scale spatial patterns in estuaries: Estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuar. Coast. Shelf Sci. 2003, 57, 335–355. [Google Scholar] [CrossRef]
- Montagna, P.A.; Kalke, R.D. The effect of freshwater inflow on meiofaunal and macrofaunal populations in the Guadalupe and Nueces Estuaries, Texas. Estuaries 1992, 15, 307–326. [Google Scholar] [CrossRef]
- Hossain, M.B.; Marshall, D.J. Benthic infaunal community structuring in an acidified tropical estuarine system. Aquat. Biosyst. 2014, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Cooksey, C.; Hyland, J. Sediment quality of the Lower St. Johns River, Florida: An integrative assessment of benthic fauna, sediment-associated stressors, and general habitat characteristics. Mar. Pollut. Bull. 2007, 54, 9–21. [Google Scholar] [CrossRef]
- Levin, L.A.; Gage, J.D. Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep Sea Res. Part. II Top. Stud. Oceanogr. 1998, 45, 129–163. [Google Scholar] [CrossRef]
- Snelgrove, P.V.R.; Butman, C.A. Animal-sediment relationships revisited: Cause versus effect. Oceanogr. Lit. Rev. 1995, 8, 668. [Google Scholar]
- Gray, J.S.; Elliott, M. Ecology of Marine Sediments: From Science to Management, 2nd ed.; Oxford University Press: Oxford, UK, 2009; p. 225. [Google Scholar]
- Warwick, R.M. Comparative study of the structure of some tropical and temperate marine soft-bottom macrobenthic communities. Mar. Biol. 1987, 95, 641–649. [Google Scholar] [CrossRef]
- McLusky, D.S.; Hull, S.C.; Elliott, M. Variations in the intertidal and subtidal macrofauna and sediments along a salinity gradient in the upper Forth Estuary. Neth. J. Aquat. Ecol. 1993, 27, 101–109. [Google Scholar] [CrossRef]
- Lucero, R.C.H.; Cantera, J.R.K.; Romero, I.C. Variability of microbenthic assemblages under abnormal climatic conditions in a small scale tropical estuary. Estuar. Coast. Shelf Sci. 2006, 68, 17–26. [Google Scholar] [CrossRef]
- Kostecki, C.; Roussel, J.M.; Desroy, N.; Roussel, G.; Lanshere, J.; Le Bris, H.; Le Pape, O. Trophic ecology of juvenile flatfish in a coastal nursery ground: Contributions of intertidal primary production and freshwater particulate organic matter. Mar. Ecol. Prog. Ser. 2012, 449, 221–232. [Google Scholar] [CrossRef]
- Nishijima, W.; Nakano, Y.; Nakai, S.; Okuda, T.; Imai, T.; Okada, M. Impact of flood events on macrobenthic community structure on an intertidal flat developing in the Ohta River Estuary. Mar. Pollut. Bull. 2013, 74, 364–373. [Google Scholar] [CrossRef]
- De Jonge, V.N.; Elliot, M. Eutrophication. In Encyclopedia of Ocean Sciences; Steele, J., Thorpe, S., Turekian, K., Eds.; Academic Press: London, UK, 2001; Volume 2, pp. 852–870. [Google Scholar]
- Stramma, L.; Schmidtko, S.; Levin, L.A.; Johnson, G.C. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I Oceanogr. Res. Pap. 2010, 57, 587–595. [Google Scholar] [CrossRef]
- Gewin, V. Oceanography: Dead in the water. Nature 2010, 466, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.J.; Patwary, M.S.A.; Uddin, A.M.M.B.; Hasan, M.M.; Tanmay, M.H.; Kanungo, I.; Parvej, M.R. Macrobenthic Community Structure-An Approach to Assess Coastal Water Pollution in Bangladesh. Fish Aquac. J. 2016, 7, 2. [Google Scholar] [CrossRef]
- Kamal, A.H.M.; Khan, M.A.A. Coastal and estuarine resources of Bangladesh: Management and conservation issues. Maejo Int. J. Sci. Technol. 2009, 3, 313–342. [Google Scholar]
- Dutertre, M.; Hamon, D.; Chevalier, C.; Ehrhold, A. The use of the relationships between environmental factors and benthic macrofaunal distribution in the establishment of a baseline for coastal management. ICES J. Mar. Sci. 2013, 70, 294–308. [Google Scholar] [CrossRef]
- Hossain, M.B. Polychaete faunal biodiversity of Meghna river estuarine bed, Bangladesh. J. Prog. Sci. Tech. 2009, 7, 275–278. [Google Scholar]
- Hossain, M.B. Macro-zoo-benthos of the Meghna River estuarine bed with special reference to Polychaete faunal biodiversity. Int. J. Sustain. Agric. Res. 2009, 5, 11–16. [Google Scholar]
- Hossain, M.B.; Das, N.G.; Sharmeen, R. Seasonal and spatial distribution of macrozoobenthos of the Meghna River estuarine bed. Int. J. Sustain. Agric. Res. 2009, 5, 11–16. [Google Scholar]
- Sharif, A.S.M.; Islam, S.; Islam, M. Occurrence and Distribution of Macrobenthos in Relation to Physico-chemical Parameters in the Lower Meghna River Estuary, Bangladesh. Int. J. Mar. Sci. 2017, 7, 102–113. [Google Scholar]
- Hossain, M.S.; Das, N.G.; Sarker, S.; Rahaman, M.Z. Fish diversity and habitat relationship with environmental variables at Meghna river estuary, Bangladesh. Egypt. J. Aquat. Res. 2012, 38, 213–226. [Google Scholar]
- Al-Yamani, F.Y.; Skryabin, V.; Boltachova, N.; Revkov, N.; Makarov, M.; Grintsov, V.; Kolesnikova, E. Illustrated Atlas on the Zoobenthos of Kuwait; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2012; pp. 1–364. [Google Scholar]
- Tomikawa, K.; Kakui, K.; Yamasaki, H. A new species of Psammogammarus (Amphipoda: Melitidae) from Kuchinoerabu Island, Japan, with a note on its feeding habits. Zool. Sci. 2010, 27, 615–626. [Google Scholar] [CrossRef]
- Hunt, O.D. The food of the bottom fauna of the Plymouth fishing grounds. J. Mar. Biolog. Assoc. UK 1925, 13, 560–599. [Google Scholar] [CrossRef]
- Viherluoto, M. Food Selection and Feeding Behaviour of Baltic Sea Mysid Shrimps. 2001. Available online: https://helda.helsinki.fi/bitstream/handle/10138/22351/foodsele.pdf?sequence=2 (accessed on 25 November 2017).
- Gerdol, V.; Hughes, R.G. Feeding behaviour and diet of Corophium volutator in an estuary in southeastern England. Mar. Ecol. Prog. Ser. 1994, 114, 103–108. [Google Scholar] [CrossRef]
- Hossain, M.B.; Hossain, M.M.M. A preliminary study on intertidal macrobenthos of Chittagong coast in Bangladesh. Int. J. Ani. Fish. Sci. 2009, 2, 170–175. [Google Scholar]
- Asadujjaman, M.; Hossain, M.B.; Shamsuddin, M.; Amin, M.A.; Azam, A.K.M. Occurrence and Abundance of Macrobenthos of Hatiya and Nijhum Dweep Islands, Bangladesh. Middle East J. Sci. Res. 2012, 11, 184–188. [Google Scholar]
- Islam, M.S.; Sikder, M.N.A.; Al-Imran, M.; Hossain, M.B.; Mallick, D.; Morshed, M.M. Intertidal macrobenthic fauna of the Karnafuli estuary: Relations with environmental variables. World Appl. Sci. J. 2013, 21, 1366–1373. [Google Scholar]
- Sharif, A.S.; Bakar, M.A.; Bhuyan, M.S. Assessment of water quality of the Meghna river estuary using multivatiate analyses and RPI. Int. J. Chem. Pharm. Technol. 2017, 2, 57–73. [Google Scholar]
- Noman, M.A.; Mamunur, R.; Islam, M.S.; Hossain, M.B. Spatial and seasonal distribution of Intertidal Macrobenthos with their biomass and functional feeding guilds in the Naf River estuary, Bangladesh. J. Oceanol. Limnol. 2019, 37, 1010–1023. [Google Scholar] [CrossRef]
- Khan, R.A. Biodiversity of macrobenthos on the intertidal flats of Sunderban estuarine region, India. Rec. Zool. Surv. India 2003, 101, 181–205. [Google Scholar]
- Matin, A.; Hossain, M.B.; Iqbal, M.; Billah, M.M.; Al Asif, A.; Billah, M.M. Diversity and abundance of Macrobenthos in a subtropical estuary, Bangladesh. Species 2018, 19, 140–150. [Google Scholar]
- Alam, M.S. Ecology of the Intertidal Macrobenthos of Halishahar Coast, Chittagong Bangladesh. Ph.D. Thesis, Department of Zoology, University of Chittagong, Chittagong, Bangladesh, 1993. [Google Scholar]
- Hossain, M.J.; Sarker, M.J.; Uddin, M.N.; Islam, A.; Tumpa, I.J.; Hossain, Z. Macrobenthos Presence in the Estuarine Waters of the Meghna River, Ramghati, Laksmipur, Bangladesh. World Appl. Sci. J. 2018, 36, 598–604. [Google Scholar]
- Nandan, S.B.; Azis, P.K.A. Water quality and benthic faunal diversity of a polluted eastuary on the south-west coast of India. Indian J. Environ. Prot. 1996, 16, 12–22. [Google Scholar]
- Karel, E. Ecological effects of dumping of dredged sediments; options for management. J. Coast. Conserv. 1999, 5, 69–80. [Google Scholar]
- Lu, L.; Goh, B.P.L.; Chou, L.M. Effects of coastal reclamation on riverine macrobenthic infauna (Sungei Punggol) in Singapore. J. Aquat. Ecosyst. Stress Recovery 2002, 9, 127–135. [Google Scholar] [CrossRef]
- Hena, A.M.; Kohinoor, S.M.; Siddique, M.A.; Ismail, J.; Idris, M.H.; Amin, S.M. Composition of macrobenthos in the Bakkhali channel system, Cox’s Bazar with notes on soil parameter. Pak. J. Biol. Sci. 2012, 15, 641–646. [Google Scholar] [CrossRef]
- Hossain, M.B. Macrobenthos Community Structure of a Tropical Estuary; LAP Publishing Company: Saarbrücken, Germany, 2011; p. 84. [Google Scholar]
- Belaluzzaman, A.M. Ecology of the Intertidal Macrobenthic Fauna in Cox’s Bazar Coastal Area, Bangladesh. Master’s Thesis, Institute of Marine Sciences and Fisheries, University of Chittagong, Chittagong, Bangladesh, 1995; p. 55. [Google Scholar]
- Boesch, D.F.; Rosenberg, R. Response to stress in marine benthic communities. In Stress Effects on Natural Ecosystems; Barrett, G.W., Rosenberg, R., Eds.; J. Wiley: Chichester, NY, USA, 1981; pp. 179–200. [Google Scholar]
- Gaston, G.R.; Rakocinski, C.F.; Brown, S.S.; Cleveland, C.M. Trophic function in estuaries: Response of macrobenthos to natural and contaminant gradients. Mar. Freshw. Res. 1998, 49, 833–846. [Google Scholar] [CrossRef]
- Hossain, M.B. Trophic functioning of macrobenthic fauna in a tropical acidified Bornean estuary (Southeast Asia). Int. J. Sed. Res. 2019, 34, 48–57. [Google Scholar] [CrossRef]
- Whitlatch, R.B. Animal-sediment relationships in intertidal marine benthic habitats: Some determinants of deposit-feeding species diversity. J. Exp. Mar. Biol. Ecol. 1981, 53, 31–45. [Google Scholar] [CrossRef]
- Rossi, F. Short-term response of deposit-feeders to an increase of the nutritive value of the sediment through seasons in an intertidal mudflat (Western Mediterranean, Italy). J. Exp. Mar. Biol. Ecol. 2003, 290, 1–17. [Google Scholar] [CrossRef]
- Maurer, D.; Vargas, J.A. Diversity of soft-bottom benthos in a tropical estuary: Gulf of Nicoya, Costa Rica. Mar. Biol. 1984, 81, 97–106. [Google Scholar] [CrossRef]
- Gaston, G.R.; Edds, K.A. Long-term study of benthic communities on the continental shelf off Cameron, Louisiana: A review of brine effects and hypoxia. Gulf Caribb. Res. 1994, 9, 57–64. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Selleslagh, J.; Lobry, J.; N’Zigou, A.R.; Bachelet, G.; Blanchet, H.; Chaalali, A.; Sautour, B.; Boët, P. Seasonal succession of estuarine fish, shrimps, macrozoobenthos and plankton: Physico-chemical and trophic influence. The Gironde estuary as a case study. Estuar. Coast. Shelf Sci. 2012, 112, 243–254. [Google Scholar] [CrossRef]
- Hampel, H.; Elliott, M.; Cattrijsse, A. Macrofaunal communities in the habitats of intertidal marshes along the salinity gradient of the Schelde estuary. Estuar. Coast. Shelf Sci. 2009, 84, 45–53. [Google Scholar] [CrossRef]
- Como, S.; Magni, P. Temporal changes of a macrobenthic assemblage in harsh lagoon sediments. Estuar. Coast. Shelf Sci. 2009, 83, 638–646. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, F.; Liu, R. Community structure changes of macrobenthos in the South Yellow Sea. Chin. J. Oceanol. Limnol. 2012, 30, 248–255. [Google Scholar] [CrossRef]
- Nishijima, W.; Umehara, A.; Okuda, T.; Nakai, S. Variations in macrobenthic community structures in relation to environmental variables in the Seto Inland Sea, Japan. Mar. Pollut. Bull. 2015, 92, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, J.; Cai, K.; Wu, D.; Wang, B. Temporal and spatial distribution of macrobenthos communities and their responses to environmental factors in Lake Taihu. Acta Ecol. Sin. 2016, 36, 16–22. [Google Scholar] [CrossRef]
- David, V.; Sautour, B.; Chardy, P.; Leconte, M. Long-term changes of the zooplankton variability in a turbid environment: The Gironde estuary (France). Estuar. Coast. Shelf Sci. 2005, 64, 171–184. [Google Scholar] [CrossRef]
- McLusky, D.S.; Elliot, D. The Estuarine Ecosystem. In Ecology, Threats and Management, 3rd ed.; Oxford University Press: Oxford, UK, 2006; p. 214. [Google Scholar]
- Ysebaert, T.; Herman, P.M. Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Mar. Ecol. Prog. Ser. 2002, 244, 105–124. [Google Scholar] [CrossRef]
- Yan, J.; Xu, Y.; Sui, J.; Li, X.; Wang, H.; Zhang, B. Long-term variation of the macrobenthic community and its relationship with environmental factors in the Yangtze River estuary and its adjacent area. Mar. Pollut. Bull. 2017, 123, 339–348. [Google Scholar] [CrossRef]
Sites/Physico-Chemical Variables | S1 | S2 | S3 | S4 | p |
---|---|---|---|---|---|
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | ||
DO (ml/L) | 5.07 ± 0.07 | 9.1 ± 0.21 | 8.1 ± 0.32 | 9.03 ± 0.35 | 0.008 * |
Soil pH | 6.6 ± 0.06 | 6.17 ± 0.03 | 5.83 ± 0.03 | 6.7 ± 0.09 | 0.01 * |
Water pH | 6.8 ± 0.1 | 7.27 ± 0.09 | 7.4 ± 0.0 | 7.0 ± 0.15 | 0.01 * |
Salinity (ppt) | 0.097 ± 0.003 | 0.17 ± 0.03 | 0.03 ± 0.03 | 0.27 ± 0.03 | 0.003 * |
Water Temperature (°C) | 24.17 ± 0.17 | 28.17 ± 0.17 | 28.23 ± 0.23 | 31.33 ± 0.67 | 0.02 * |
Hardness (µS) | 120 ± 11.55 | 346.67 ± 68.39 | 176.67 ± 8.82 | 175.33 ± 47.35 | 0.02 * |
Alkalinity (ppm) | 83 ± 8.74 | 70.67 ± 2.03 | 77.67 ± 4.84 | 116 ± 5.29 | 0.002 * |
Trophic Group | IST (Individuals/m2) | %D | R | ||||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | Av | SE | ||||
Phylum Annelida Class Polychaeta | |||||||||
Lumbrineridae sp. | SSDF | 0 | 0 | 251.67 | 14.67 | 66.58 | 38.80 | 1.70 | 14 |
Nereididae sp.1 | SSDF | 0 | 222.33 | 326 | 281.67 | 207.5 | 79.19 | 5.30 | 7 |
Nereididae sp.2 | SSDF | 0 | 252 | 192.67 | 355.67 | 200.08 | 77.50 | 5.11 | 8 |
Nereididae sp.3 | SSDF | 0 | 0 | 163 | 252 | 103.75 | 54.82 | 2.65 | 11 |
Nephtyidae sp.1 | SSDF | 192.67 | 622 | 192.67 | 148 | 288.83 | 136.90 | 7.37 | 4 |
Nephtyidae sp.2 | SSDF | 59.33 | 0 | 0 | 44.33 | 25.92 | 17.69 | 0.66 | 21 |
Namaneredidae sp. | SSDF | 29.33 | 133.33 | 340.67 | 192.67 | 174 | 69.98 | 4.44 | 9 |
Capitellidae sp. | SSDF | 2918.3 | 0 | 0 | 0 | 729.58 | 526.86 | 18.62 | 1 |
Spionidae sp. | SSDF | 207.33 | 0 | 0 | 0 | 51.83 | 41.25 | 1.32 | 16 |
Class Clitellata | |||||||||
Oligocheate sp.1 | SSDF | 177.67 | 0 | 0 | 0 | 44.42 | 34.16 | 1.13 | 17 |
Oligocheate sp.2 | SSDF | 222.33 | 0 | 0 | 0 | 55.58 | 32.43 | 1.42 | 15 |
Nematid sp.1 | SSDF | 0 | 66.5 | 0 | 0 | 11.08 | 11.08 | 0.28 | 24 |
Nematid sp.2 | SSDF | 14.67 | 0 | 0 | 0 | 3.67 | 3.67 | 0.09 | 26 |
Phylum Arthopoda Class Malacostraca Order Mysida | |||||||||
Mysidae sp.1 | OMN | 0 | 1896 | 222.33 | 14.67 | 533.25 | 467 | 13.61 | 2 |
Mysidae sp.2 | OMN | 0 | 148.33 | 0 | 0 | 37.08 | 25.59 | 0.95 | 18 |
Mysidae sp.3 | OMN | 0 | 0 | 0 | 14.67 | 3.67 | 3.67 | 0.09 | 26 |
Order Amphipoda | |||||||||
Ampeliscidae sp.1 | FF | 0 | 74 | 0 | 29.33 | 25.83 | 18.49 | 0.70 | 22 |
Ampeliscidae sp.2 | FF | 0 | 0 | 0 | 14.67 | 3.67 | 3.67 | 0.09 | 26 |
Ampeliscidae sp.3 | FF | 0 | 14.67 | 14.67 | 0 | 7.33 | 4.94 | 0.19 | 25 |
Leucothoidae sp. | FF | 0 | 0 | 0 | 14.67 | 3.67 | 3.67 | 0.09 | 26 |
Corophiidae sp. | SDF | 0 | 44.33 | 0 | 0 | 11.08 | 11.08 | 0.28 | 24 |
Melitidae sp. | CAR | 0 | 0 | 44.33 | 0 | 11.08 | 7.97 | 0.28 | 24 |
Oedicerptidae sp. | FF | 0 | 0 | 0 | 370.33 | 92.58 | 92.58 | 2.36 | 13 |
Order Decapoda | |||||||||
Crab larvae | OMN | 14.67 | 0 | 59.33 | 0 | 18.5 | 14.95 | 0.47 | 23 |
Shrimp larvae | OMN | 0 | 29.33 | 59 | 1155.67 | 311 | 222.16 | 7.94 | 3 |
Order Isopoda | |||||||||
Paranthuridae sp. | SDF | 0 | 503.67 | 0 | 0 | 125.92 | 121.97 | 3.21 | 10 |
Class Maxillopoda | |||||||||
Calanoida sp. | CAR | 0 | 14.67 | 0 | 0 | 3.67 | 3.67 | 0.09 | 26 |
Class Insecta | |||||||||
Ephemeroptera | SDF | 0 | 0 | 0 | 14.67 | 3.67 | 3.67 | 0.09 | 26 |
Chironomidae sp.1 | SDF | 148 | 0 | 0 | 0 | 37 | 23.75 | 0.94 | 19 |
Chironomidae sp.2 | SDF | 1140.67 | 0 | 0 | 0 | 285.17 | 192.44 | 7.28 | 5 |
Chironomidae sp.3 | SDF | 118.67 | 0 | 0 | 0 | 29.67 | 29.67 | 0.76 | 20 |
Phylum Mollusca Class Gastropoda | |||||||||
Viviparidae sp.1 | SDF | 74 | 0 | 0 | 0 | 18.5 | 12.76 | 0.47 | 23 |
Viviparidae sp.2 | SDF | 74 | 0 | 0 | 0 | 18.5 | 10.18 | 0.47 | 23 |
Cingulopsidae sp. | SDF | 385.33 | 0 | 14.67 | 0 | 100 | 81.19 | 2.55 | 12 |
Planorbidae sp. | SDF | 14.67 | 0 | 0 | 0 | 3.67 | 3.67 | 0.09 | 26 |
Trochidae sp. | SDF | 14.67 | 0 | 0 | 0 | 3.67 | 3.67 | 0.09 | 26 |
Cyclophoridae sp. | SDF | 14.67 | 0 | 0 | 0 | 3.67 | 3.67 | 0.09 | 26 |
Class Bivalvia | |||||||||
Tellina modesta | FF | 0 | 0 | 0 | 889 | 222.25 | 214.29 | 5.67 | 6 |
Aspatharia pfeifferiana | FF | 14.67 | 0 | 0 | 0 | 3.67 | 3.67 | 0.09 | 32 |
Other | |||||||||
Fish larvae | SDF | 0 | 14.67 | 0 | 133.33 | 37 | 33.20 | 0.94 | 20 |
Taxon | Av. Dissim | Contrib. % |
---|---|---|
Mysis sp.1 | 5.876 | 7.303 |
Capitella sp. | 5.831 | 7.247 |
Nephtys sp.1 | 5.822 | 7.236 |
Shrimp larvae | 4.817 | 5.987 |
Nereis sp.1 | 4.676 | 5.812 |
Nereis sp.2 | 4.643 | 5.771 |
Namanereis sp. | 4.469 | 5.555 |
Chironomus sp.2 | 3.668 | 4.559 |
Tellina modesta | 3.453 | 4.292 |
Nereis sp.3 | 3.306 | 4.109 |
Trophic Group | Species Number | Station | Total | % Contr. | |||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||||
SSDF | 13 | 3822 | 1296 | 1467 | 1289 | 7874 | 50.17 |
SDF | 13 | 1985 | 563 | 15 | 148 | 2711 | 17.27 |
FF | 7 | 15 | 89 | 15 | 1318 | 1437 | 9.16 |
OMN | 5 | 15 | 2074 | 341 | 1185 | 3615 | 23.03 |
CAR | 2 | 0 | 15 | 44 | 0 | 59 | 0.38 |
Total | 40 | 5837 | 4037 | 1882 | 3940 | 15,696 | 100 |
Physico-Chemical Parameters | S | A | H’ | e | J |
---|---|---|---|---|---|
DO (ml/L) | −0.236 * | −0.084 | −0.435* | −0.049 | −0.267 * |
Soil pH | 0.081 | 0.366 * | −0.327 | −0.514 | 0.011 |
Water pH | −0.392 | −0.239 | 0.036 | 0.329 | −0.339 |
Salinity (ppt) | −0.294 | 0.05 ** | −0.443 | −0.317 | −0.331 |
Water temp. (°C) | −0.366 | −0.171 | −0.168 | 0.096 | −0.297 |
Hardness (µS) | −0.196 | −0.112 | −0.238 | 0.189 ** | −0.259 |
Alkalinity (ppm) | −0.130 | 0.109 ** | 0.035 | 0.014 | −0.091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.K.; Hossain, M.B.; Majumdar, P.R.; Mustafa, M.G.; Noman, M.A.; Albeshr, M.F.; Bhat, E.A.; Arai, T. Macrobenthic Assemblages, Distribution and Functional Guilds from a Freshwater-Dominated Tropical Estuary. Diversity 2022, 14, 473. https://doi.org/10.3390/d14060473
Rahman MK, Hossain MB, Majumdar PR, Mustafa MG, Noman MA, Albeshr MF, Bhat EA, Arai T. Macrobenthic Assemblages, Distribution and Functional Guilds from a Freshwater-Dominated Tropical Estuary. Diversity. 2022; 14(6):473. https://doi.org/10.3390/d14060473
Chicago/Turabian StyleRahman, Mohammad Khaled, Mohammad Belal Hossain, Priyanka Rani Majumdar, M. Golam Mustafa, Mohammad Abu Noman, Mohammed Fahad Albeshr, Eijaz Ahmed Bhat, and Takaomi Arai. 2022. "Macrobenthic Assemblages, Distribution and Functional Guilds from a Freshwater-Dominated Tropical Estuary" Diversity 14, no. 6: 473. https://doi.org/10.3390/d14060473
APA StyleRahman, M. K., Hossain, M. B., Majumdar, P. R., Mustafa, M. G., Noman, M. A., Albeshr, M. F., Bhat, E. A., & Arai, T. (2022). Macrobenthic Assemblages, Distribution and Functional Guilds from a Freshwater-Dominated Tropical Estuary. Diversity, 14(6), 473. https://doi.org/10.3390/d14060473