An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review
Abstract
:1. Introduction
2. History, Characteristics, and the Importance of South African Indigenous Breeds
2.1. Zulu Sheep
2.2. BaPedi Sheep
2.3. Namaqua Afrikaner
2.4. Damara Sheep
3. South African Indigenous Breeds Current Status and Extinction Risks
4. Phenotype and Genetic Characterization
5. Conservation Approaches and Progress
6. Difficulties during Farm Animal Genetic Resource Conservation
6.1. Inbreeding
6.2. Globalization
6.3. Urbanization
6.4. Climate Change
6.5. Lack of Resources
6.5.1. Water Scarcity/Lack of Irrigation Equipment and Drought
6.5.2. Lack of Veterinary Service
6.5.3. Lack of Knowledge/Education
7. Future Prospects or Solutions to Improve South African Indigenous Sheep Breeds
7.1. Gametes Cryo Conservation
7.1.1. Semen Cryopreservation
7.1.2. Oocytes Cryopreservation
7.2. Genetic Improvement Programs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amiridis, G.S.; Cseh, S. Assisted reproductive technologies in the reproductive management of small ruminants. Anim. Reprod. Sci. 2012, 130, 152–161. [Google Scholar] [CrossRef]
- Mavule, B.S.; Muchenje, V.; Kunene, N.W. Characterization of Zulu sheep production system: Implications for conservation and improvement. Sci. Res. Essays 2013, 8, 1226–1238. [Google Scholar]
- Hasani, N.; Ebrahimi, M.; Ghasemi-Panahi, B.; HosseinKhani, A. Evaluating reproductive performance of three estrus synchronization protocols in Ghezel ewes. Theriogenology 2018, 122, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Molotsi, A.H.; Oosting, S.; Cloete, S.W.P.; Dzama, K. Factors influencing off-take rates of smallholder sheep farming systems in the Western Cape Provinve of South Africa. S. Afr. J. Agric. Ext. 2019, 47, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Van Marle-Koster, E.S.T.E.; Snyman, G. Saving the endangered Namaqua Afrikaner sheep breed ln south Africa through conservation and utilization. In Biotechnologies at Work for Smallholders: Case Studies from; Food and Agriculture Organization: Romeo, Italy, 2013. [Google Scholar]
- Xulu, T.G.; Ezeokoli, O.T.; Gupta, A.K.; Mienie, C.; Bezuidenhout, C.C.; Kunene, N.W. Spatio-seasonal variations in the faecal bacterial community of Zulu sheep grazing in communally managed rangeland. S. Afr. J. Sci. 2020, 116, 1–9. [Google Scholar]
- Selepe, M.M.; Ceccobelli, S.; Lasagna, E.; Kunene, N.W. Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds. PLoS ONE 2018, 13, e0196276. [Google Scholar] [CrossRef] [Green Version]
- Nxumalo, K.S.; Grobbler, P.; Ehlers, K.; Nesengani, L.T.; Mapholi, N.O. The genetic of South African Nguni sheep breeds using the Ovine 50K chip. Agriculture 2022, 12, 663. [Google Scholar] [CrossRef]
- Mavule, B.S.; Sarti, F.M.; Lasagna, E.; Kunene, N.W. Morphological differentiation amongst Zulu sheep populations in KwaZulu-Natal; South Africa; as revealed by multivariate analysis. Small Rumin. Res. 2016, 140, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Van Der Merwe, D.A.; Brand, T.S.; Hoffman, L.C. Premium lamb production of South African sheep breed types under feedlot conditions. S. Afr. J. Sci. 2020, 50, 578–587. [Google Scholar] [CrossRef]
- Kunene, N.W.; Bezuidenhout, C.C.; Nsahlai, I.V. Genetic and phenotypic diversity in Zulu sheep populations: Implications for exploitation and conservation. Small Rumin. Res. 2009, 84, 100–107. [Google Scholar] [CrossRef]
- Mavule, B.S.; Muchenje, V.; Bezuidenhout, C.C.; Kunene, N.W. Morphological structure of Zulu sheep based on principal component analysis of body measurements. Small Rumin. Res. 2013, 111, 23–30. [Google Scholar] [CrossRef]
- Paramio, M.T.; Izquierdo, D. Recent advances in in vitro embryo production in small ruminants. Theriogenology 2016, 86, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Soma, P.; Kotze, A.; Grobler, J.P.; Van Wyk, J.B. South African sheep breeds: Population genetic structure and conservation implications. Small Rumin. Res. 2012, 103, 112–119. [Google Scholar] [CrossRef]
- Almeida, A.M. The Damara in the context of Southern Africa fat-tailed sheep breeds. Trop. Anim. Health Prod. 2011, 43, 1427–1441. [Google Scholar] [CrossRef] [PubMed]
- Domestic Animal Diversity Information System (DAD-IS). 2022. Available online: https://www.fao.org/dad-is/en/ (accessed on 20 March 2022).
- Damara Sheep Breed Society of South Africa. Available online: https://damarasheep.co.za/?page_id=14 (accessed on 3 March 2022).
- Viana, J. 2019 statistics of embryo production and transfer in domestic farm animals. IETS data retrieval committee. Embyo Technol. Newsl. 2020, 38, 1–14. [Google Scholar]
- Food Agriculture Organization (FAO). Cryoconservation of Animal Genetic Resources; FAO Animal Healthy Guidelines No. 12; FAO: Rome, Italy, 2012. [Google Scholar]
- Molotsi, A.H.; Dube, B.; Cloete, S.W.P. The current status of indigenous ovine genetic resources in Southern Africa and future sustainable utilization to improve livelihoods. Diversity 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Kunene, N.W.; Bezuidenhout, C.C.; Nsahlai, I.V.; Nesamvuni, E.A. A review of some characteristics; socio-economic aspects and utilization of Zulu sheep: Implications for conservation. Trop. Anim. Health Prod. 2011, 43, 1075–1079. [Google Scholar] [CrossRef]
- Qwabe, S.O.; van Marle-Köster, E.; Visser, C. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep. Trop. Anim. Health Prod. 2013, 45, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Nedambale, T.L.; Mapholi, N.O.; Sebei, J.P.; O’Neill, H.A.; Nxumalo, K.S.; Nephawe, K.A.; Maqhashu, A.; Ramukhithi, F.V. Assessment of genetic variation in BaBaPedi sheep using microsatellite markers. S. Afr. J. Sci. 2020, 50, 318–324. [Google Scholar]
- Hlophe, S.R. Genetic Variation between and within Six Selected South African Sheep Breeds Using Random Amplified Polymorphic DNA and Protein Markers. Master’s Thesis, University of Zululand, Kwa-Dlangezwa, South Africa, 2011. [Google Scholar]
- Ramsay, K.; Harris, L.; Kotzé, A. Landrace Breeds: South Africa’s Indigenous and Locally Developed Farm Animals; Farm Animal Conservation Trust: Irene, South Africa, 1998. [Google Scholar]
- Buduram, P. Genetic Characterization of Southern African Sheep Breeds Using DNA Markers. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2004. [Google Scholar]
- Qwabe, S.O. Genetic and Phenotypic Characterisation of the South African Namaqua Afrikaner Sheep Breed. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Peters, F.W.; Kotze, A.; Van der Bank, F.H.; Soma, P.; Grobler, J.P. Genetic profile of the locally developed Meatmaster sheep breed in South Africa based on microsatellite analysis. Small Rumin. Res. 2010, 90, 101–108. [Google Scholar] [CrossRef]
- Agri Orbit. Bosvelder Sheep Trump the Challenges. Available online: https://www.agriorbit.com/bosvelder-sheep-trump-the-challenges/ (accessed on 20 March 2022).
- Burgess, M. Indigenous Livestock Perfect for Small-Scale Farmers. Farmer’s Weekly. 2019. Available online: https://www.farmersweekly.co.za/animals/sheep-and-goats/indigenous-livestock-perfect-small-scale-farmers/ (accessed on 20 March 2022).
- Kunene, N.W.; Fossey, A. A survey on livestock production in some traditional areas of Northern Kwazulu Natal in South Africa. Livestock Res. Rural Dev. 2006, 18, 30–33. [Google Scholar]
- Sandenbergh, L.; Cloete, S.W.P.; Olivier, J.J. Assessing the occurrence of hybridisation in endangered sheep. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 7–11 February 2018; pp. 11–16. [Google Scholar]
- Ruane, J.; Dargie, J.D.; Mba, C.; Boettcher, P.; Makkar, H.P.S.; Bartley, D.M.; Sonnino, A. Biotechnologies at Work for Smallholders: Case Studies from Developing Countries in Crops, Livestock and Fish; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Chella, L.; Kunene, N.; Lehloenya, K. A comparative study on the quality of semen from Zulu rams at various ages and during different seasons in KwaZulu-Natal, South Africa. Small Rumin. Res. 2017, 151, 104–109. [Google Scholar] [CrossRef]
- Ramukhithi, F.V.; Chokoe, T.C.; Ronald, T.; Lehloenya, K.C. Characterisation of Semen and Phenotypic Parameters in Relation to Male Goat Fertility. In Goat Science-Environment, Health and Economy; IntechOpen: London, UK, 2021. [Google Scholar]
- Letsoalo, P.T. Characterisation and Cryopreservation of Semen from Indigenous Namaqua Afrikaner Sheep Breed, in Comparison with Dorper and Dohne Merino Breeds. Ph.D. Thesis, University of Fort Hare, Alice, South Africa, 2017. [Google Scholar]
- Ngcobo, J.N.; Nephawe, K.A.; Maqhashu, A.; Nedambale, T.L. Seasonal variations in semen parameters of Zulu rams preserved at 10 °C for 72 h during breeding and non-breeding season. Am. J. Anim. Vet. 2020, 15, 226–239. [Google Scholar] [CrossRef]
- Kunene, N.W.; Ceccobelli, S.; Lorenzo, P.D.; Hlophe, S.R.; Bezuidenhout, C.C.; Lasagna, E. Genetic diversity in four populations of Nguni (Zulu) sheep assessed by microsatellite analysis. Ital. J. Anim. Sci. 2014, 13, 3083. [Google Scholar] [CrossRef]
- Molotsi, A.H.; Taylor, J.F.; Cloete, S.W.; Muchadeyi, F.; Decker, J.E.; Whitacre, L.K.; Sandenbergh, L.; Dzama, K. Genetic diversity and population structure of South African smallholder farmer sheep breeds determined using the OvineSNP50 beadchip. Trop. Anim. Health Prod. 2017, 49, 1771–1777. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries. National Plan for Conservation and Sustainable Use of Farm Animal Genetic Resources; DAFF: Pretoria, South Africa, 2016. [Google Scholar]
- Burger, I.; Julien, A.R.; Kouba, A.J.; Barber, D.; Counsell, K.R.; Pacheco, C.; Krebs, J.; Kouba, C.K. Linking in-situ and ex-situ populations of threatened amphibians through genome banking. Conserv. Biol. 2021, 3, 525. [Google Scholar] [CrossRef]
- Snyman, M.A.; Olivier, J.J.; Cloete, J.A.N.; Steyn, M.J. Conservation of the Namaqua Afrikaner by the Department of Agriculture. Grootfontein. 2011. Available online: https://gadi.dalrrd.gov.za (accessed on 20 March 2022).
- Ngcobo, J.N.; Nedambale, T.L.; Chokoe, T.C.; Ramukhithi, F.V. A comparative study on the reproductive performance of South African indigenous sheep breeds following oestrus synchronization. Am. J. Anim. Vet. 2022, 17, 1–10. [Google Scholar] [CrossRef]
- Mafolo, K.S.; Pilane, C.M.; Chitura, T.; Nedambale, T.L. Use of phosphatidylcholine in Tris-based extender with or without egg yolk to freeze BaBaPedi ram semen. S. Afr. J. Sci. 2020, 50, 389–396. [Google Scholar] [CrossRef]
- Munyai, P.H. Cryopreservation of South African Indigenous Ram Semen. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2012. [Google Scholar]
- Peris-Frau, P.; Martín-Maestro, A.; Iniesta-Cuerda, M.; Sánchez-Ajofrín, I.; Cesari, A.; Garde, J.J.; Villar, M.; Soler, A.J. Cryopreservation of ram sperm alters the dynamic changes associated with in vitro capacitation. Theriogenology 2020, 145, 100–108. [Google Scholar] [CrossRef]
- Maqhashu, A. Characterization and Evaluation of Reproductive Performance in Bapedi Sheep Breed. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2019. [Google Scholar]
- de Boer, R.A.; Vega-Trejo, R.; Kotrschal, A.; Fitzpatrick, J.L. Meta-analytic evidence that animals rarely avoid inbreeding. Nat. Ecol. Evol. 2021, 5, 949–964. [Google Scholar] [CrossRef]
- Doekes, H.P.; Bijma, P.; Windig, J.J. How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. Genes 2021, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Ebel, E.R.; Phillips, P.C. Intrinsic differences between males and females determine sex-specific consequences of inbreeding. BMC Evol. Biol. 2016, 16, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barczak, E.; Wolc, A.; Wójtowski, J.; Slosarz, P.; Szwaczkowski, T. Inbreeding and inbreeding depression on body weight in sheep. J. Anim. Feed Sci. 2009, 18, 42–50. [Google Scholar] [CrossRef]
- Taberlet, P.; Valentini, A.; Rezaei, H.R.; Naderi, S.; Pompanon, F.; Negrini, R.; Ajmone-Marsan, P. Are cattle; sheep; and goats endangered species? Mol. Ecol. 2008, 17, 275–284. [Google Scholar] [CrossRef]
- Burger, A.; Hoffman, L.C.; Cloete, J.J.E.; Muller, M.; Cloete, S.W.P. Carcass composition of Namaqua Afrikaner, Dorper and SA Mutton Merino ram lambs reared under extensive conditions. S. Afr. J. Anim. Sci. 2013, 43, S27–S32. [Google Scholar] [CrossRef] [Green Version]
- Schoeman, S.J.; Cloete, S.W.P.; Olivier, J.J. Returns on investment in sheep and goat breeding in South Africa. Livest. Sci. 2010, 130, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Bobiec, A.; Paderewski, J.; Gajdek, A. Urbanisation and globalised environmental discourse do not help to protect the bio-cultural legacy of rural landscapes. Landsc. Urban Plan. 2021, 208, 104038. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, M.; Xie, Z.; Li, J.; Ma, M.; Lai, P.; Wang, J. Quantifying the Contributions of Climate Change and Human Activities to Water Volume in Lake Qinghai, China. Remote Sens. 2022, 14, 99. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Kamara, A.; Conteh, A.; Rhodes, E.R.; Cooke, R.A. The relevance of smallholder farming to African agricultural growth and development. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14043–14065. [Google Scholar] [CrossRef]
- Maluleke, W.; Tshabalala, N.P.; Barkhuizen, J. The effects of climate change on rural livestock farming: Evidence from Limpopo Province, South Africa. Asian J. Agric. Rural Dev. 2020, 10, 645–658. [Google Scholar] [CrossRef]
- Maluleke, W.; Mokwena, R.J. The effect of climate change on rural livestock farming: Case study of Giyani Policing Area, Republic of South Africa. S. Afr. J. Agric. Ext. 2017, 45, 26–40. [Google Scholar]
- Halimani, T.; Marandure, T.; Chikwanha, O.C.; Molotsi, A.H.; Abiodun, B.J.; Dzama, K.; Mapiye, C. Smallholder sheep farmers’ perceived impact of water scarcity in the dry ecozones of South Africa: Determinants and response strategies. Clim. Risk Manag. 2021, 34, 100369. [Google Scholar] [CrossRef]
- Nesamvuni, A.E.; Ndwambi, K.; Tshikolomo, K.A.; Lekalakala, G.R.; Raphulu, T.; Petja, B.M.; Van Niekerk, J. Smallholder farmers knowledge and information on the impact of climate variability & extremes on livestock production in Limpopo & Mpumalanga Provinces. Tech. Soc. Sci. 2022, 27, 854–869. [Google Scholar]
- Adeniji, Y.A.; Sanni, M.O.; Abdoun, K.A.; Samara, E.M.; Al-Badwi, M.A.; Bahadi, M.A.; Alhidary, I.A.; Al-Haidary, A.A. Resilience of Lambs to Limited Water Availability without Compromising Their Production Performance. Animals 2020, 10, 1491. [Google Scholar] [CrossRef]
- Lottering, S.J.; Mafongoya, P.; Lottering, R. The impacts of drought and the adaptive strategies of small-scale farmers in uMsinga, KwaZulu-Natal, South Africa. J. Asian Afr. Stud. 2021, 56, 267–289. [Google Scholar] [CrossRef]
- Webb, C. Liberating the family: Debt; education and racial capitalism in South Africa. Environ. Plan D 2021, 39, 85–102. [Google Scholar] [CrossRef]
- Ntuli, L.; Fourie, P.J. Appraisal of the management practices of goat farmers in selected districts of the KwaZulu-Natal province: Can the extensionist play a role to improve? S. Afr. J. Agric. Ext. 2021, 49, 84–96. [Google Scholar] [CrossRef]
- Salami, A.; Kamara, A.B.; Brixiova, Z. Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities; African Development Bank: Tunis, Tunisia, 2010. [Google Scholar]
- Korkmaz, M.K.; Yaprak, M. The Effect of Different Estrus Synchronization Methods on Reproductive Performance in Laparoscopic Artificial Insemination Program in Morkaraman Sheep. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 247–253. [Google Scholar]
- Leroy, G.; Boettcher, P.; Besbes, B.; Danchin-Burge, C.; Baumung, R.; Hiemstra, S.J. Cryoconservation of animal genetic resources in Europe and two African countries: A gap analysis. Diversity 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Bopape, M.A.; Lehloenya, K.C.; Chokoe, T.C.; Nedambale, T.L. Comparison of electro ejaculator and artificial vagina on semen collection from South African indigenous goat following assessment by computer aided sperm analysis. Open J. Anim. Sci. 2015, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Wu, G.; Hong, Q.; Quan, G. Spermatozoa cryopreservation: State of art and future in small ruminants. Biopreserv. Biobank. 2019, 17, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Salamon, S.; Maxwell, W.M.C. Storage of ram semen. Anim. Reprod. Sci. 2000, 62, 77–111. [Google Scholar] [CrossRef]
- Lekola, K.P.M.; Ng’ambi, J.W.; Nkadimeng, M.; Mphaphathi, M.L.; Nedambale, T.L. Effects of various concentrations of gonadotropins and 17β estradiol on the in vitro maturation of cattle oocytes selected using brilliant cresyl blue staining. S. Afr. J. Anim. Sci. 2016, 46, 321–326. [Google Scholar] [CrossRef]
- Shirazi, A.; Shams-Esfandabadi, N.; Hosseini, S.M. A comparison of two recovery methods of ovine oocytes for in vitro maturation. Small Rumin. Res. 2005, 58, 283–286. [Google Scholar] [CrossRef]
- Pyoos, G.M.; Maqhashu, A.M.; Scholtz, M.M.; Nedambale, T.L. The comparison of three media on the in vitro maturation rate of pig oocytes. S. Afr. J. Anim. Sci. 2018, 48, 1026–1031. [Google Scholar] [CrossRef]
- Cocero, M.J.; Alabart, J.L.; Hammami, S.; Martí, J.I.; Lahoz, B.; Sánchez, P.; Echegoyen, E.; Beckers, J.F.; Folch, J. The efficiency of in vitro ovine embryo production using an undefined or a defined maturation medium is determined by the source of the oocyte. Reprod. Domest. Anim. 2011, 46, 463–470. [Google Scholar] [CrossRef]
- Maquivar, M.G.; Smith, S.M.; Busboom, J.R. Reproductive Management of Rams and Ram Lambs during the Pre-Breeding Season in US Sheep Farms. Animals 2021, 11, 2503. [Google Scholar] [CrossRef]
- Wieczorek, J.; Koseniuk, J.; Skrzyszowska, M.; Cegła, M. L-OPU in Goat and Sheep—Different Variants of the Oocyte Recovery Method. Animals 2020, 10, 658. [Google Scholar] [CrossRef] [Green Version]
- Dellenbach, P.; Nisand, I.; Moreau, L.; Feger, B.; Plumere, C.; Gerlinger, P.; Brun, B.; Rumpler, Y. Transvaginal, sonographically controlled ovarian follicle puncture for egg retrieval. Lancet 1984, 323, 1467. [Google Scholar] [CrossRef]
- Leahy, T.; Gadella, B.M. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reprodution 2011, 142, 759. [Google Scholar] [CrossRef] [PubMed]
- Alyethodi, R.R.; Sirohi, A.S.; Karthik, S.; Tyagi, S.; Perumal, P.; Singh, U.; Sharma, A.; Kundu, A. Role of seminal MDA, ROS, and antioxidants in cryopreservation and their kinetics under the influence of ejaculatory abstinence in bovine semen. Cryobiology 2021, 98, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Nedambale, T.L.; Dinnyes, A.; Groen, W.; Dobrinsky, J.R.; Tian, X.C.; Yang, X. Comparison on in vitro fertilized bovine embryos cultured in KSOM or SOF and cryopreserved by slow freezing or vitrification. Theriogenology 2004, 62, 437–449. [Google Scholar] [CrossRef]
- Çizmeci, S.Ü.; Güler, M.; Kaymaz, M. Comparison of different cryoprotectants on slow freezing of in vivo derived Saanen goats embryos. Ank. Üniversitesi Vet. Fakültesi Derg. 2018, 65, 171–178. [Google Scholar]
- Tiwari, M.; Prasad, S.; Tripathi, A.; Pandey, A.N.; Ali, I.; Singh, A.K.; Shrivastav, T.G.; Chaube, S.K. Apoptosis in mammalian oocytes: A review. Open J. Apoptosis 2015, 20, 1019–1025. [Google Scholar] [CrossRef]
- Vining, L.M.; Zak, L.J.; Harvey, S.C.; Harvey, K.E. The role of apoptosis in cryopreserved animal oocytes and embryos. Theriogenology 2021, 173, 93–101. [Google Scholar] [CrossRef]
- Krisher, R.L. The effect of oocyte quality on development. Sci. J. Anim. Sci. 2004, 82, 14–23. [Google Scholar]
- Romão, R.; Marques, C.C.; Baptista, M.C.; Barbas, J.P.; Horta, A.E.M.; Carolino, N.; Bettencourt, E.; Pereira, R.M. Cryopreservation of in vitro–produced sheep embryos: Effects of different protocols of lipid reduction. Theriogenology 2015, 84, 118–126. [Google Scholar] [CrossRef]
- Gibbons, A.; Cueto, M.I.; Bonnet, F.P. A simple vitrification technique for sheep and goat embryo cryopreservation. Small Rumin. Res. 2011, 95, 61–64. [Google Scholar] [CrossRef]
- Granleese, T.; Clark, S.A.; Swan, A.A.; van der Werf, J.H. Increased genetic gains in sheep; beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values. Genetics 2015, 47, 70. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Hao, Y.; Liu, Z.; Li, S.; Wang, C.; Wang, B.; Liu, Y.; Liu, G.; Dai, Y. Effect of exogenous glutathione supplementation on the in vitro developmental competence of ovine oocytes. Theriogenology 2021, 173, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Snyman, M.A. South African Sheep Breeds: Van Rooy Sheep. Info-Pack Ref. 2014/030; Grootfontein Agricultural Development Institute: Middelburg, South Africa, 2014. [Google Scholar]
- Agricultural Research Council. Indigenous Sheep and Goats Breeds in South Africa; ARC Germplasm, Conservation and Reproductive Biotechnologies: Pretoria, South Africa, 2022. [Google Scholar]
Locally Developed Breed (Composite Breed) | Use of the Breed Developed | Indigenous/Composite Breed Used | Exotic Breed Used | Breed Developer | Reference |
---|---|---|---|---|---|
Afrino | Meat and wool | Ronderib Afrikaner | Merino, SA mutton Merion | Carnavon Research Station | [16] |
Van Rooy | Meat production and terminal sire crossing | Ronderib Africander rams | Rambouillet ewe | JC van Rooy | [16] |
Meatmaster | Meat production | Damara | Ile de France | - | [24] |
Dorper | Meat production | Black Persian | Dosert horn | South African Department of Agriculture | [17] |
Vandor | Wool | Van Rooy | Dorset horn and German Merino | CJ van Vuuren | [15] |
Bosvelder | Meat production | BaPedi, Van Rooy, white Dorper | - | - | [25,26] |
Population Data | Zulu Sheep | BaPedi Sheep | Namaqua Afrikaner Sheep | Damara Sheep |
---|---|---|---|---|
Reporting year | 2022 | 2022 | 2022 | 2022 |
Population trend | Decreasing | Decreasing | Decreasing | Increasing |
Population size | 298 | 48 | 88 | 1003 |
Breeding ewes | 258 | 23 | 74 | 655 |
Breeding rams | 40 | 25 | 14 | 348 |
Ewes bred pure | 95 | 23 | Unknown | 655 |
AI performed | 0 | - | - | - |
Rams in AI | 0 | - | - | - |
Phenotype Characteristics | BaPedi Sheep | Zulu Sheep | Namaqua Afrikaner Sheep | Damara Sheep |
---|---|---|---|---|
Head | Hornless | Hornless | Horned | Long and strong nose, horned, small dewlap, strong teeth |
Average body size: Ram | - | 39.1 kg | 58.7 kg | 61 kg |
Average body size: Ewe | 40 kg | 33.4 kg | 50 kg | 45 kg |
Birth weight | 3.1 kg | 2.8 kg | 3.1 kg | 3.9 kg |
Weaning weight | 13.4 kg | 11.6 kg | 10.5 kg | 14.1 kg |
Coat colour | White with brown head, variety of colours occur | Black, brown or reddish-brown coat sometimes pied | White usually with black or brown head, course hair | Brownish in colour |
Tail type | Fat-tailed and rump | Long fat-tailed and rump | Fat-tail | Long Fat-tail |
Markers | Type of Breed | Sampling Area | Ho | He | MAF | Fis | p-Value | Reference |
---|---|---|---|---|---|---|---|---|
Ovine 50 k Chip | BaPedi | Gauteng province | 0.28 ± 0.22 | 0.28 ± 0.18 | 0.18 ± 0.16 | −0.104 | 0.988 | [8] |
Zulu | KwaZulu Natal province | 0.32 ± 1.77 | 0.32 ± 1.60 | 0.24 ± 0.15 | 0.028 | 0.237 | [8] | |
Damara | Limpopo province | 0.42 ± 0.18 | 0.40 ± 0.14 | 0.35 ± 0.16 | 0.017 | 0.343 | [8] | |
Namaqua Afrikaner | Northern Cape | 0.26 ± 0.21 | 0.25 ± 0.19 | 0.18 ± 0.16 | −0.017 | 0.591 | [8] | |
Western Cape | 0.295 ± 0.22 | 0.280 ± 0.18 | 0.218 | 0.237 ± 0.05 | - | [39] | ||
Microsatellites | Zulu | KwaZulu Natal province | 0.58 ± 0.02 | 0.57 ± 0.03 | 3.73 ± 1.34 | −0.01 | - | [7] |
Zulu | KwaZulu-Natal province | 0.57 ± 0.2 | 0.61 ± 0.03 | 5.02 ± 1.98 | 0.0662 | - | [38] | |
BaPedi | Limpopo province | 0.60 ± 0.05 | 0.76 ± 0.03 | 7.2 ± 0.4 | 0.19 | - | [22] |
Population Data | Zulu Sheep | BaPedi Sheep | Namaqua Afrikaner | Damara Sheep |
---|---|---|---|---|
Reporting year | 2019 | 2019 | 2019 | 2019 |
Number of herds in the program | 2 | 1 | - | - |
Number of males in the program | 172 | 17 | - | - |
Number of females in the program | 304 | 42 | - | - |
Conservation site | Dundee and Makhathini research station | Mara research station | - | - |
Breed | Zulu Sheep | BaPedi Sheep | Namaqua Afrikaner | Damara Sheep |
---|---|---|---|---|
Reporting year | 2021 | 2021 | 2021 | 2021 |
Semen samples frozen | 526 straws | 31 straws | - | - |
Semen donors | 5 | - | - | - |
Embryos sample collected | 0 | 413 | - | - |
Oocytes samples collected | 0 | - | - | - |
DNA samples | - | 461 | - | - |
DNA male donors | - | 29 | - | - |
DNA female donors | - | 431 | - | - |
Total DNA donors | - | 461 | - | |
Sample collectors | Agricultural Research Council | Agricultural Research Council | Agricultural Research Council | - |
Breed extinction status | At risk | At risk | At risk | At risk |
Parameters | BaPedi Sheep | Zulu Sheep | Namaqua Afrikaner Sheep | Damara Sheep |
---|---|---|---|---|
Oestrous response | 88% | 83% | 100% | 70% |
Conception rate | 84% | 86% | 44% | 70% |
Lambing rate | 88% | 89% | 44% | 60% |
Breed | Lamb Birth Weight (kg) (Mean ± SE) | Lamb Weanig Weight (kg) (Mean ± SE) | Mortality Rate (%) |
---|---|---|---|
Zulu sheep | 2.8 ± 0.1 b | 11.6 ± 0.5 ab | 31 (17/55) c |
BaPedi sheep | 3.1 ± 0.1 b | 13.4 ± 0.7 ab | 29 (9/31) c |
Namaqua Afrikaner sheep | 3.1 ± 0.2 b | 10.5 ± 0.8 b | 44 (4/9) b |
Damara sheep | 3.9 ± 0.2 a | 14.1 ± 1.2 a | 67 (6/9) a |
Breed | Single (%) | Twins (%) | Triplets (%) | Quadurpulets (%) |
---|---|---|---|---|
Zulu sheep | 28 (10/36) d | 53 (19/36) a | 3 (1/36) a | 3 (1/36) a |
BaPedi sheep | 68 (17/25) a | 28 (7/25) b | 0 (0/25) | 0 (0/25) |
Namaqua Afrikaner sheep | 33 (3/9) c | 11 (1/9) c | 11 (1/9) a | 0 (0/9) |
Damara sheep | 50 (5/10) b | 20 (2/10) b | 0 (0/10) | 0 (0/10) |
Sheep Breed | Semen Volume | Semen pH | Sperm Concentration | Progressive Motility | Total Motility | Reference |
---|---|---|---|---|---|---|
Zulu | 1.1 ± 0.1 | 6.4 ± 0.1 | 4.0 ± 0.2 | 82.8 ± 2.6 | 84.0 ± 2.6 | [36] |
Zulu | 0.97 ± 0.25 | 6.54 ± 0.98 | 5.29 ± 0.36 | 22.19 ± 0.82 | 91.30 ± 0.70 | [37] |
BaPedi | 1.1 ± 0.4 | 7.8 ± 0.5 | 2.1 ± 0.2 | 34.5 ± 13.6 | 94.2 ± 13.2 | [47] |
Namaqua Afrikaner | 0.9 ± 0.2 | 7.3 ± 0.3 | 1.2 ± 30.5 | 17.4 ± 14.7 | 37.1 ± 19.9 | [45] |
Damara | 0.4 ± 0.1 | 7.3 ± 0.3 | 1.3 ± 48.5 | 36.4 ± 15.1 | 69.6 ± 16.5 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngcobo, J.N.; Nedambale, T.L.; Nephawe, K.A.; Mpofu, T.J.; Chokoe, T.C.; Ramukhithi, F.V. An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review. Diversity 2022, 14, 516. https://doi.org/10.3390/d14070516
Ngcobo JN, Nedambale TL, Nephawe KA, Mpofu TJ, Chokoe TC, Ramukhithi FV. An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review. Diversity. 2022; 14(7):516. https://doi.org/10.3390/d14070516
Chicago/Turabian StyleNgcobo, Jabulani Nkululeko, Tshimangadzo Lucky Nedambale, Khathutshelo Agree Nephawe, Takalani Judas Mpofu, Tlou Caswell Chokoe, and Fhulufhelo Vincent Ramukhithi. 2022. "An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review" Diversity 14, no. 7: 516. https://doi.org/10.3390/d14070516
APA StyleNgcobo, J. N., Nedambale, T. L., Nephawe, K. A., Mpofu, T. J., Chokoe, T. C., & Ramukhithi, F. V. (2022). An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review. Diversity, 14(7), 516. https://doi.org/10.3390/d14070516