Response of Soil Fauna Diversity to Agricultural Landscape Het-Erogeneity in the Middle and Lower Reaches of the Yellow River—A Case Study in Gongyi City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Data Analysis
2.3.1. Landscape Indices
2.3.2. Biodiversity Indices
3. Results
3.1. Characteristics of Landscape Heterogeneity in the Study Area
3.2. Community Composition of Soil Fauna in the Study Area
3.3. Comparative Analysis of Soil Fauna Diversity in Different Landforms and Habitats
3.4. RDA Analysis of Landscape Indices and Soil Fauna Composition
3.5. Effects of Landscape Scale on Soil Fauna Diversity
3.6. Multi-Scale Analysis of the Impact of Agricultural Landscape Heterogeneity on Soil Fauna Diversity
4. Discussion
4.1. Comparison of Soil Fauna Diversity under Different Landforms and Habitats
4.2. Effects of Landscape Scale on Soil Fauna Diversity
4.3. Multi-Scale Analysis of Effects of Agricultural Landscape Heterogeneity on Soil Fauna Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Landform | Sampling Site | Habitat |
---|---|---|
Plain | 1 | Farmland |
Artificial forest | ||
2 | Farmland | |
Artificial forest | ||
4 | Farmland | |
Artificial forest | ||
5 | Farmland | |
Artificial forest | ||
7 | Farmland | |
Artificial forest | ||
Hill | 3 | Artificial forest |
6 | Farmland | |
Artificial forest | ||
8 | Farmland | |
Artificial forest | ||
9 | Farmland | |
Artificial forest | ||
10 | Farmland | |
Artificial forest | ||
11 | Natural forest | |
Shrub | ||
13 | Artificial forest | |
18 | Farmland | |
Artificial forest | ||
21 | Farmland | |
Artificial forest | ||
22 | Farmland | |
Artificial forest | ||
23 | Farmland | |
Artificial forest | ||
24 | Farmland | |
Artificial forest | ||
Mountain | 12 | Natural forest |
14 | Farmland | |
Shrub | ||
15 | Farmland | |
16 | Farmland | |
Natural forest | ||
17 | Artificial forest | |
Shrub | ||
19 | Natural forest | |
20 | Natural forest |
References
- Lemic, D.; Pajač Živković, I.; Posarić, M.; Bažok, R. Influence of Pre-Sowing Operations on Soil-Dwelling Fauna in Soybean Cultivation. Agriculture 2021, 11, 474. [Google Scholar] [CrossRef]
- Zhang, W.X.; Shen, Z.F.; Shao, Y.H.; Shi, L.L.; Liu, S.J.; Shi, N.N.; Fu, S.L. Soil biota and sustainable agriculture: A review. Acta Ecol. Sin. 2020, 10, 3183–3206. [Google Scholar] [CrossRef]
- Culliney, T.W. Role of Arthropods in Maintaining Soil Fertility. Agriculture 2013, 4, 629–659. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.H.; Cai, Q.N.; Lin, C.W.; Zhao, X.; Cheng, X. Community structure of soil mesofauna under different land use patterns in purple soil hilly area of Sichuan Basin. Chin. J. Ecol. 2009, 28, 277–282. [Google Scholar]
- Wang, G.L.; Wang, Y.; Han, L.L.; Zhang, M.W.; Li, B. Soil animal communities of variously utilized in the Dongting Lake region. Acta Ecol. Sin. 2005, 25, 2629–2636. [Google Scholar]
- Fan, Y.Q. Analysis on Ecogeographical Characteristics of Soil Animal Groups of Tropical Urban Greentbelt in Haikou; Hainan Normal University: Hainan, China, 2010. [Google Scholar]
- Li, H.Y.; Yin, X.Q.; Ma, C.; Guo, Y.M. Ecological Distribution of Soil Fauna Communities in Hilly Regions of the Changbai Relative to Land Use Mountains. Acta Pedol. Sin. 2017, 54, 1018–1028. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Hu, Y.C.; Hou, R.H. Soil Macrofauna Community Compositions and Diversities in Different Wetlands of Old Riverway of the Yellow River in Eastern Henan. Soils 2016, 48, 1131–1138. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology in North America: Past, Present, and Future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.N.; Bu, R.C.; Li, X.Z. Spatial Ecology and Landscape Heterogeneity. Acta Ecol. Sin. 1997, 17, 435–461. [Google Scholar]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian buffers as a critical landscape feature: Insights for riverscape conservation and policy renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- Xiao, D.N.; Li, X.Z. Development and prospect of contemperary landscape ecology. Sci. Geogr. Sin. 1997, 17, 355–364. [Google Scholar]
- Kauffman, M.J.; Varley, N.; Smith, D.W.; Stahler, D.R.; Macnulty, D.R.; Boyce, M.S. Landscape Heterogeneity Shapes Predation in a Newly Restored Predator-prey System. Ecol. Lett. 2007, 10, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Fraterrigo, J.M.; Pearson, S.M.; Turner, M.G. Joint Effects of Habitat Configuration and Temporal Stochasticity on Population Dynamics. Landsc. Ecol. 2009, 24, 863–877. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; Sun, Y.; An, Y.; Zhao, S.; Liu, Y.; Li, M. Ecological Network Construction of the Heterogeneous Agro-Pastoral Areas in the Upper Yellow River Basin. Agric. Ecosyst. Environ. 2020, 302, 107069. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, Y.; Li, W.; Yang, W.; Meng, Q.; Yang, J. Microplastic contamination in freshwater: First observation in Lake Ulansuhai, Yellow River Basin, China. Environ. Chem. Lett. 2019, 17, 1821–1830. [Google Scholar] [CrossRef]
- Izadi, M.; Habashi, H.; Waez-Mousavi, S.M. Variation in Soil Macro-Fauna Diversity in Seven Humus Orders of a Parrotio-Carpinetum Forest Association on Chromic Cambisols of Shast-Klateh Area in Iran. Eurasian Soil Sci. 2017, 50, 341–349. Available online: https://esajournals.onlinelibrary.wiley.com/servlet/linkout?suffix=null&dbid=16&doi=10.1002%2Fecs2.3075&key=10.1134%2FS106422931703005X (accessed on 22 July 2022). [CrossRef]
- Fu, S.L. Biodiversity conservation along the Yellow River should emphasize the complex spatial heterogeneity. Biodivers. Sci. 2020, 28, 1445–1446. [Google Scholar] [CrossRef]
- Barnett, J.; Webber, M.; Wang, M. Ten key questions about the management of water in the yellow river basin. Environ. Manag. 2006, 38, 179–188. [Google Scholar] [CrossRef]
- Yin, W.Y.; Hu, S.H.; Shen, Y.F.; Ning, Y.Z.; Sun, X.D.; Wu, J.H.; Yang, D.R. Pictorical Keys to Soil Animals of China; Science Press: Beijing, China, 1998; Available online: https://scholar.google.com/scholar_lookup?title=Pictorial+Keys+to+Soil+Animals+of+China&author=Yin,+W.Y.&publication_year=1998 (accessed on 22 July 2022).
- Zhu, X.Y.; Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Tillage Res. 2015, 146, 39–46. [Google Scholar] [CrossRef]
- Cai, W.Z.; Pang, X.F.; Hua, B.Z. General Entomology, 2nd ed.; China Agricultural University Press: Beijing, China, 2011. [Google Scholar]
- Liu, X.B. Effects of Agricultural Landscape Structure and Habitat Characteristics Ground-Dwelling Spider Typical Regions of the Lower Reaches of the Yellow River; Henan University: Henan, China, 2015. [Google Scholar]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. Available online: https://onlinelibrary.wiley.com/servlet/linkout?suffix=null&dbid=16&doi=10.1002%2Fece3.2798&key=10.1038%2F163688a0 (accessed on 22 July 2022). [CrossRef]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. Available online: http://scholar.google.com/scholar_lookup?hl=en&volume=3&publication_year=1958&pages=36-71&journal=General+Systems&author=R.+Margalef&title=Information+theory+in+ecology (accessed on 22 July 2022).
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Chao, A.; Kubota, Y.; Zelený, D.; Chiu, C.; Li, C.; Kusumoto, B.; Yasuhara, M.; Thorn, S.; Wei, C.; Costello, M.J.; et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 2020, 35, 292–314. [Google Scholar] [CrossRef]
- Chao, A.; Ricotta, C. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology 2019, 100, e02852. [Google Scholar] [CrossRef] [PubMed]
- Ingty, T. Pastoralism in the highest peaks: Role of the traditional grazing systems in maintaining biodiversity and ecosystem function in the alpine Himalaya. PLoS ONE 2021, 16, e0245221. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H.; Qi, H. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National Food Production Stabilized by Crop Diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Zhao, Z.B.; He, J.Z.; Geisen, S.; Han, L.L.; Wang, J.T.; Shen, J.P.; Wei, W.X.; Fang, Y.T.; Li, P.P.; Zhang, L.M. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 2019, 7, 33. [Google Scholar] [CrossRef]
- Yin, X.; Song, B.; Dong, W.; Xin, W.; Wang, Y. A Review on the Eco-Geography of Soil Fauna in China. J. Geogr. Sci. 2010, 20, 333–346. [Google Scholar] [CrossRef]
- Vera-aviles, D.; Suarez-capello, C.; Llugany, M.; Poschenrieder, C.; Santis, P.D.; Cabezas-guerrero, M. Arthropod Diversity Influenced by Two Musa -based Agroecosystems in Ecuador. Agriculture 2020, 10, 235. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 191–218. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. Available online: https://scholar.google.com/scholar_lookup?title=The+effects+of+mulch+and+nitrogen+fertilizer+on+the+soil+environment+of+crop+plants&author=Wang,+X.&author=Fan,+J.&author=Xing,+Y.&author=Xu,+G.&author=Wang,+H.&author=Deng,+J.&author=Wang,+Y.&author=Zhang,+F.&author=Li,+P.&author=Li,+Z.&publication_year=2019&journal=Adv.+Agron.&volume=153&pages=121%E2%80%93173 (accessed on 22 July 2022).
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.K.; Jänsch, S.; Scott-Fordsmand, J.J.; Römbke, J.; Van den Brink, P.J. Effects of Pesticides on Soil Invertebrates in Laboratory Studies: A Review and Analysis Using Species Sensitivity Distributions. Environ. Toxicol. Chem. 2006, 25, 2490–2501. [Google Scholar] [CrossRef]
- Markus, K.; Benjamin, P.; Carsten, B.; Arnon, D.; Isaac, Z.; Jawad, S.; Gabriele, S. Effects of Olive Mill Wastewater on Soil Microarthropods and Soil Chemistry in Two Different Cultivation Scenarios in Israel and Palestinian Territories. Agriculture 2015, 5, 857–878. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.M.; Zheng, R.Q.; Gu, L.; Zhou, L.Q. Effects of Acetochlor on Biodiversity of Mesofauna Community in Soil. J. Agro-Environ. Sci. 2005, 24, 576–580. [Google Scholar]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; van der Putten, W.H.; Wall, D.H. Ecological Linkages Between Aboveground and Belowground Biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef]
- Wenninger, E.J.; Inouye, R.S. Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem. J. Arid Environ. 2008, 72, 24–33. [Google Scholar] [CrossRef]
- Baum, S.; Weih, M.; Busch, G.; Kroiher, F.; Bolte, A. The impact of Short Rotation Coppice plantations on phytodiversity. Landbauforsch. Volkenrode 2009, 3, 163–170. Available online: https://scholar.google.com/scholar_lookup?title=The+impact+of+Short+Rotation+Coppice+plantations+on+phytodiversity.+Landbauforsch&author=Baum,+S.&author=Weih,+M.&author=Busch,+G.&author=Kroiher,+F.&author=Bolte,+A.&publication_year=2009&journal=Vti+Agric.+For.+Res.&volume=3&pages=163%E2%80%93170 (accessed on 22 July 2022).
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
- Mthimunye, T.A.; Munyai, T.C. Can Monoculture Timber Plantations Conserve More Ant Communities Than Adjacent Natural Forests? Diversity 2022, 14, 430. [Google Scholar] [CrossRef]
- Katayama, N.; Amano, T.; Naoe, S.; Yamakita, T.; Komatsu, I.; Takagawa, S.-I.; Sato, N.; Ueta, M.; Miyashita, T. Landscape Heterogeneity–Biodiversity Relationship: Effect of Range Size. PLoS ONE 2014, 9, e93359. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Watt, A.D.; Mitchell, R.; Truscott, A.-M.; Palmer, S.C.F.; Ivits, E.; Eggleton, P.; Jones, T.H.; Sousa, J.P. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia 2007, 153, 713–725. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Ding, S.Y.; Liang, G.F. Multi-scale effects analysis for landscape structure and biodiversity of seminatural habitats and cropland in a typical agricultural landscape. Prog. Geogr. 2014, 33, 1704–1716. [Google Scholar] [CrossRef]
- Jeanneret, P.; Schüpbach, B.; Pfiffner, L.; Walter, T. Arthropod Reaction to Landscape and Habitat Features in Agricultural Landscapes. Landsc. Ecol. 2003, 18, 253–263. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agric. Ecosyst. Environ. 2014, 192, 144–151. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Potts, S.G.; Packer, L. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 2005, 20, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Holzschuh, A.; Steffan-dewenter, I.; Tscharntke, T. Agricultural Landscapes with Organic Crops Support Higher Pollinator Diversity. Oikos 2008, 117, 354–361. [Google Scholar] [CrossRef]
- Theobald, E.J.; Gabrielyan, H.; HilleRisLambers, J. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range. Am. J. Bot. 2016, 103, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarina, M.; Devalez, J.; Neokosmidis, L.; Sgardelis, S.P.; Kallimanis, A.S.; Tscheulin, T.; Tsalkatis, P.; Kourtidou, M.; Mizerakis, V.; Nakas, G.; et al. Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology 2019, 100, e02615. [Google Scholar] [CrossRef]
- Gao, M.; Liu, D.; Lin, L.; Wu, D. The small-scale structure of a soil mite metacommunity. Eur. J. Soil Biol. 2016, 74, 69–75. [Google Scholar] [CrossRef]
- Ma, H.; Liu, H. Characteristics of soil fauna communities in different land use patterns in the Lhasa River basin. J. Northeast Norm. Univ. (Nat. Sci. Ed.) 2012, 44, 84–90. [Google Scholar]
- Deutschewitz, K.; Lausch, A.; Kühn, I.; Klotz, S. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeogr. 2003, 12, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.L. Functional landscape heterogeneity and animal biodiversity in agricultural ecosystems. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Gabriel, D.; Sait, S.M.; Hodgson, J.A.; Schmutz, U.; Kunin, W.E.; Benton, T.G. Scale matters: The impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 2010, 13, 858–869. [Google Scholar] [CrossRef] [PubMed]
Buffer Radius (m) | TA | AREA_MN | GYRATE_MN | GYRATE_CV | SHAPE_MN | FRAC_CV | PARA_CV | ENN_CV | CONTAG | PR | PRD | SHDI | SHEI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 9.00 | 1.00 | 50.00 | 0.00 | 1.00 | 0.00 | 0.00 | 11.52 | 100.00 | 5 | 55.56 | 1.30 | 0.81 |
50 | 27.00 | 1.17 | 50.90 | 8.30 | 1.01 | 1.44 | 8.70 | 94.08 | 68.41 | 7 | 25.93 | 1.53 | 0.79 |
75 | 45.27 | 1.33 | 45.72 | 17.32 | 1.01 | 1.29 | 22.48 | 69.95 | 53.27 | 10 | 22.09 | 1.58 | 0.69 |
100 | 74.14 | 2.00 | 52.76 | 24.06 | 1.05 | 2.17 | 28.87 | 48.46 | 48.11 | 9 | 12.14 | 1.60 | 0.73 |
125 | 114.16 | 2.24 | 59.23 | 30.89 | 1.10 | 3.19 | 32.00 | 84.08 | 50.11 | 11 | 9.64 | 1.55 | 0.65 |
150 | 162.71 | 2.81 | 65.23 | 38.40 | 1.14 | 3.24 | 33.81 | 73.73 | 45.71 | 10 | 6.15 | 1.56 | 0.68 |
175 | 224.39 | 2.80 | 64.37 | 44.90 | 1.13 | 3.29 | 31.95 | 112.81 | 44.81 | 12 | 5.35 | 1.67 | 0.67 |
200 | 290.48 | 3.46 | 71.82 | 49.86 | 1.20 | 3.92 | 33.29 | 108.15 | 45.08 | 11 | 3.79 | 1.61 | 0.67 |
225 | 363.10 | 3.63 | 72.39 | 54.19 | 1.18 | 3.56 | 33.42 | 97.35 | 46.98 | 14 | 3.86 | 1.72 | 0.65 |
250 | 455.21 | 4.18 | 77.38 | 58.85 | 1.20 | 3.87 | 34.30 | 108.10 | 47.87 | 13 | 2.86 | 1.64 | 0.64 |
500 | 1814.10 | 6.92 | 92.29 | 86.68 | 1.28 | 4.64 | 34.43 | 184.51 | 49.13 | 18 | 0.99 | 1.85 | 0.64 |
750 | 4077.41 | 7.24 | 89.12 | 102.67 | 1.26 | 4.74 | 30.10 | 239.37 | 47.51 | 19 | 0.47 | 1.92 | 0.65 |
1000 | 7249.16 | 8.14 | 92.72 | 112.04 | 1.27 | 4.89 | 29.71 | 203.30 | 45.56 | 18 | 0.25 | 1.94 | 0.67 |
Landform | Habitat | H’ | D | E | R | S |
---|---|---|---|---|---|---|
Mountain | Farmland | 2.55 | 1.85 | 0.42 | 1.43 | 32.00 |
Artificial forest | 2.89 | 2.13 | 0.55 | 1.37 | 21.00 | |
Natural forest | 2.71 | 1.99 | 0.46 | 1.35 | 33.00 | |
Shrub | 3.11 | 2.32 | 0.57 | 1.28 | 28.00 | |
Hill | Farmland | 2.18 | 2.18 | 0.49 | 0.97 | 36.00 |
Artificial forest | 2.95 | 2.95 | 0.51 | 1.35 | 54.00 | |
Natural forest | 2.79 | 2.79 | 0.77 | 1.10 | 10.00 | |
Shrub | 2.41 | 2.41 | 0.54 | 1.11 | 17.00 | |
Plain | Farmland | 2.53 | 1.94 | 0.54 | 1.14 | 34.00 |
Artificial forest | 2.57 | 2.02 | 0.60 | 1.15 | 36.00 |
Step 1. Sample Completeness Profiles (Panel a in Each Figure) | |||
Completeness | q = 0 | q = 1 | q = 2 |
Hill | 87.91% | 99.95% | 1 |
Mountain | 76.52% | 99.95% | 1 |
Plain | 87.91% | 99.95% | 1 |
Step 2. Asymptotic analysis (panels b and c in each figure) | |||
Diversity | q = 0 | q = 1 | q = 2 |
Hill | |||
Asymptotic | 62.56 | 3.31 | 2.09 |
Empirical | 55 | 3.30 | 2.09 |
Undetected | 7.56 | 0.01 | 0 |
Mountain | |||
Asymptotic | 57.50 | 3.29 | 2.11 |
Empirical | 44.00 | 3.28 | 2.11 |
Undetected | 13.5 | 0.01 | 0 |
Plain | |||
Asymptotic | 45.08 | 2.90 | 1.91 |
Empirical | 41.00 | 2.89 | 1.91 |
Undetected | 4.08 | 0.01 | 0 |
Step 3. Non-asymptotic coverage-based rarefaction and extrapolation (panel d in each figure) Maximum standardized coverage Cmax = 1 | |||
Diversity | q = 0 | q = 1 | q = 2 |
Hill | 58.56 | 3.31 | 2.09 |
Mountain | 50.57 | 3.29 | 2.11 |
Plain | 43.50 | 2.89 | 1.91 |
Step 4: Evenness among species abundances (panel e in each figure) | |||
Evenness | Pielou J’ | q = 1 | q = 2 |
Hill | 0.29 | 0.04 | 0.02 |
Mountain | 0.30 | 0.05 | 0.02 |
Plain | 0.28 | 0.04 | 0.02 |
Buffer Unit (m) | Farmland | Artificial Forest | Natural Forest | |||
---|---|---|---|---|---|---|
First Axis | Second Axis | First Axis | Second Axis | First Axis | Second Axis | |
25 | 46.9% | 8.76% | 9.18% | 7.53% | 26% | 8.86% |
50 | 41.3% | 6.86% | 15.6% | 9.07% | 26% | 21.7% |
75 | 39% | 6.85% | 17.5% | 9.41% | 25.4% | 15.9% |
100 | 32.7% | 10.1% | 19.5% | 8.29% | 51% | 16.6% |
125 | 33.3% | 10.4% | 20.8% | 9.33% | 53% | 19% |
150 | 35.8% | 9.25% | 19.4% | 13.1% | 29.8% | 12.4% |
175 | 33.1% | 6.45% | 16.4% | 9.3% | 33.1% | 12.4% |
200 | 33.2% | 5.91% | 16.2% | 8.47% | 32.8% | 15.9% |
225 | 26.2% | 6.5% | 20.5% | 12.8% | 31.1% | 15.1% |
250 | 37.4% | 6.15% | 16.8% | 9.55% | 51.9% | 25% |
500 | 28.2% | 6.99% | 16% | 12.5% | 53.9% | 24.8% |
750 | 18.3% | 7.85% | 16.9% | 10.5% | 48.7% | 14.4% |
1000 | 11.1% | 4.17% | 21% | 14.4% | 42.6% | 17.4% |
Buffer Unit | Biodiversity Indices | Landscape Indices | ||||||
---|---|---|---|---|---|---|---|---|
TA | PD | CONTAG | PR | PRD | SHDI | SHEI | ||
25 | H’ | 0.232 | 0.257 | 0.236 | 0.354 | 0.319 | 0.288 | 0.26 |
D | 0.15 | 0.298 | 0.24 | 0.362 | 0.345 | 0.27 | 0.216 | |
E | −0.035 | 0.208 | 0.085 | 0.229 | 0.245 | 0.204 | 0.124 | |
R | 0.205 | 0.326 | 0.256 | 0.435 * | 0.408 * | 0.397 | 0.343 | |
50 | H’ | 0.096 | 0.201 | 0.04 | 0.255 | 0.255 | 0.281 | 0.207 |
D | −0.061 | 0.178 | 0.082 | 0.248 | 0.248 | 0.263 | 0.206 | |
E | −0.274 | 0.189 | 0.253 | 0.287 | 0.287 | 0.173 | 0.096 | |
R | 0.288 | 0.27 | −0.001 | 0.352 | 0.352 | 0.386 | 0.224 | |
75 | H’ | 0.089 | 0.32 | 0.01 | 0.271 | 0.271 | 0.29 | 0.2 |
D | −0.077 | 0.264 | 0.004 | 0.255 | 0.255 | 0.281 | 0.238 | |
E | −0.309 | 0.221 | 0.223 | 0.352 | 0.352 | 0.285 | 0.238 | |
R | 0.307 | 0.507 * | 0.127 | 0.449 * | 0.449 * | 0.351 | 0.106 | |
100 | H’ | 0.378 | 0.386 | 0.251 | 0.354 | 0.233 | 0.334 | 0.24 |
D | 0.387 | 0.3 | 0.223 | 0.35 | 0.227 | 0.311 | 0.229 | |
E | 0.287 | 0.2 | 0.329 | 0.434 * | 0.34 | 0.3 | 0.203 | |
R | 0.275 | 0.567 ** | 0.278 | 0.430 * | 0.34 | 0.411 * | 0.267 | |
125 | H’ | 0.116 | 0.345 | 0.341 | 0.255 | 0.255 | 0.297 | 0.287 |
D | −0.059 | 0.235 | 0.291 | 0.238 | 0.238 | 0.271 | 0.28 | |
E | −0.305 | 0.154 | 0.434 * | 0.415 * | 0.415 * | 0.274 | 0.2 | |
R | 0.332 | 0.665 ** | 0.264 | 0.486 * | 0.485 * | 0.393 | 0.253 | |
150 | H’ | 0.112 | 0.305 | 0.366 | 0.256 | 0.256 | 0.313 | 0.342 |
D | −0.062 | 0.238 | 0.332 | 0.248 | 0.248 | 0.279 | 0.306 | |
E | −0.303 | 0.247 | 0.495 * | 0.417 * | 0.417 * | 0.285 | 0.211 | |
R | 0.329 | 0.523 ** | 0.23 | 0.415 * | 0.415 * | 0.444 * | 0.377 | |
175 | H’ | 0.107 | 0.382 | −0.397 | 0.1 | 0.1 | 0.304 | 0.375 |
D | −0.067 | 0.25 | −0.379 | 0.068 | 0.068 | 0.265 | 0.36 | |
E | −0.311 | 0.126 | −0.256 | 0.22 | 0.22 | 0.268 | 0.248 | |
R | 0.326 | 0.616 ** | −0.388 | 0.325 | 0.325 | 0.456 * | 0.369 | |
200 | H’ | 0.118 | 0.363 | −0.31 | 0.142 | 0.142 | 0.305 | 0.289 |
D | −0.058 | 0.245 | −0.277 | 0.149 | 0.149 | 0.267 | 0.259 | |
E | −0.305 | 0.031 | −0.173 | 0.281 | 0.281 | 0.255 | 0.169 | |
R | 0.333 | 0.676 ** | −0.336 | 0.369 | 0.369 | 0.460 * | 0.318 | |
225 | H’ | 0.112 | 0.362 | −0.355 | 0.155 | 0.155 | 0.289 | 0.325 |
D | −0.061 | 0.252 | −0.302 | 0.076 | 0.076 | 0.213 | 0.276 | |
E | −0.305 | 0.089 | −0.179 | 0.117 | 0.118 | 0.192 | 0.173 | |
R | 0.33 | 0.640 ** | −0.399 | 0.249 | 0.249 | 0.420 * | 0.372 | |
250 | H’ | −0.274 | 0.238 | −0.436 * | 0.033 | 0.212 | 0.231 | 0.309 |
D | −0.302 | 0.115 | −0.382 | 0.009 | 0.208 | 0.198 | 0.286 | |
E | −0.148 | −0.021 | −0.231 | 0.155 | 0.247 | 0.209 | 0.214 | |
R | −0.205 | 0.583 ** | −0.476 * | 0.266 | 0.389 | 0.399 | 0.354 | |
500 | H’ | −0.275 | 0.164 | −0.157 | −0.149 | −0.026 | 0.069 | 0.158 |
D | −0.303 | 0.061 | −0.135 | −0.165 | −0.029 | 0.044 | 0.149 | |
E | −0.149 | −0.057 | −0.14 | −0.079 | −0.012 | 0.077 | 0.159 | |
R | −0.206 | 0.413 * | −0.309 | 0.052 | 0.129 | 0.322 | 0.294 | |
750 | H’ | 0.116 | 0.037 | −0.165 | −0.284 | −0.284 | −0.006 | 0.16 |
D | −0.059 | −0.052 | −0.136 | −0.243 | −0.243 | 0.004 | 0.156 | |
E | −0.305 | −0.093 | −0.043 | −0.136 | −0.136 | 0.002 | 0.078 | |
R | 0.332 | 0.193 | −0.226 | −0.161 | −0.161 | 0.1 | 0.193 | |
1000 | H’ | 0.116 | −0.136 | −0.076 | −0.187 | −0.187 | −0.049 | 0.083 |
D | −0.059 | −0.261 | −0.055 | −0.156 | −0.156 | −0.024 | 0.086 | |
E | −0.305 | −0.218 | 0.075 | −0.036 | −0.036 | −0.053 | −0.036 | |
R | 0.332 | 0.108 | −0.148 | −0.127 | −0.128 | 0.022 | 0.117 |
H’ | D | E | R | S | |
---|---|---|---|---|---|
Landform | 0.392 | 0.964 | 0 *** | 0.003 ** | 0 *** |
Habitat | 0.046 * | 0.129 | 0.001 ** | 0.169 | 0 *** |
Landscape | 0.822 | 0.925 | 0.008 ** | 0.738 | 0 *** |
Landform*habitat | 0.081 | 0.02 * | 0 *** | 0.280 | 0 *** |
Landform*landscape | 0.01 * | 0.027 * | 0.002 ** | 0 *** | 0 *** |
Habitat*landscape | 0.033 * | 0.012 * | 0.059 | 0.023 * | 0 *** |
Landform*habitat*landscape | 0.073 | 0.082 | 0.101 | 0.011 * | 0.617 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhang, C.; Ding, S.; Bian, Z.; Li, P.; Zhang, J.; Ding, S. Response of Soil Fauna Diversity to Agricultural Landscape Het-Erogeneity in the Middle and Lower Reaches of the Yellow River—A Case Study in Gongyi City, China. Diversity 2022, 14, 602. https://doi.org/10.3390/d14080602
Zhang P, Zhang C, Ding S, Bian Z, Li P, Zhang J, Ding S. Response of Soil Fauna Diversity to Agricultural Landscape Het-Erogeneity in the Middle and Lower Reaches of the Yellow River—A Case Study in Gongyi City, China. Diversity. 2022; 14(8):602. https://doi.org/10.3390/d14080602
Chicago/Turabian StyleZhang, Panpan, Chenchen Zhang, Shunping Ding, Ziqi Bian, Peikun Li, Jian Zhang, and Shengyan Ding. 2022. "Response of Soil Fauna Diversity to Agricultural Landscape Het-Erogeneity in the Middle and Lower Reaches of the Yellow River—A Case Study in Gongyi City, China" Diversity 14, no. 8: 602. https://doi.org/10.3390/d14080602
APA StyleZhang, P., Zhang, C., Ding, S., Bian, Z., Li, P., Zhang, J., & Ding, S. (2022). Response of Soil Fauna Diversity to Agricultural Landscape Het-Erogeneity in the Middle and Lower Reaches of the Yellow River—A Case Study in Gongyi City, China. Diversity, 14(8), 602. https://doi.org/10.3390/d14080602