Abnormal Proventriculus in Bumble Bee Males
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swingle, M.C. The alimentary tract of the common bumblebee. Ohio J. Sci. 1927, 27, 209–231. [Google Scholar]
- Serrão, J.E. A comparative study of the proventricular structure in corbiculate Apinae (Hymenoptera, Apidae). Micron 2001, 32, 379–385. [Google Scholar] [CrossRef]
- Snodgrass, R.E. The Anatomy of the Honey Bee; Technical Series; United States Department of Agriculture; Bureau of Entomology: Washington, DC, USA, 1910; Volume 18, p. 162. [Google Scholar]
- Steinhous, E.A. Insect Pathology: An Advanced Treatise; Academic Press: New York, NY, USA; Academic Press: London, UK, 1963; Volume 1, p. 661. [Google Scholar]
- Macfarlane, R.P. The proventriculus of adult bumble bees (Bombinae, Apidae). N. Z. Entomol. 1976, 6, 189. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Zheng, H. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research. Insect Sci. 2022, 29, 958–976. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J.E.; Camp, A.A.; Lehmann, D.M. The Importance of Males to Bumble Bee (Bombus Species) Nest Development and Colony Viability. Insects 2020, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Chittcka, L. Male bumblebees, Bombus terrestris, perform equally well as workers in a serial colour-learning task. Anim. Behav. 2016, 111, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-González, M.X.; Brown, M.J.F. Males vs workers: Testing the assumptions of the haploid susceptibility hypothesis in bumblebees. Behav. Ecol. Sociobiol. 2006, 60, 501–509. [Google Scholar] [CrossRef]
- Owen, R.E. Differential Size Variation of Male and Female Bumblebees. J. Hered. 1989, 80, 39–43. [Google Scholar] [CrossRef]
- Hammer, T.J.; Le, E.; Martin, A.N.; Moran, N.A. The gut microbiota of bumblebees. Insect. Soc. 2021, 68, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Danilenko, V.; Devyatkin, A.; Marsova, M.; Shibilova, M.; Ilyasov, R.; Shmyrev, V. Common Inflammatory Mechanisms in COVID-19 and Parkinson’s Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J. Inflamm. Res. 2021, 14, 6349–6381. [Google Scholar] [CrossRef] [PubMed]
- Söderhäll, K.; Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 1998, 10, 23–28. [Google Scholar] [CrossRef]
- Cerenius, L.; Söderhäll, K. The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 2004, 198, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Brochu, K.K.; van Dyke, M.T.; Milano, N.J.; Petersen, J.D.; McArt, S.H.; Nault, B.A.; Kessler, A.; Danforth, B.N. Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Sci. Rep. 2020, 10, 3112. [Google Scholar] [CrossRef] [PubMed]
- Smilanich, A.M.; Dyer, L.A. Effects of banana plantation pesticides on the immune response of lepidopteran larvae and their parasitoid natural enemies. Insects 2012, 3, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Motta, E.V.S.; Powell, J.E.; Moran, N.A. Glyphosate induces immune dysregulation in honey bees. Anim. Microbiome 2022, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Evison, S.E.; Roberts, K.E.; Laurenson, L.; Pietravalle, S.; Hui, J.; Biesmeijer, J.C.; Smith, J.E.; Budge, G.; Hughes, W.O. Pervasiveness of Parasites in Pollinators. PLoS ONE 2012, 7, e30641. [Google Scholar] [CrossRef] [PubMed]
- Boucias, D.G.; Pendland, J.C. Principles of Insect Pathology; Springer Science+Business Media: New York, NY, USA, 1998; p. 537. [Google Scholar]
- Hao, Z.; Kasumba, I.; Aksoy, S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Biochem. Mol. Biol. 2003, 33, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
Howth 2003 | |||
---|---|---|---|
Species | Total males | Abnormal males | % |
B. terrestris | 32 | 16 | 50 |
B. lucorum | 8 | 1 | 12.5 |
B. pascuorum | 2 | 1 | 50 |
TOTAL | 42 | 18 | ~43 |
Irishtown 2004 | |||
Species | Total males | Abnormal males | % |
B. terrestris | 16 | 12 | 75 |
B. lucorum | 4 | 3 | 75 |
B. pascuorum | 20 | 0 | 0 |
B. muscorum | 3 | 0 | 0 |
B. lapidarius | 17 | 0 | 0 |
B. pratorum | 4 | 0 | 0 |
TOTAL | 64 | 15 | ~23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-González, M.X. Abnormal Proventriculus in Bumble Bee Males. Diversity 2022, 14, 775. https://doi.org/10.3390/d14090775
Ruiz-González MX. Abnormal Proventriculus in Bumble Bee Males. Diversity. 2022; 14(9):775. https://doi.org/10.3390/d14090775
Chicago/Turabian StyleRuiz-González, Mario X. 2022. "Abnormal Proventriculus in Bumble Bee Males" Diversity 14, no. 9: 775. https://doi.org/10.3390/d14090775
APA StyleRuiz-González, M. X. (2022). Abnormal Proventriculus in Bumble Bee Males. Diversity, 14(9), 775. https://doi.org/10.3390/d14090775