Application of Fluctuating Asymmetry Values in Pelophylax ridibundus (Amphibia: Anura: Ranidae) Meristic Traits as a Method for Assessing Environmental Quality of Areas with Different Degrees of Urbanization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area and Data Collection
2.2. Identification of FA
2.3. Statistical Analyses
3. Results
3.1. Ecological Status of The Water at the Studied Sites According to the Data of Physicochemical Analysis
3.2. Fluctuating Asymmetry in P. ridibundus Meristic Traits and Ecological Assessment of Their Habitats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodward, G.; Gessner, M.O.; Giller, P.S.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; McKie, B.G.; Tiegs, S.D.; Cariss, H.; et al. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar, M.; Doble, M.; Murthy, P.S.; Venkatesan, R. Marine microbe-mediated biodegradation of low and high-density polyethylenes. Int. Biodeter. Biodegr. 2008, 61, 203–213. [Google Scholar] [CrossRef]
- Monastersky, R. Biodiversity: Life—A status report. Nature 2014, 516, 158–161. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, D.; Shaad, K.; Souter, N.J.; Farrell, T.; Dudgeon, D.; Sullivan, C.A.; Fauconnier, I.; MacDonald, G.M.; McCartney, M.P.; Power, A.G.; et al. Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Sci. Total. Environ. 2018, 627, 304–313. [Google Scholar] [CrossRef]
- Dupler, K.; Guidugli-Cook, M.; Brown, D.R.; Richter, S.C. Rapid Assessment of Wetland Condition Reflects Amphibian Community Composition. Wetlands 2019, 40, 451–464. [Google Scholar] [CrossRef]
- Vitt, L.J.; Caldwell, J.P. Herpetology—An Introductory Biology of Amphibians and Reptiles, 4th ed.; Elsevier Science: San Diego, CA, USA, 2013; 53p. [Google Scholar]
- Van Meter, R.J.; Glinski, D.A.; Hong, T.; Cyterski, M.; Henderson, W.M.; Purucker, S.T. Estimating terrestrial amphibian pesticide body burden through dermal exposure. Environ. Pollut. 2014, 193, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Lajmanovich, R.C.; Cabagna-Zenklusen, M.C.; Attademo, A.M.; Junges, C.M.; Peltzer, P.M.; Bassó, A.; Lorenzatti, E. Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutat. Res. Toxicol. Environ. Mutagen. 2014, 769, 7–12. [Google Scholar] [CrossRef]
- Venturino, A.; Rosenbaum, E.; Caballero de Castro, A.; Anguiano, O.L.; Gauna, L.; Fonovich de Schroeder, T.; Pechen de D’Angelo, A.M. Biomarkers of effect in toads and frogs. Biomarkers 2004, 8, 167–186. [Google Scholar] [CrossRef]
- Narayan, E.J. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology. Conserv. Physiol. 2013, 1, cot011. [Google Scholar] [CrossRef]
- Bjorksten, T.A.; Fowler, K.; Pomiankowski, A. What does sexual trait FA tell us about stress? Trends Ecol. Evol. 2000, 15, 163–166. [Google Scholar] [CrossRef]
- Rasmuson, M. Fluctuating asymmetry-indicator of what? Hereditas 2002, 136, 177–183. [Google Scholar] [CrossRef]
- Van Valen, L. A Study of Fluctuating Asymmetry. Evolution 1962, 16, 125. [Google Scholar] [CrossRef]
- Parsons, P.A. Fluctuating asymmetry: An epigenetic measure of stress. Biol. Rev. 1990, 65, 131–145. [Google Scholar] [CrossRef]
- Lens, L.; Dongen, S.; Kark, S.; Matthysen, E. Fluctuating asymmetry as an indicator of fitness: Can we bridge the gap between studies? Biol. Rev. 2002, 77, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Lajus, D.; Yurtseva, A.; Birch, G.; Booth, D.J. Fluctuating asymmetry as a pollution monitor: The Australian estuarine smooth toadfish Tetractenos glaber (Teleostei: Tetraodontidae). Mar. Pollut. Bull. 2015, 101, 758–767. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Shadrina, E.G.; Trofimov, I.E.; Trofimov, I. Fluctuating Asymmetry, Developmental Noise and Developmental Stability: Future Prospects for the Population Developmental Biology Approach. Symmetry 2020, 12, 1376. [Google Scholar] [CrossRef]
- Van Valen, L. The statistics of variation. Var. Evol. Theory 1978, 4, 33–43. [Google Scholar]
- Palmer, A.R. Fluctuating Asymmetry Analyses: A Primer. In Instability: Its Origins and Evolutionary Implications; Markow, T.A., Ed.; Dordrecht Publishing, Kluwer: Dordrecht, The Netherlands, 1994; pp. 335–364. [Google Scholar]
- Zakharov, V.M.; Trofimov, I.E. Fluctuating asymmetry as an indicator of stress. Emerg. Top. Life Sci. 2022, 6, 295–301. [Google Scholar] [CrossRef]
- Eisemberg, C.C.; Bertoluci, J. Fluctuating asymmetry in populations of the South American frog Physalaemus cuvieri (Leptodactylidae) in areas with different degrees of disturbance. J. Nat. Hist. 2016, 50, 1503–1511. [Google Scholar] [CrossRef]
- Coda, J.A.; Martínez, J.J.; Steinmann, A.R.; Priotto, J.; Gomez, D.M. Fluctuating asymmetry as an indicator of environmental stress in small mammals. Mastozool. Neotrop. 2017, 24, 313–321. [Google Scholar]
- de Gondim, P.M.; Rodrigues, J.F.M.; Cascon, P. Fluctuating Asymmetry and organosomatic indices in anuran populations in agricultural environments in semi-arid Brazil. Herpetol. Conserv. Biol. 2020, 15, 354–366. [Google Scholar]
- Rodríguez-González, A.; May-Tec, A.; Herrera-Silveira, J.; Puch-Hau, C.; Quintanilla-Mena, M.; Villafuerte, J.; Velázquez-Abunader, I.; Aguirre-Macedo, M.; Vidal-Martínez, V. Fluctuating asymmetry of sclerotized structures of Haliotrematoides spp. (Monogenea: Dactylogyridae) as bioindicators of aquatic contamination. Ecol. Indic. 2020, 117, 106548. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Prieto-Dueñas, I.S.; Tapia-Torres, Y.; Borges, M.A.Z.; Suazo-Ortuño, I.; Cuevas-Reyes, P. Fluctuating asymmetry and oxidative stress indicate environmental stress of Cane toads Rhinella marina. Zool. Anz.-A J. Comp. Zool. 2022, 299, 234–242. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Baranov, A.S.; Borisov, V.I.; Valetsky, A.V.; Kryazheva, N.G.; Chistyakova, E.K.; Chubinishvili, A.T. Health of Environment: Methods of Assessment; Center for Russian Environmental Policy: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Zakharov, V.M.; Chubinishvili, A.T.; Dmitriev, S.G.; Baranov, A.S.; Borisov, V.I.; Valetsky, A.V.; Krysanov, E.Y.; Kryazheva, N.G.; Pronin, A.V.; Chistyakova, E.K. Health of Environment: Practice of the Assessment; Center for Russian Environmental Policy: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Ustyuzhanina, O.A.; Streltsov, A.B. Bio-Indication Assessment of Environmental Quality in the Floodplains of the Oka and the Ugra for Homeostasis of the Marsh Frog Rana ridibunda. In Problems of Herpetology: Proceedings of the 1th Meeting of the Nikolsky Herpetological Society-Pushchino, 1st ed.; Publishing House of the Saint-Petersburg University: Saint-Petersburg, Russia, 2001; pp. 298–299. (In Russian) [Google Scholar]
- Ustyuzhanina, O.A.; Streltsov, A.B. Assessing the Impact of Urban Areas on the Marsh Frogs. In The Study of the Nature of the Oka River Basin: Abstracts of Scientific-Practical Conference “Oka River -the Third Millennium” Kaluga, 21–25 May, 1st ed.; KSPU: Kaluga, Russia, 2001; pp. 167–170. (In Russian) [Google Scholar]
- Fomin, A.S. Features of the ecology of the lake frog Tagil metallurgical plant. Wat. Sect. Rus. 2006, 6, 50–57. (In Russian) [Google Scholar]
- Maksimov, S.V. The Study of Signs of Asymmetry in the Complex European Green Frogs (Rana ridibunda, R. lessonae, R. esculenta). In The Structure, Status and Protection of Ecosystems Prihoperja, 1st ed.; International Collection of Scientific Articles; Lasko, S.K., Ed.; Science: Moscow, Russia, 2007; pp. 93–96. (In Russian) [Google Scholar]
- Guo, R.; Zhang, W.; Ai, S.; Ren, L.; Zhang, Y. Fluctuating asymmetry rather than oxidative stress in Bufo raddei can be an accurate indicator of environmental pollution induced by heavy metals. Environ. Monit. Assess. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Dönmez, M.; Şişman, T. The morphometric and erythrometric analyses of Pelophylax ridibundus living in anthropogenic pollution resources. Turk. J. Zool. 2021, 45. [Google Scholar] [CrossRef]
- Zhelev, Z.M.; Popgeorgiev, G.; Arnaudov, A.D.; Georgieva, K.N.; Mehterov, N.H. Fluctuating asymmetry in Pelophylax ridibundus (Amphibia: Ranidae) as a response to anthropogenic pollution in south Bulgaria. Arch. Biol. Sci. 2015, 67, 1009–1023. [Google Scholar] [CrossRef]
- Zhelev, Z.M.; Tsonev, C.V.; Arnaudova, D.N. Health status of Pelophylax ridibundus (Pallas, 1771) (Amphibia: Ranidae) in a rice paddy ecosystem in southern Bulgaria: Body condition factor and fluctuating asymmetry. Acta Zool. Bulg. 2017, 69 (Suppl. 8), 169–177. [Google Scholar]
- Zhelev, Z.M.; Tsonev, S.V.; Angelov, M.V. Fluctuating asymmetry in Pelophylax ridibundus meristic morphological traits and their importance in assessing environmental health. Ecol. Indic. 2019, 107, 105589. [Google Scholar] [CrossRef]
- Zhelev, Z.; Mollov, I.; Tsonev, S. Fluctuating asymmetry in meristic morphological traits of Bufotes viridis (Laurenti, 1768) (Anura: Bufonidae): Application for assessing environmental quality of two semi-natural habitats in Plovdiv city, Bulgaria. Acta Zool. Bulg. 2021, 73, 401–407. [Google Scholar]
- Zhelev, Z.; Tsonev, S.; Boyadzhiev, P. Using of fluctuating asymmetry in adult Pelophylax ridibundus (Amphibia: Anura: Ranidae) meristic traits as a method for assessing developmental stability of population and environmental quality of their habitat: Industrial area in southern Bulgaria. Turk. J. Zool. 2022, 46, 220–227. [Google Scholar] [CrossRef]
- Chubinishvili, A.T. Evaluation of the status of nature population of the marsh frog (Rana ridibunda Pall) in the region of the Nizhniy Volga by the homeostasis of the development: Cytogenetic and morphogenetic approaches. Russ. J. Zool. 1998, 77, 942–946. (In Russian) [Google Scholar]
- Loginov, V.V.; Gelashvili, D.B. Morphogenetic and Cytogenetic Characteristics of Natural Populations of Green Frog Hybrid Complex Rana esculenta in Natural Conditions in Nizhny Novgorod Region. In Current Problems of Herpetology and Toxicology; Bakiyev, A.G., Ed.; IEVB: Tolyatti, Georgia, 2001; pp. 62–69. (In Russian) [Google Scholar]
- EC. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJEU 2000, L327, 1–73. [Google Scholar]
- Ordinance No H-4/14.09.2012; On the Characterization of Surface Waters. State Gazette: Sofia, Bulgaria, 2012; Volume 22, pp. 1–54. (In Bulgarian)
- Ordinance No 256 of 1.11.2010; For Standards on Environmental Quality for Priority Substances and for Certain Other Pollutants. State Gazette: Sofia, Bulgaria, 2010; Volume 88, pp. 1–20. (In Bulgarian)
- Sutherland, W.J. The Conservation Handbook: Research, Management and Policy; Blackwell: Oxford, UK, 2000; 279p. [Google Scholar]
- Bannikov, A.G.; Darevskii, I.S.; Ishtenko, V.G.; Rustamov, A.K.; Shterbak, N.N. A Guide to the Amphibians and Reptiles of the USSR; Prosveshtenie: Moscow, Russian, 1977. (In Russian) [Google Scholar]
- Zakharov, V.M.; Zhdanova, N.P.; Kirik, E.F.; Shkil, F. Ontogenesis and Population: Evaluation of Developmental Stability in Natural Populations. Russ. J. Dev. Biol. 2001, 32, 336–351. [Google Scholar] [CrossRef]
- Molenberghs, G. Statistical methodology in biometry. Biometrics 2003, 1, 1–20. [Google Scholar]
- R Core Developmental Team. R: The R Project for Statistical Computing. version 4.2.2. 2022. Available online: http://www.R-project.org (accessed on 12 January 2023).
- Chikin, Y.A. Monitoring of toad populations for homeostasis. In Proceedings of the Reserves of Uzbekistan, 3rd ed. Yashchenko, R.V., Ed.; Chinor ENK: Tashkent, Uzbekistan, 2001; pp. 138–146. (In Russian). [Google Scholar]
- Jørgensen, N.O.G. Organic Nitrogen. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Oxford, UK, 2009; Volume 2, pp. 832–851. [Google Scholar]
- da Silva, E.F.; Melo, M.F.; Sombra, K.E.S.; Silva, T.S.; de Freitas, D.F.; da Costa, M.E.; da Silva Santos, E.P.; da Silva, L.F.; Serra, A.P.; Neitzke, P.R.D.M.C. Chapter: Organic Nitrogen in Agricultural Systems. In Nitrogen Fixation; BoD: Norderstedt, Germany, 2019. [Google Scholar]
- Green, P.A.; Vörösmarty, C.J.; Meybeck, M.; Galloway, J.N.; Peterson, B.J.; Boyer, E.W. Pre-industrial and contemporary fluxes of nitrogen through rivers: A global assessment based on typology. Biogeochemistry 2004, 68, 71–105. [Google Scholar] [CrossRef]
- Schuytema, G.S.; Nebeker, A.V. Comparative toxicity of ammonium and nitrate compounds to pacific treefrog and african clawed frog tadpoles. Environ. Toxicol. Chem. 1999, 18, 2251–2257. [Google Scholar] [CrossRef]
- Gosner, K.L. A simple table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- Earl, J.E.; Whiteman, H.H. Effects of pulsed nitrate exposure on amphibian development. Environ. Toxicol. Chem. 2009, 28, 1331–1337. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic: New York, NY, USA, 2001; 1006p. [Google Scholar]
- Brown, M.D.; Carter, J.; Thomas, D.; Purdie, D.M.; Kay, B.H. Pulse-Exposure Effects of Selected Insecticides to Juvenile Australian Crimson-Spotted Rainbowfish (Melanotaenia duboulayi). J. Econ. Èntomol. 2002, 95, 294–298. [Google Scholar] [CrossRef]
Parameters and Standards for High Water Quality * | Urban Site | Suburban Site | Rural Site | |
---|---|---|---|---|
2017–2019 Moderate ** | 2017–2019 Moderate | 2017–2019 Moderate | ||
Temp °C | - | (5.0–28.0) | (5.0–22.0) | (6.0–22.0) |
pH units | - | 7.93 (7.5–8.5) | 7.89 (7.6–8.2) | 7.73 (7.1–8.3) |
EC µS/cm | 700.0 | 340.83 (212.0–448.0) | 393.97 (296.0–515.0) | 556.3 (248.0–1096.0) |
DO mgO2/dm3 | 9.0–7.0 | 9.13 (7.2–11.4) | 8.9 (7.5–11.2) | 9.43 (6.7–12.5) |
BOD5 mgO2/dm3 | <2.0 | 1.22 (0.5–2.1) | 1.65 (0.5–2.8) | 1.73 (0.5–3.3) |
COD mgO2/dm3 | 25.0 | 9.67 (6.0–16.0) | 8.4 (6.0–22.0) | 13.8 (6.0–30.0) |
Ox% | 100–105 | 94.43 (77.0–115.0) | 89 (73.0–100.0) | 90.63 (68.0–114.0) |
CCH mg CaCO3/dm3 | <40.0 | 135.86 (80.0–210.0) | 158.7 (103.0–275.0) | 197.93 (105.0–375.0) |
NH+4-N mg/dm3 | <0.10 | 0.18 (0.11–1.01) | 0.21 (0.11–0.29) | 0.26 (0.12–0.56) |
NO−2-N mg/L | <0.03 | 0.02 (0.02–0.06) | 0.04 (0.01–0.07) | 0.04 (0.02–0.07) |
NO−3-N mg/L | <0.7 | 0.51 (0.26–0.72) | 1.65 (0.82–2.2) | 1.96 (0.47–4.1) |
TN mg/L | <0.7 | <0.1 | 1.55 (1.3–2.2) | 2.62 (1.3–4.0) |
PO3−4 mg/L | <0.07 | 0.02 (0.01–0.03) | 0.23 (0.08–0.31) | 0.05 (0.02–0.12) |
TP mg/L | <0.15 | 0.03 (0.02–0.07) | 0.18 (0.02–0.46) | 0.1 (0.05–0.21) |
Sites | Meristic Morphological Traits | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trait 1 | Trait 2 | Trait 3 | Trait 4 | Trait 5 | Trait 6 | Trait 7 | Trait 8 | Trait 9 | Trait 10 | |
Urban n = 30 | n = 22 (73%) | n = 12 (40%) | n = 17 (57%) | n = 17 (57%) | n = 17 (57%) | n = 16 (53%) | n = 26 (87%) | n = 18 (60%) | n = 17 (57%) | n = 16 (53%) |
FAMI (0.59 ± 0.06); Grade scale (3) | ||||||||||
Suburban n = 30 | n = 19 (63%) | n = 11 (37%) | n = 15 (50%) | n = 14 (47%) | n = 17 (57%) | n = 18 (60%) | n = 23 (77%) | n = 13 (43%) | n = 10 (33%) | n = 13 (43%) |
FAMI (0.51 ± 0.07); Grade scale (3) | ||||||||||
Rural n = 30 | n = 24 (80%) | n = 16 (53%) | n = 19 (63%) | n = 19 (63%) | n = 24 (80%) | n = 14 (47%) | n = 25 (83%) | n = 20 (67%) | n = 11 (37%) | n = 14 (47%) |
FAMI (0.62 ± 0.06); Grade scale (4) | ||||||||||
GLM model | Estimate | Std. Error | Z value | Pr (>|z|) | Odds | |||||
(Intercept) | 0.379 | 0.132 | 2.862 | 0.004 | 1.461 | |||||
Site_Suburban | −0.316 | 0.166 | −1.902 | 0.057 | 0.728 | |||||
Site_Rural | 0.127 | 0.167 | 0.764 | 0.444 | 1.136 | |||||
Sex_Female | −0.035 | 0.141 | −0.249 | 0.802 | 0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhelev, Z.; Mollov, I.; Tsonev, S. Application of Fluctuating Asymmetry Values in Pelophylax ridibundus (Amphibia: Anura: Ranidae) Meristic Traits as a Method for Assessing Environmental Quality of Areas with Different Degrees of Urbanization. Diversity 2023, 15, 118. https://doi.org/10.3390/d15010118
Zhelev Z, Mollov I, Tsonev S. Application of Fluctuating Asymmetry Values in Pelophylax ridibundus (Amphibia: Anura: Ranidae) Meristic Traits as a Method for Assessing Environmental Quality of Areas with Different Degrees of Urbanization. Diversity. 2023; 15(1):118. https://doi.org/10.3390/d15010118
Chicago/Turabian StyleZhelev, Zhivko, Ivelin Mollov, and Stefan Tsonev. 2023. "Application of Fluctuating Asymmetry Values in Pelophylax ridibundus (Amphibia: Anura: Ranidae) Meristic Traits as a Method for Assessing Environmental Quality of Areas with Different Degrees of Urbanization" Diversity 15, no. 1: 118. https://doi.org/10.3390/d15010118
APA StyleZhelev, Z., Mollov, I., & Tsonev, S. (2023). Application of Fluctuating Asymmetry Values in Pelophylax ridibundus (Amphibia: Anura: Ranidae) Meristic Traits as a Method for Assessing Environmental Quality of Areas with Different Degrees of Urbanization. Diversity, 15(1), 118. https://doi.org/10.3390/d15010118