Morphological and Genetic Differentiation of Loliolus (Nipponololigo) beka (Cephalopoda: Loliginidae) in Coastal China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Laboratory Procedures
2.2. DNA Extraction, PCR Amplification and Sequencing
2.3. Sequence Data Analysis
2.4. Morphology Data Analysis
3. Results
3.1. Population Genetic Analysis, Based on Mitochondrial DNA Markers
3.1.1. Genetic Diversity of L. (N.) beka
3.1.2. Phylogenetic Relationships and Two Lineages
3.1.3. Population Structure
3.1.4. Population Demography
3.2. Morphological Analysis
3.2.1. Multi-Analysis of Morphology
3.2.2. Comparison of Sucker Ring Morphology
4. Discussion
4.1. Genetic Diversity of L. (N.) beka
4.2. Genetic Differentiation and Historical Dynamics
4.3. Morphological Variation among Localities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, M.R. Cephalopods as prey. III Cetaceans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1053–1065. [Google Scholar]
- Arkhipkin, A.I.; Hendrickson, L.C.; Payá, I.; Pierce, G.J.; Roa-Ureta, R.H.; Robin, J.-P.; Winter, A. Stock assessment and management of cephalopods: Advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 2020, 78, 714–730. [Google Scholar] [CrossRef]
- Doubleday, Z.A.; Prowse, T.A.; Arkhipkin, A.; Pierce, G.J.; Semmens, J.; Steer, M.; Leporati, S.C.; Lourenço, S.; Quetglas, A.; Sauer, W.; et al. Global proliferation of cephalopods. Curr. Biol. 2016, 26, R406–R407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.H.; Zhang, C.; Dai, L.N.; He, W.T.; Zheng, X.D. Morphological variation analysis of Uroteuthis Duvaucelii in the coastal waters of Western Pacific. Oceanol. Limnol. Sin. 2022, 53, 768–777. [Google Scholar]
- Tang, Y.; Zheng, X.; Liu, H.; Sunxie, F. Population genetics and comparative mitogenomic analyses reveal cryptic diversity of Amphioctopus neglectus (Cephalopoda: Octopodidae). Genomics 2020, 112, 3893–3902. [Google Scholar] [CrossRef]
- Xu, R.; Bo, Q.; Zheng, X. A divergent lineage among Octopus minor (Sasaki, 1920) populations in the Northwest Pacific supported by DNA barcoding. Mar. Biol. Res. 2018, 14, 335–344. [Google Scholar] [CrossRef]
- Jereb, P.; Vecchione, M.; Roper, C.F.E. Family Loliginidae. In Cephalopods of the World. An Annotated and Illustrated Catalogue of Species Known to Date. Volume 2. Myopsid and Oegopsid Squids; Jereb, P., Roper, C.F.E., Eds.; FAO Species Catalogue for Fishery Purposes; FAO: Rome, Italy, 2010; Volume 2, pp. 38–117. [Google Scholar]
- Dong, Z.Z. Fauna Sinica. Phylum Mollusca. Class Cephalopoda; Science Press: Beijing, China, 1988; pp. 181–182. [Google Scholar]
- Yang, J.M.; Tan, X. Food Analysis of three cephalopod species in the Bohai Sea. Mar. Sci. 2000, 244, 53–55. [Google Scholar]
- Yang, L.L.; Jiang, Y.Z.; Liu, Z.L.; Lin, N.; Li, S.F.; Cheng, J.H. Analysis of beak morphology of Loligo beka in the East China Sea. J. Fish. Sci. China 2012, 19, 586–593. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, B.; Li, J.; Chen, X. Identification of three common Loliginidae squid species in the South China Sea by analyzing hard tissues with geometric outline method. J. Ocean Univ. China 2017, 16, 840–846. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, S.; Wu, C.; Liu, X.; Xu, M.Y.; Jiang, L. Molecular phylogeny of Loliginidae inferred from mitochondrial DNA sequence variation. Mitochondrial DNA Part A 2017, 29, 600–605. [Google Scholar] [CrossRef]
- Zheng, X.D.; Zhu, J.Y. Determination and Analysis of Cholesterol and Taurine in 4 Kinds of Different Tissues of 5 Cephalopods. J. Oceanol. Limnol. 2018, 2, 125–130. [Google Scholar]
- Radulovici, A.E.; Archambault, P.; Dufresne, F. DNA Barcodes for Marine Biodiversity: Moving Fast Forward? Diversity 2010, 2, 450–472. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, G.; Setiamarga, D.H.; Tuanapaya, S.; Tongtherm, K.; Winkelmann, I.E.; Schmidbaur, H.; Umino, T.; Albertin, C.; Allcock, L.; Perales-Raya, C.; et al. Genus-level phylogeny of cephalopods using molecular markers: Current status and problematic areas. Peerj 2018, 6, e4331. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Ying, Y.; Yang, Q.; Song, N.; Xiao, Y. The Mitochondrial Markers Provide New Insights into the Population Demographic History of Coilia nasus With Two Ecotypes (Anadromous and Freshwater). Front. Mar. Sci. 2020, 7, 576161. [Google Scholar] [CrossRef]
- Zhao, L.; Shan, B.; Song, N.; Gao, T. Genetic diversity and population structure of Acanthopagrus schlegelii inferred from mtDNA sequences. Reg. Stud. Mar. Sci. 2020, 41, 101532. [Google Scholar] [CrossRef]
- Zhao, L.; Yi, D.; Li, C.; Sun, D.; Xu, H.; Gao, T. Phylogeography and population structure of Johnius grypotus (Richardson, 1846) as revealed by mitochondrial control region sequences. ZooKeys 2017, 705, 143. [Google Scholar] [CrossRef] [Green Version]
- Bolstad, K.S.; Braid, H.E.; Strugnell, J.M.; Lindgren, A.R.; Lischka, A.; Kubodera, T.; Laptikhovsky, V.L.; Labiaga, A.R. A mitochondrial phylogeny of the family Onychoteuthidae (Cephalopoda: Oegopsida). Mol. Phylogenet. Evol. 2018, 128, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strugnell, J.; Norman, M.; Jackson, J.; Drummond, A.J.; Cooper, A. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol. Phylogenet. Evol. 2005, 37, 426–441. [Google Scholar] [CrossRef]
- Dai, L.; Zheng, X.; Kong, L.; Li, Q. DNA barcoding analysis of Coleoidea (Mollusca: Cephalopoda) from Chinese waters. Mol. Ecol. Resour. 2012, 12, 437–447. [Google Scholar] [CrossRef]
- Xu, R.; Lv, Y.; Tang, Y.; Chen, Z.; Xu, C.; Zhang, X.; Zheng, X. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China. Front. Mar. Sci. 2022, 9, 2296–7745. [Google Scholar]
- Roper, C.F.E.; Voss, G.L. Guidelines for taxonomic descriptions of cephalopod species. The biology and resource potential of cephalopods. Memoirs Natl. Mus. Vic. 1983, 44, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Winnepenninckx, B. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993, 9, 407. [Google Scholar] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Guzik, M.T.; Norman, M.D.; Crozier, R.H. Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Mol. Phylogenet. Evol. 2005, 37, 235–248. [Google Scholar] [CrossRef]
- Swindell, S.R.; Plasterer, T.N. Seqman. Sequence Data Analysis Guidebook; Springer: Totowa, NJ, USA, 1997; pp. 75–89. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART, full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2, efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Liu, T.Y.; Hung, C.Y. Morphometric variation between the swordtip (Photololigo edulis) and mitre (P. chinensis) squids in the waters off Taiwan. J. Mar. Sci. Technol. 2010, 18, 405–412. [Google Scholar]
- Brzeski, V.J.; Doyle, R.W. A Morphometric Criterion for Sex Discrimination in Tilapia. In The Second International Symposium on Tilapia in Aquaculture, ICLARM Conference Proceeding; Department of Fisheries: Bangkok, Thailand; International Center of Living Aquatic Resources Management: Manila, Philippines, 1988; pp. 439–444. [Google Scholar]
- Gao, X.; Xu, R.; Zhang, Z.; Zheng, X. Morphological variation analysis of Octopus minor in the coastal waters of China. J. Fish. China 2019, 43, 1593–1602. [Google Scholar]
- Sasaki, M. A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. J. Coll. Agric. Hokkaido Univ. 1929, 20, 1–357. [Google Scholar]
- Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 1983, 105, 437–460. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S. Genetic Data Analysis. Biometrics 1990, 18, 639. [Google Scholar] [CrossRef]
- Katugin, O.N. Intraspecific genetic variation and population differentiation of the squid Berryteuthis magister in the North Pacific Ocean. Russ. J. Mar. Biol. 1999, 25, 34–45. [Google Scholar]
- Muhammad, F.; Chen, W.; Liu, L.; Gong, L.; Du, X.; Shafi, M.; Lü, Z.-M. Genetic structure of Amphioctopus fangsiao (Mollusca, Cephalopoda) in Chinese waters inferred from variation in three mtDNA genes (ATPase 6, ND2, and ND5). Hydrobiologia 2019, 838, 111–119. [Google Scholar] [CrossRef]
- Muhammad, F.; Lü, Z.-M.; Liu, L.; Gong, L.; Du, X.; Shafi, M.; Kaleri, H.A. Genetic structure of Octopus minor around Chinese waters as indicated by nuclear DNA variations (Mollusca, Cephalopoda). ZooKeys 2018, 775, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.D.; Wang, R.C.; Wang, Z.P. Advances of studies on Cephalopoda genetic variation. J. Fish. China 2001, 25, 84–89. [Google Scholar]
- Tang, W.; Lshimatsu, A.; Fu, C.; Yin, W.; Li, G.; Chen, H.; Wu, Q.; Li, B. Cryptic Species and Historical Biogeography of Eel Gobies (Gobioidei: Odontamblyopus) Along the Northwestern Pacific Coast. Zool. Sci. 2010, 27, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chan, T.-Y.; Tsang, L.M.; Chu, K.H. Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia: Pleistocene isolation, population expansion and secondary contact. Mol. Phylogenet. Evol. 2009, 52, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; Li, Q.; Kong, L.; Zheng, X. Phylogeography of Bivalve Cyclina sinensis: Testing the Historical Glaciations and Changjiang River Outflow Hypotheses in Northwestern Pacific. PLoS ONE 2012, 7, e49487. [Google Scholar] [CrossRef] [Green Version]
- Galloway, R.W. Late cainozoic environments in Australia. Ecol. Biogeogr. Aust. 1981, 53–80. [Google Scholar] [CrossRef]
- Wang, P. Response of Western Pacific marginal seas to glacial cycles: Paleoceanographic and sedimentological features. Mar. Geol. 1999, 156, 5–39. [Google Scholar] [CrossRef]
- Hewitt, G.M. Speciation, hybrid zones and phylogeography—Or seeing genes in space and time. Mol. Ecol. 2001, 10, 537–549. [Google Scholar] [CrossRef]
- Zhao, D.; Li, Q.; Kong, L.; Yu, H. Cryptic diversity of marine gastropod Monodonta labio (Trochidae), did the early Pleistocene glacial isolation and sea surface temperature gradient jointly drive diversification of sister species and/or subspecies in the Northwestern Pacific? Mar. Ecol. 2017, 38, e12443. [Google Scholar] [CrossRef]
- Zhao, D.; Kong, L.; Yu, H.; Li, Q. Cryptic genetic diversity of Neverita didyma in the coast of China revealed by phylogeographic analysis: Implications for management and conservation. Conserv. Genet. 2018, 19, 275–282. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography, retrospect and prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, E.E.; Nielsen, P.H.; Meldrup, D.; Hansen, M.M. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 2004, 13, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.-N.; Jamandre, B.W.; Hsu, C.-C.; Tzeng, W.-N.; Durand, J.-D. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol. Biol. 2011, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Brakoniecki, T.F. A Generic Revision of the Family Loliginidae (Cephalopoda; Myopsida) Based Primarily on the Comparative Morphology of the Hectocotylus (Zoogeography); University of Miami: Coral Gables, FL, USA, 1986. [Google Scholar]
Group | COI | 16S | ||||||
---|---|---|---|---|---|---|---|---|
N | Hap | Hd | π | N | Hap | Hd | π | |
DL | 39 | 19 | 0.896 | 0.017 | 36 | 9 | 0.727 | 0.012 |
YT | 29 | 16 | 0.916 | 0.029 | 27 | 5 | 0.553 | 0.017 |
QD | 36 | 16 | 0.895 | 0.014 | 35 | 10 | 0.632 | 0.01 |
LYG | 29 | 14 | 0.825 | 0.028 | 27 | 3 | 0.53 | 0.019 |
NT | 14 | 7 | 0.795 | 0.002 | 14 | 3 | 0.385 | 0.004 |
WZ | 28 | 9 | 0.587 | 0.002 | 28 | 6 | 0.331 | 0.001 |
ND | 27 | 7 | 0.456 | 0.001 | 25 | 4 | 0.23 | 0.001 |
Total | 201 | 64 | 0.866 | 0.031 | 192 | 20 | 0.623 | 0.021 |
Source of Variation | df | Sum of Squares | Variance Component | Percentage of Variation/(%) | F Statistic | |
---|---|---|---|---|---|---|
COI | Gene pool (Lineage A; Lineage B) | |||||
Among groups | 1 | 1137.067 | 17.04307 Va | 89.78 | FSC: 0.04352 | |
Among populations | 3 | 11.951 | 0.08438 Vb | 0.44 | FST: 0.90230 | |
Within populations | 128 | 237.394 | 1.85464 Vc | 9.77 | FCT: 0.89785 | |
Total | 132 | 1386.412 | 18.98209 | |||
16S rRNA | Gene pool (Lineage A; Lineage B) | |||||
Among groups | 1 | 518.089 | 9.86162 Va | 96.38 | FSC: 0.00324 | |
Among populations | 2 | 0.801 | 0.00120 Vb | 0.01 | FST: 0.96392 | |
Within populations | 101 | 37.284 | 0.36915 Vc | 3.61 | FCT: 0.96380 | |
Total | 104 | 556.174 | 10.23197 |
Group | DL | YT | QD | LYG | NT | WZ | ND |
---|---|---|---|---|---|---|---|
DL | 0.017 | −0.015 | 0.344 * | 0.735 * | 0.791 * | 0.785 * | |
YT | 0.067 * | 0.065 * | 0.166 * | 0.597 * | 0.681 * | 0.671 * | |
QD | −0.015 | 0.111 * | 0.417 | 0.791* | 0.841 * | 0.836 * | |
LYG | 0.386 * | 0.137 * | 0.442 * | 0.260 | 0.337 * | 0.327 * | |
NT | 0.738 * | 0.513 * | 0.792 * | 0.204 | 0.111 | 0.090 | |
WZ | 0.779 * | 0.588 * | 0.826 * | 0.271 * | −0.012 | 0.000 | |
ND | 0.791 * | 0.604 * | 0.838 * | 0.291 | 0.079 * | 0.022 * |
Lineage | COI | 16S | ||
---|---|---|---|---|
Tajima’s D | Fu’s Fs | Tajima’s D | Fu’s Fs | |
Lineage A | −1.391 * | −2.208 * | −2.690 * | −5.297 * |
Lineage B | −2.327 * | −16.074 * | −2.360 * | −1.925 * |
Lineage A ♀ | Lineage A ♂ | Lineage B ♀ | Lineage B ♂ | L. (N.) beka * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Range | Mean | SD | Range | Mean | SD | Range | Mean | SD | Range | ♀ | ♂ | |
DML/mm | 37.8 | 3.5 | 33.5–41.5 | 33.3 | 2.3 | 29.5–36.5 | 42.4 | 8.0 | 32.5–55.1 | 38.5 | 3.9 | 31.5–42.8 | 67.0 | 53.0 |
VMLI | 84.9 | 3.4 | 80.7–89.0 | 87.5 | 3.9 | 81.4–94.5 | 81.0 | 5.3 | 69.9–85.5 | 83.9 | 6.1 | 78.3–93.6 | 83.6 | 83.0 |
MWI | 43.8 | 3.0 | 39.8–46.8 | 47.5 | 4.5 | 42.0–57.4 | 59.6 | 4.8 | 52.2–66.2 | 59.4 | 4.3 | 50.9–65.1 | 29.9 | 34.0 |
HWI | 40.2 | 7.9 | 30.1–49.3 | 46.4 | 5.3 | 40.3–57.4 | 46.0 | 4.1 | 40.1–52.1 | 51.1 | 3.5 | 45.9–55.3 | 23.9 | 28.3 |
HLI | 32.1 | 3.6 | 29.1–37.3 | 34.7 | 3.4 | 30.0–39.7 | 36.4 | 2.0 | 33.6–38.5 | 38.7 | 3.9 | 33.3–42.8 | 23.9 | 32.1 |
FLI | 55.4 | 2.6 | 53.0–58.2 | 55.5 | 3.8 | 49.3–60.7 | 55.3 | 3.2 | 49.3–59.6 | 56.8 | 1.6 | 53.2–58.7 | 59.7 | 66.0 |
FWI | 56.0 | 6.4 | 49.3–64.6 | 62.6 | 5.3 | 54.9–70.5 | 70.2 | 3.3 | 66.3–74.6 | 71.5 | 5.8 | 65.9–81.5 | 61.2 | 66.0 |
LALI4 | 52.9 | 3.9 | 49.4–58.2 | 51.7 | 4.4 | 42.5–57.8 | 57.0 | 5.0 | 51.8–67.7 | 74.6 | 10.1 | 63.9–94.8 | 52.2 | 56.6 |
RALI1 | 34.1 | 2.8 | 31.5–38.0 | 34.4 | 4.0 | 29.6–41.0 | 29.3 | 3.4 | 25.1–35.4 | 38.6 | 2.3 | 36.1–42.5 | 37.3 | 49.1 |
RALI2 | 50.8 | 7.9 | 39.8–58.2 | 50.4 | 6.2 | 43.3–63.1 | 46.6 | 5.1 | 41.5–55.6 | 65.5 | 7.3 | 55.5–76.6 | 52.2 | 66.0 |
RALI3 | 60.0 | 5.9 | 51.8–64.4 | 64.5 | 5.6 | 56.2–74.6 | 67.1 | 6.6 | 58.4–77.8 | 81.4 | 3.8 | 74.6–87.0 | 59.7 | 69.8 |
RALI4 | 39.8 | 26.6 | 50.7–55.2 | 52.0 | 3.5 | 45.2–57.1 | 57.8 | 3.2 | 54.9–64.2 | 70.3 | 6.7 | 60.3–79.2 | 52.2 | 60.4 |
HW/HL | 1.3 | 0.2 | 1.0–1.4 | 1.3 | 0.1 | 1.1–1.5 | 1.3 | 0.1 | 1.2–1.4 | 1.3 | 0.2 | 1.1–1.5 | 1.0 | 0.9 |
FW/FL | 1.0 | 0.1 | 0.9–1.1 | 1.1 | 0.1 | 1.0–1.2 | 1.3 | 0.1 | 1.1–1.5 | 1.3 | 0.1 | 1.1–1.4 | 1.0 | 1.0 |
HL% | / | / | / | 50 | 0.0 | 43.3–61.3 | / | / | / | 60 | 0.0 | 52.3–65.1 | / | 66.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Lyu, Y.; Zhang, C.; Zheng, X. Morphological and Genetic Differentiation of Loliolus (Nipponololigo) beka (Cephalopoda: Loliginidae) in Coastal China. Diversity 2023, 15, 41. https://doi.org/10.3390/d15010041
Li S, Lyu Y, Zhang C, Zheng X. Morphological and Genetic Differentiation of Loliolus (Nipponololigo) beka (Cephalopoda: Loliginidae) in Coastal China. Diversity. 2023; 15(1):41. https://doi.org/10.3390/d15010041
Chicago/Turabian StyleLi, Shuwen, Yuhan Lyu, Chi Zhang, and Xiaodong Zheng. 2023. "Morphological and Genetic Differentiation of Loliolus (Nipponololigo) beka (Cephalopoda: Loliginidae) in Coastal China" Diversity 15, no. 1: 41. https://doi.org/10.3390/d15010041
APA StyleLi, S., Lyu, Y., Zhang, C., & Zheng, X. (2023). Morphological and Genetic Differentiation of Loliolus (Nipponololigo) beka (Cephalopoda: Loliginidae) in Coastal China. Diversity, 15(1), 41. https://doi.org/10.3390/d15010041