Seagrasses of West Africa: New Discoveries, Distribution Limits and Prospects for Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Case Study Sites
2.2. Species Distribution
2.3. Seagrass Mapping
2.4. Refining of Initial Mapping Efforts in Each Country
2.5. Seagrass Monitoring and Threats Inventory
3. Results
3.1. Seagrass Species, Distribution and Morphometrics
3.2. The Southernmost Limit of Zostera noltei
3.3. Seagrass Mapping
3.4. Threats to Seagrasses in West Africa
4. Discussion
4.1. Seagrass Distribution
4.2. Threats to Seagrasses
4.3. Mapping
4.4. Seagrass Monitoring and Application to Conservation Efforts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP. Out of the Blue: The Value of Seagrasses to the Environment and to the People; UNEP: Nairobi, Kenya, 2020. [Google Scholar]
- Bird, E.C.F. West Africa. In The World’s Coasts; Bird, E.C.F., Ed.; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Cunha, A.H.; Araújo, A. New distribution limits of seagrass beds in West Africa. J. Biogeogr. 2009, 36, 1621–1622. [Google Scholar] [CrossRef]
- Creed, J.C.; Engelen, A.H.; Bandeira, S.; Serrão, E.A. First record of seagrass in Cape Verde, eastern Atlantic. Mar. Biodivers. Rec. 2016, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Hemminga, M.A.; Nieuwenhuize, J. Seagrass wrack-induced dune formation on a tropical coast (Banc d’Arguin, Mauritania). Estuar. Coast. Shelf Sci. 1990, 31, 499–502. [Google Scholar] [CrossRef]
- Van der Laan, B.B.P.A.; Wolff, W.J. Circular pools in the seagrass beds of the Banc d’Arguin, Mauritania, and their possible origin. Aquat. Bot. 2006, 84, 93–100. [Google Scholar] [CrossRef]
- El-Hacen, M.E.; Sidi Cheikh, M.A.; Tjeerd, J.B.; Olff, H.; Piersma, T. Long-term changes in seagrass and benthos at Banc d’Arguin, Mauritania, the premier intertidal system along the East Atlantic Flyway. Glob. Ecol. Conserv. 2020, 24, e01364. [Google Scholar] [CrossRef]
- Van Lent, F.; Nienhuis, P.H.; Verschuure, J.M. Production and biomass of the seagrasses Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Aschers. at the Banc d’Arguin (Mauritania, NW Africa): A preliminary approach. Aquat. Bot. 1991, 41, 353–367. [Google Scholar] [CrossRef]
- Vermaat, J.E.; Beijer, J.A.J.; Gijlstra, R.; Hootsmans, M.J.M.; Philippart, C.J.M.; van den Brink, N.W.; van Vierssen, W. Leaf dynamics and standing stocks of intertidal Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Ascherson on the Banc d’Arguin (Mauritania). Hydrobiologia 1993, 258, 59–72. [Google Scholar] [CrossRef]
- Alexandre, A.; Silva, J.; Ferreira, R.; Paulo, D.; Serrão, E.A.; Santos, R. First description of seagrass distribution and abundance in São Tomé and Príncipe. Aquat. Bot. 2017, 142, 48–52. [Google Scholar] [CrossRef]
- Pottier, A.; Catry, T.; Trégarot, E.; Maréchal, J.-P.; Fayad, V.; David, G.; Sidi Cheikh, M.; Failler, P. Mapping coastal marine ecosystems of the National Park of Banc d’Arguin (PNBA) in Mauritania using Sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102419. [Google Scholar] [CrossRef]
- Chefaoui, R.M.; Duarte, C.M.; Tavares, A.I.; Frade, D.G.; Cheikh, M.A.S.; Ba, M.A.; Serrao, E.A. A regime shift in the seagrass ecosystem of the Gulf of Arguin driven by climate change. Glob. Ecol. Conserv. 2021, 32, e01890. [Google Scholar] [CrossRef]
- Marbà, N.; Díaz-Almela, E.; Carlos, M.D. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 2014, 176, 183–190. [Google Scholar] [CrossRef]
- Nordlund, L.M.; Jackson, E.L.; Nakaoka, M.; Samper-Villarreal, J.; Carretero, P.B.; Creed, J.C. Seagrass ecosystem services—What’s next? Mar. Pollut. Bull. 2017, 134, 145–151. [Google Scholar] [CrossRef]
- Herrera, M.; Tubío, A.; Pita, P.; Vázquez, E.; Olabarria, C.; Duarte, C.; Villasante, S. Trade-Offs and Synergies between Seagrass Ecosystems and Fishing Activities: A Global Literature Review. Front. Mar. Sci. 2022, 9, 781713. [Google Scholar] [CrossRef]
- De la Torre-Castro, M.; Ronnback, P. Links between humans and seagrasses—An 808 example from tropical East Africa. Ocean Coast. Manag. 2004, 47, 361–387. [Google Scholar] [CrossRef]
- Ondiviela, B.; Losada, I.J.; Lara, J.L.; Maza, M.; Galvan, C.; Bouma, T.J.; van Belzen, J. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 2014, 87, 158–168. [Google Scholar] [CrossRef]
- Nordlund, L.; Erlandsson, J.; de la Torre-Castro, M.; Jiddawi, N. Changes in an East African social-ecological seagrass system: Invertebrate harvesting affecting species composition and local livelihood. Aquat. Living Resour. 2010, 23, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [Green Version]
- Dunic, J.C.; Brown, C.J.; Connolly, R.M.; Turschwell, M.P.; Côté, I.M. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Chang. Biol. 2021, 27, 4096–4109. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Meunier, T.; Barton, E.D.; Barreiro, B.; Torres, R. Upwelling filaments off Cap Blanc: Interaction of the NW African upwelling current and the Cape Verde frontal zone eddy field? J. Geophys. Res. 2012, 117, C0803. [Google Scholar] [CrossRef]
- Sevrin-Reyssac, J. Hydrology and underwater climate of the Banc d’Arguin, Mauritania: A review. In Ecological Studies in the Coastal Waters of Mauritania; Wolff, W.J., van der Land, J., Nienhuis, P.H., de Wilde, P.A.W.J., Eds.; Springer: Dordrecht, The Netherlands, 1993; p. 86. [Google Scholar]
- Schwanghart, W.; Schütt, B. Meteorological causes of Harmattan dust in West Africa. Geomorphology 2008, 95, 412–428. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Failler, P.; Diop, M.; Dia, M.A. Evaluation des stocks et aménagement des pêcheries de la ZEE Mauritanienne. In Proceedings of the Rapport du Cinquième Groupe de Travail IMROP, Nouadhibou, Mauritania, 9–17 December 2002; Inejih, C.A., Tous, P., Eds.; FAO: Rome, Italy, 2006. [Google Scholar]
- Valdés, L.; Déniz-González, I. Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem; IOC Technical Series, No. 115; IOC-UNESCO: Paris, France, 2015; 383p. [Google Scholar]
- Diop, S.; Scheren, P.A. Sustainable oceans and coasts: Lessons learnt from Eastern and Western Africa. Estuar. Coast. Shelf Sci. 2016, 183, 327–339. [Google Scholar] [CrossRef]
- PRCM. Stratégie Régionale des Aires Marines Protégées; PRCM: Dakar, Senegal, 2003; p. 74. [Google Scholar]
- Christensen, V.; Amorim, P.; Diallo, I.; Diouf, T.; Guénette, S.; Heymans, J.J.; Mendy, A.N.; Mahfoudh Sidi, T.; Palomares, M.L.D.; Samb, B.; et al. Trends in fish biomass off Northwest Africa, 1960–2000. In West African Marine Ecosystems: Models and Fisheries Impacts; Palomares, M.L.D., Pauly, D., Eds.; University of British Columbia: Vancouver, BC, Canada, 2004; Volume 12, pp. 215–220. [Google Scholar]
- Gascuel, D. 50 ans d’évolution des captures et biomasses dans l’Atlantique Centre-Est: Analyse par les spectres trophiques de captures et de biomasses. In Pêcheries Maritimes, Écosystèmes et Sociétés en Afrique de l’Ouest: Un Demi-Siècle de Changements; Chavance, P., Bah, M., Gascuel, D., Vakily, M., Pauly, D., Eds.; PRCM: Dakar, Sénégal, 2002. [Google Scholar]
- Martinez-Garrido, J.C.; Creed, J.; Martins, S.; Almada, C.H.; Serrao, E.A. First record of Ruppia maritima in West Africa supported by morphological description and phylogenetic classification. Bot. Mar. 2017, 60, 583–589. [Google Scholar] [CrossRef]
- Adam, J.G. Floristique des pâturages salés (halophytes et subhalophytes) et végétation des rizières du Sine-Saloum (Sénégal). J. D’agric. Trop. Et De Bot. Appli. 1958, 5, 505–541. [Google Scholar] [CrossRef]
- Lebrun, J.P. Catalogue des plantes vasculaires de la Mauritanie et du Sahara occidental. Boissiera 1998, 55, 140. [Google Scholar]
- Den Hartog, C. The sea-grasses of the world. In Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen; North-Holland Publishing Company: Amsterdam, The Netherlands, 1970; Volume 59. [Google Scholar]
- Short, F.; Coles, R. Global Seagrass Research Methods; Elsevier: Amsterdam, The Netherlands, 2001; 482p. [Google Scholar]
- Short, F.T.; Polidoro, B.; Livingstone, S.R.; Carpenter, K.E.; Bandeira, S.; Bujang, J.S.; Calumpong, H.P.; Carruthers, T.J.B.; Coles, R.G.; Dennison, W.C.; et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 2011, 144, 1961–1971. [Google Scholar] [CrossRef]
- Winters, G.; Edelist, D.; Shem-Tov, R.; Beer, S.; Rilov, G. A low cost field-survey method for mapping seagrasses and their potential threats: An example from the northern Gulf of Aqaba, Red Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 27, 324–339. [Google Scholar] [CrossRef]
- Jayathilake, D.R.M.; Costello, M.J. A modelled global distribution of the seagrass biome. Biol. Conserv. 2018, 226, 120–126. [Google Scholar] [CrossRef]
- Littaye, A.; Cheikh, M.A.S. New Insights in Seagrass Mortality Patches at the Arguin Bank in the Perspectives of Climate Change. J. Earth Sci. Clim. Chang. 2018, 9, 445. [Google Scholar] [CrossRef]
- Schaeffer, N.C.; Presser, S. The science of asking questions. Annu. Rev. Sociol. 2003, 29, 65–88. [Google Scholar] [CrossRef]
- Park, A. Surveys and Secondary Data Sources: Using Survey Data in Social Science Research in Developing Countries. In A Handbook for Social Science Field Research: Essays and Bibliographic Sources on Research Design and Methods; Perecman, E., Curran, H., Eds.; Sage: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Gill, P.; Stewart, K.; Treasure, E.; Chadwick, B. Methods of data collection in qualitative research: Interviews and focus groups. Br. Dent. J. 2008, 204, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.W. Qualitative interview design: A practical guide for novice investigators. Qual. Rep. 2010, 15, 754–760. [Google Scholar] [CrossRef]
- McKenzie, L.J.; Campbell, S.J.; Roder, C.A. Seagrass-Watch: Manual for Mapping & Monitoring Seagrass Resources, 2nd ed.; QFS: Cairns, QL, Australia, 2003. [Google Scholar]
- Gomes, I.; Gomes, S.; Kilian, N.; Leyens, T.; Lobin, W.; Vera-Cruz, M.T. Notes on the flora of the Cabo Verde Islands, W Africa. Willdenowia 1995, 25, 177–196. [Google Scholar]
- Valle, M.; Chust, G.; del Campo, A.; Wisz, M.S.; Olsen, S.M.; Garmendia, J.M.; Borja, Á. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biol. Conserv. 2014, 170, 74–85. [Google Scholar] [CrossRef]
- Bryan, T.; Virdin, J.; Vegh, T. Blue carbon conservation in West Africa: A first assessment of feasibility. J. Coast. Conserv. 2020, 24, 8. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B. Distribution and status of Zostera capensis in South African estuaries—A review. S. Afr. J. Bot. 2016, 107, 63–73. [Google Scholar] [CrossRef]
- Amone-Mabuto, M.; Hollander, J.; Lugendo, B.; Adams, J.B.; Bandeira, S. A field experiment exploring disturbance-and-recovery, and restoration methodology of Zostera capensis to support its role as a coastal protector. Nord. J. Bot. 2022, e03632. [Google Scholar] [CrossRef]
- Masucci, A.P.; Arnaud-Haond, S.; Eguiluz, V.M.; Hernandez-Garcia, E.; Serrao, E.A. Genetic flow directionality and geographical segregation in a Cymodocea nodosa genetic diversity network. Eur. Phys. J. EPJ Data Sci. 2012, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Rendle, A.B. Catalogue of the African Plants Collected by Dr. F. Welwitsch in 1853–1861. Part I. Monocotyledons and Gymnosperms; British Museum Natural History: London, UK, 1899; Volume 2. [Google Scholar]
- Malaisse, F. Les groupements végétaux des sols salins à Mwashya (Shaba, Zaïre). Bull. De La Société R. De Bot. De Belg. Bull. Van De K. Belg. Bot. Ver. 1988, 121, 97–104. [Google Scholar]
- Lamptey, E.; Armah, A.K. Factors affecting macrobenthic fauna in a tropical hypersaline coastal lagoon in Ghana, West Africa. Estuaries Coasts 2008, 31, 1006–1019. [Google Scholar] [CrossRef]
- Ntiamoa-Baidu, Y.; Piersma, T.; Wiersma, P.; Poot, M.; Battley, P.; Gordon, C. Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana. Ibis 1998, 140, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Clarke, N.V.; Klaassen, E.S. Water Plants of Namibia: An Identification Manual; National Botanical Research Institute: New Delhi, India; 185p.
- McKenzie, L.J.; Yoshida, R.L.; Aini, J.W.; Andréfouet, S.; Colin, P.L.; Cullen-Unsworth, L.C.; Hughes, A.T.; Payri, C.E.; Rota, M.; Shaw, C.; et al. Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot. Mar. Pollut. Bull. 2021, 167, 112308. [Google Scholar] [CrossRef] [PubMed]
- Daugough, G.F.; Koedan, N. Are the northernmost Mangrove of West Africa viable? A case study in Banc d’Arguin National Park, Mautitania. Hydrobiologia 2001, 458, 241–253. [Google Scholar]
- Oudman, T.; Schekkerman, H.; Kide, A.; Van, R.M.; Camara, M.; Smit, C.; El-Hacen, E. Changes in the waterbird community of the Parc National du Banc d’Arguin, Mauritania, 1980–2017. Bird Conserv. Int. 2020, 30, 618–633. [Google Scholar] [CrossRef] [Green Version]
- Clavier, J.; Chauvaud, L.; Amice, E.; Lazure, P.; Van der Geest, M.; Labrosse, P.; Diagne, A.; Carlier, A.; Chauvaud, S. Benthic metabolism in shallow coastal ecosystems of the Banc d’Arguin, Mauritania. Mar. Ecol. Prog. Ser. 2014, 501, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Wedding, L.M.; Moritsch, M.G.; Verutes, K.; Arkema, E.; Hartge, J.R.; Douglass, J.; Taylor, S.; Strong, A.L. Incorporating blue carbon sequestration benefits into sub-national climate policies. Glob. Environ. Chang. 2021, 69, 102206. [Google Scholar] [CrossRef]
- Deb, S.; Mandal, B. Soils and sediments of coastal ecology: A global carbon sink. Ocean Coast. Manag. 2021, 214, 105937. [Google Scholar] [CrossRef]
- UNESCO. Marine World Heritage: Custodians of the Globe’s Blue Carbon Assets; UNESCO: Paris, France, 2020. [Google Scholar]
- Trégarot, E.; Pottier, A.; Catry, T.; Failler, P. Evaluation de la Capacité de Séquestration de Carbone par les Ecosystèmes Marins du Banc d’Arguin (“Blue Carbon”); Parc National du Banc d’Arguin: Nouakchott, Mauritania, 2018; p. 26. [Google Scholar]
- Santos, R.; Martins, M.; Abrantes, F.; Aires, T.; Engelen, A.; Abecasis, D.; Encarnação, J.; Gandega, C.; Abdoul, B.A.; Serrão, E.A. Les noyaux de séquestration du carbone bleu des herbiers marins: Les résultats de la campagne de terrain au PNBA. In Proceedings of the Iwik Sympoissum, Iwik, Mauritania, 13–15 July 2020. [Google Scholar]
- Bergametti, G.; Rajot, J.-L.; Marticorena, B.; Féron, A.; Gaimoz, C.; Chatenet, B.; Coulibaly, M.; Koné, I.; Maman, A.; Zakou, A. Rain, Wind, and Dust Connections in the Sahel. J. Geophys. Res. Atmos. 2022, 127, 3. [Google Scholar] [CrossRef]
- De Fouw, J.; Tjisse, V.D.H.; Jim, V.B.; Laura, G.; Sidi Cheikh, M.A.; Olff, H.; Johan, V.K.; Gils, J.V. A facultative mutualistic feedback enhances the stability of tropical intertidal seagrass beds. Sci. Rep. 2018, 8, 12988. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, G.; Peters, M. The Atmospheric Transport Potential for Water Vapour and Dust in the Sahel Region. GeoJournal 1986, 12, 387–397. [Google Scholar] [CrossRef]
- Jenkins, G.; Gueye, G. Annual and early summer variability in WRF-CHEM simulated West African PM10 during 1960–2016. Atmos. Environ. 2022, 273, 118957. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237–250. [Google Scholar] [CrossRef]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10, 1227. [Google Scholar] [CrossRef]
- Peralta, G.J.; Pérez-Lloréns, L.; Hernández, I.; Vergara, J.J. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. J. Exp. Mar. Biol. Ecol. 2002, 269, 9–26. [Google Scholar] [CrossRef]
- Brun, F.G.; Vergara, J.J.; Hernández, I.; Pérez-Lloréns, J.L. Evidence for vertical growth in Zostera noltii Hornem. De Gruyter 2005, 48, 446–450. [Google Scholar] [CrossRef]
- Waltham, N.J.; Elliott, M.; Lee, S.Y.; Lovelock, C.; Duarte, C.M.; Buelow, C.; Simenstad, C.; Nagelkerken, I.; Claassens, L.; Wen, C.K.-C.; et al. UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems? Front. Mar. Sci. 2020, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E.; Marco, A.; Janssen, J.; Anderies, M. Going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15176–15178. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, M.D.; Ostrom, E. Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Cullen-Unsworth, L.C.; Nordlund, L.M.; Paddock, J.; Baker, S.; McKenzie, L.J.; Unsworth, R.F.K. Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 2014, 83, 387–397. [Google Scholar] [CrossRef]
- Laura, L.G.; Connolly, R.M.; Brown, C.J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. 2020, 183, 104946. [Google Scholar]
Country | Case Study Site | Latitude N | Longitude W |
---|---|---|---|
Cabo Verde | Gamboa (Praia, Santiago Island) | 14.90774° | −23.50849° |
Guinea | Tristao Islands | 10.7569° | −14.9417° |
Guinea Bissau | Unhocomo and Unhocomozinho | 11.3290° | −16.4333° |
Mauritania | Banc d’Arguin National Park | 19.89019° | −16.31148° |
Baie de l’Etoile | 21.02287° | −17.01228° | |
Senegal | Delta du Saloum Biosphere Reserve | 13.77027° | −16.65355° |
Sierra Leone | Turtle Islands (Bumpetuk Island) | 7.6578° | −13.0277° |
The Gambia | Bijol Islands-Tanji, Gunjur | 13.3832° 13.1500° | −16.8170° −16.7666° |
Karfaya-Kartong | 13.1232° | −16.8147° |
Cymodocea nodosa | Halodule wrightiii | Zostera noltei | Ruppia maritima * | |
---|---|---|---|---|
Mauritania | X | X | X | X |
Senegal | X | X | X | X |
Cabo Verde | X | X | ||
The Gambia | X | X | ||
Guinea Bissau | X | |||
Guinea | X | |||
Sierra Leone | X |
Country | Measured Seagrass Area (ha) |
---|---|
Cabo Verde | 0.62 |
Mauritania | 52,300 |
Senegal | 8372 |
The Gambia | 111 |
Guinea Bissau | 881 |
Guinea | 428 |
Sierra Leone | 15.4 |
Total of the region | 62,108.02 |
Item | Bumpetuk | Seh |
---|---|---|
First discovered | 13 December 2019 | 24 March 2022 |
Area estimate in 2022 | Up to 10,000 m2 (1 ha) | Up to 1000 m2 |
Coordinates | N 07°38.973′, W 013°02.733 | N 07° 37.971′, W 012°59.841′ |
Seagrass % cover | Less that 5% | up to 95–99% |
Shoot density | <150 shoots per m2 | At least 1000 shoots per m2 |
Canopy height | 7–12 cm | 9–11 cm |
Impact/threats | Sedimentation | Boat activity, trampling, plastic and other pollution |
Structural Parameters | From Literature [3] | This Study |
---|---|---|
Area | 20 m−2 | 6243 m−2 |
Seagrass Cover | Not available | Around 60% |
Shoot density | 5998 shoots m−2 | 989.6 shoots m−2 |
Canopy height | 8.3 cm | 9.5 cm |
Total biomass | 120 g m−2 | 311.9 g m−2 |
Above ground biomass | 22.98 g m−2 | 117.7 g m−2 |
Below ground biomass | 101.25 g m−2 | 194.3 g m−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidi Cheikh, M.A.; Bandeira, S.; Soumah, S.; Diouf, G.; Diouf, E.M.; Sanneh, O.; Cardoso, N.; Kujabie, A.; Ndure, M.; John, L.; et al. Seagrasses of West Africa: New Discoveries, Distribution Limits and Prospects for Management. Diversity 2023, 15, 5. https://doi.org/10.3390/d15010005
Sidi Cheikh MA, Bandeira S, Soumah S, Diouf G, Diouf EM, Sanneh O, Cardoso N, Kujabie A, Ndure M, John L, et al. Seagrasses of West Africa: New Discoveries, Distribution Limits and Prospects for Management. Diversity. 2023; 15(1):5. https://doi.org/10.3390/d15010005
Chicago/Turabian StyleSidi Cheikh, Mohamed Ahmed, Salomão Bandeira, Seydouba Soumah, Gnilane Diouf, Elisabeth Mayé Diouf, Omar Sanneh, Noelo Cardoso, Abubacarr Kujabie, Melissa Ndure, Lynette John, and et al. 2023. "Seagrasses of West Africa: New Discoveries, Distribution Limits and Prospects for Management" Diversity 15, no. 1: 5. https://doi.org/10.3390/d15010005
APA StyleSidi Cheikh, M. A., Bandeira, S., Soumah, S., Diouf, G., Diouf, E. M., Sanneh, O., Cardoso, N., Kujabie, A., Ndure, M., John, L., Moreira, L., Radwan, Z., Santos, I., Ceesay, A., Vinaccia, M., & Potouroglou, M. (2023). Seagrasses of West Africa: New Discoveries, Distribution Limits and Prospects for Management. Diversity, 15(1), 5. https://doi.org/10.3390/d15010005