Fungi Present in the Organic and Mineral Layers of Six Broad-Leaved Tree Plantations as Assessed by the Plate Dilution Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Microbiological Analyses
2.4. Statistics
3. Results
3.1. Distribution of Fungi
3.2. Fungal Genera in Soil Layers
3.2.1. Organic Layer
3.2.2. Mineral Layer 0–4 cm
3.2.3. Mineral Layer 5–8 cm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Gannes, V.; Bekele, I.; Dipchansingh, D.; Wuddivira, M.N.; De Cairies, S.; Boman, M.; Hickey, W.J. Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests. Front. Microbiol. 2016, 7, 1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghverdi, K.; Kooch, Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena 2019, 178, 335–344. [Google Scholar] [CrossRef]
- Strickland, M.S.; McCulley, R.L.; Bradford, M.A. The effect of a quorum-quenching enzyme on leaf litter decomposition. Soil Biol. Biochem. 2013, 64, 65–67. [Google Scholar] [CrossRef]
- Chen, Z.; Arif, M.; Wang, C.; Chen, X.; Li, C. Effects of hydrological regime on foliar decomposition and nutrient release in the riparian zone of the Three Gorges Reservoir, China. Front. Plant Sci. 2021, 12, 661865. [Google Scholar] [CrossRef]
- Litton, C.M.; Ryan, M.G.; Knight, D.H.; Stahl, P.D. Soil-surface carbon dioxide efflux and microbial biomass in relation to tree density 13 years after a stand replacing fire in a lodgepole pine ecosystem. Glob. Chang. Biol. 2003, 9, 680–696. [Google Scholar] [CrossRef]
- Purahong, W.; Wubet, T.; Lentendu, G.; Schloter, M.; Pecyna, M.J.; Kapturska, D.; Hofrichter, M.; Krüger, D.; Buscot, F. Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 2016, 25, 4059–4074. [Google Scholar] [CrossRef] [Green Version]
- Keiser, A.D.; Strickland, M.S.; Fierer, N.; Bradford, M.A. The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosciences 2011, 8, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Voříšková, J.; Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013, 7, 477–486. [Google Scholar] [CrossRef]
- Prescott, C.E.; Grayston, S.J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 2013, 309, 19–27. [Google Scholar] [CrossRef]
- Ingham, E.R. Soil Biology. Natural Resources Conservation Service. 2009. Available online: http://soils.usda.gov/sqi/concepts/soil_biology/fungi.html (accessed on 20 August 2022).
- Ceci, A.; Pinzari, F.; Russo, F.; Persiani, A.M.; Gadd, G.M. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Appl. Microbiol. Biotechnol. 2019, 103, 53–68. [Google Scholar] [CrossRef]
- Morton, J.P. Fungi. In Principles and Applications of Soil Microbiology, 3rd ed.; Gentry, T., Fuhrmann, J., Zuberer, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–170. [Google Scholar]
- Bahram, M.; Netherway, T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol. Rev. 2022, 46, fuab058. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Větrovský, T.; Cajthaml, T.; Dobiášová, P.; Petránková, M.; Šnajdr, J.; Eichlerová, I. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 2013, 6, 1–11. [Google Scholar] [CrossRef]
- Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubartová, A.; Ranger, J.; Berthelin, J.; Beguiristain, T. Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microb. Ecol. 2009, 58, 98–107. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Dighton, J. Fungi in Ecosystem Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018; p. 434. [Google Scholar] [CrossRef]
- Urcelay, C.; Longo, S.; Geml, J.; Tecco, P.A. Can arbuscular mycorrhizal fungi from non-invaded montane ecosystems facilitate the growth of alien trees? Mycorrhiza 2019, 29, 39–49. [Google Scholar] [CrossRef]
- Vlk, L.; Tedersoo, L.; Antl, T.; Větrovský, T.; Abarenkov, K.; Pergl, J.; Albrechtová, J.; Vosátka, M.; Baldrian, P.; Pyšek, P.; et al. Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. ISME J. 2020, 14, 2336–2346. [Google Scholar] [CrossRef]
- Biró, M.; Molnár, Z.; Öllerer, K.; Demeter, L.; Bölöni, J. Behind the general pattern of forest loss and gain: A long-term assessment of semi-natural and secondary forest cover change at country level. Landsc. Urban Plan. 2022, 220, 104334. [Google Scholar] [CrossRef]
- Guo, J.; Feng, H.; McNie, P.; Wang, W.; Peng, C.; Feng, L.; Sun, J.; Pan, C.; Yu, Y. The effect of the conversion from natural broadleaved forests into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations on soil microbial communities and nitrogen functional genes. Forests 2022, 13, 158. [Google Scholar] [CrossRef]
- Snieškienė, V.; Žeimavičius, K.; Stankevičienė, A. New Lithuanian urban street plantings. Urban Plant. Form. (In Lithuanian). 2010, 1, 155–159. [Google Scholar]
- Fineschi, S.; Loreto, F. A survey of multiple interactions between plants and the urban environment. Front. For. Glob. Chang. 2020, 3, 30. [Google Scholar] [CrossRef]
- Marcos, E.; Calvo, L.; Marcos, J.A.; Taboada, A.; Tarrega, R. Tree effects on the chemical topsoil features of oak, beech and pine forests. Eur. J. Forest Res. 2010, 29, 25. [Google Scholar] [CrossRef]
- Vaičys, M.; Rauguotis, A.; Kubertavičiene, L.; Armolaitis, K. Properties of Lithuanian forest litters. Balt. For. 1996, 2, 27–33. [Google Scholar]
- Europe’s Biodiversity–Biogeographical Regions and Seas; EEA Report No 1/2002. Available online: https://www.eea.europa.eu/publications/report_2002_0524_154909 (accessed on 13 August 2022).
- Lithuanian Hydrometeorological Service under the Ministry of Environment. Climate Atlas of Lithuania; Lithuanian Hydrometeorological Service under the Ministry of Environment: Vilnius, Lithuania, 2013. [Google Scholar]
- Seifert, K.; Morgan-Jones, G.; Gams, W.; Kendrick, B. The Genera of Hyphomycetes; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2011; p. 997. [Google Scholar]
- Dickie, I.A.; Xu, B.; Koide, R.T. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol. 2002, 156, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Mundra, S.; Kjønaas, O.J.; Morgado, L.N.; Krabberød, A.K.; Ransedokken, Y.; Kauserud, H. Soil depth matters: Shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS Microbiol Ecol. 2021, 97, fiab022. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Tian, X.; Fan, X.; He, X. Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia 2010, 102, 20–26. Available online: http://wwwjstororg/stable/20619264 (accessed on 20 August 2022). [CrossRef]
- Pečiulyte, D.; Lugauskas, A. Improvement of Trichoderma viride biotic activity by copper sulfate introduction into soil. Bull. Pol. Acad. Sci. Biol. Sci. 2001, 49, 299–307. [Google Scholar]
- Golec, A.F.C.; Pérez, P.G.; Lokare, C. Effective microorganisms: Myth or reality? Rev. Peru. Biol. 2007, 14, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Osono, T. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can. J. Microbiol. 2006, 52, 701–716. [Google Scholar] [CrossRef]
- Ansel, P.J.; Young, T.W.K. Association of Mortierella chlamydospora and Mortierella indohii with plants in culture. Microbios Lett. 1982, 19, 193–244. [Google Scholar]
- Jayasinghe, B.A.T.D.; Parkinson, D. Actinomycetes as antagonists of litter decomposer fungi. Appl. Soil Ecol. 2008, 38, 109–118. [Google Scholar] [CrossRef]
- Imoulan, A.; Hussain, M.; Kirk, P.M.; El Meziane, A.; Yao, Y.-J. Entomopathogenic fungus Beauveria: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. J. Asia Pac. Entomol. 2017, 20, 1204–1212. [Google Scholar] [CrossRef]
- Niemczyk, M.; Sierpińska, A.; Tereba, A.; Sokolowski, K.; Przybylski, P. Natural occurrence of Beauveria spp. in outbreak areas of cockchafers (Melolontha spp.) in forest soils from Poland. BioControl 2019, 64, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Kovač, M.; Tkaczuk, C.; Pernek, M. First report of entomopathogenic fungi occurrence in forest soils in Croatia. Forests 2021, 12, 1690. [Google Scholar] [CrossRef]
- Moreno-Gavíra, A.; Huertas, V.; Diánez, F.; Sanchez-Montesinos, B.; Santos, M. Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants 2020, 9, 1746. [Google Scholar] [CrossRef]
Tree Species | Area, ha | Family | Natural Habitat |
---|---|---|---|
Native | |||
Quercus robur L. English oak | 0.31 | Fagaceae Dumort | Most of Europe, west of the Caucasus |
Betula pendula Roth Silver birch | 0.14 | Betulaceae Grey | Europe and parts of Asia |
Tilia cordata Mill. Small-leaved linden | 0.29 | Tiliaceae Juss | Europe to the Caucasus and western Asia |
Alien | |||
Quercus rubra L. Northern red oak | 0.18 | Fagaceae Dumort | East of North America |
Aesculus hippocastanum L. Horse chestnut | 0.23 | Hippocastanaceae A. Rich | Balkan Peninsula |
Sorbus intermedia (Ehrh.) Pers. Swedish whitebeam | 0.29 | Rosaceae Juss | North-western Europe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maršalkienė, N.; Nikolajeva, V.; Seņkovs, M.; Česonienė, L. Fungi Present in the Organic and Mineral Layers of Six Broad-Leaved Tree Plantations as Assessed by the Plate Dilution Method. Diversity 2023, 15, 8. https://doi.org/10.3390/d15010008
Maršalkienė N, Nikolajeva V, Seņkovs M, Česonienė L. Fungi Present in the Organic and Mineral Layers of Six Broad-Leaved Tree Plantations as Assessed by the Plate Dilution Method. Diversity. 2023; 15(1):8. https://doi.org/10.3390/d15010008
Chicago/Turabian StyleMaršalkienė, Nijolė, Vizma Nikolajeva, Māris Seņkovs, and Laima Česonienė. 2023. "Fungi Present in the Organic and Mineral Layers of Six Broad-Leaved Tree Plantations as Assessed by the Plate Dilution Method" Diversity 15, no. 1: 8. https://doi.org/10.3390/d15010008
APA StyleMaršalkienė, N., Nikolajeva, V., Seņkovs, M., & Česonienė, L. (2023). Fungi Present in the Organic and Mineral Layers of Six Broad-Leaved Tree Plantations as Assessed by the Plate Dilution Method. Diversity, 15(1), 8. https://doi.org/10.3390/d15010008