Genetic Evaluation of a Wildtype Population of Cornus mas Accessions in Austria
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. DNA Extraction and PCR
2.3. Chromosome Preparation
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Flora Online. Version 1.1. Published on the Internet. 2020. Available online: https://wfoplantlist.org/plant-list (accessed on 28 August 2023).
- Eyde, R.H. ComprehendingCornus: Puzzles and progress in the systematics of the dogwoods. Bot. Rev. 1988, 54, 233–351. [Google Scholar] [CrossRef]
- Czerwińska, M.E.; Melzig, M.F. Cornus mas and Cornus officinalis—Analogies and Differences of Two Medicinal Plants Traditionally Used. Front. Pharmacol. 2018, 9, 894. [Google Scholar] [CrossRef] [PubMed]
- Brindza, P.; Brindza, J.; Tóth, D.; Klimenko, S.; Grigorieva, O. Slovakian Cornelian cherry (Cornus mas L.): Potential for cultivation. Acta Hortic. 2007, 760, 433–437. [Google Scholar] [CrossRef]
- Ercisli, S.; Yilmaz, S.O.; Gadze, J.; Dzubur, A.; Hadziabulic, S.; Aliman, Y. Some Fruit Characteristics of Cornelian Cherries (Cornus mas L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 255–259. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- Dokoupil, L.; Řezníček, V. Production and use of the Cornelian cherry—Cornus mas L. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 55, 49–57. [Google Scholar] [CrossRef]
- Pirc, H. Enzyklopädie der Wildobst-und Seltenen Obstarten. Leopold Stocker Verlag: Graz, Austria, 2015; pp. 92–112. In Enzyklopädie der Wildobst-und Seltenen Obstarten; Leopold Stocker Verlag: Graz, Austria, 2015; pp. 92–112. [Google Scholar]
- Da Ronch, F.; Caudullo, G.; Houston Durrant, T.; de Rigo, D. Cornus mas in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; pp. 82–83. [Google Scholar]
- D’Antuono, L.; Kolesnov, A.; Fedosova, K.; Jorjadze, M.; Boyko, N.; Mudryk, M.; Bignami, C. Cornelian cherry: An Important Local Resource and Promising Health Promoting Fruit Plant of The Black Sea Area. Acta Hortic. 2014, 1017, 299–307. [Google Scholar] [CrossRef]
- Dálnoki, O.; Jacomet, S. Some aspects of Late Iron Age agriculture based on the first results of an archaeobotanical investigation at Corvin tér, Budapest, Hungary. Veg. Hist. Archaeobot. 2002, 11, 9–16. [Google Scholar] [CrossRef]
- Filipović, D.; Fotirić Akšić, M.; Dabić Zagorac, D.; Natić, M. Gathered fruits as grave goods? Cornelian cherry remains from a Mesolithic grave at the site of Vlasac, Danube Gorges, south-east Europe. Quat. Int. 2020, 541, 130–140. [Google Scholar] [CrossRef]
- Bellini, C.; Mariotti-Lippi, M.; Secci, M.M.; Aranguren, B.; Perazzi, P. Plant gathering and cultivation in prehistoric Tuscany (Italy). Veg. Hist. Archaeobotany 2008, 17, 103–112. [Google Scholar] [CrossRef]
- Werneck-Willingrain, H.L. Bodenständige Obsthölzer der Gegenwart, Früh-und Urgeschichte in den Ostalpen. Schr. Ver. Verbreit. Nat. Kennt. Wien 1960, 100, 181–221. [Google Scholar]
- Brindza, J.; Toth, D.; Brindza, P.; Grygorieva, O.; Sajbidor, J.; Kucelova, L. Forgotten and Less Utilised Plant Species as Functional Food Resources. In Functional Properties of Traditional Foods; Springer: Boston, MA, USA, 2016; pp. 209–232. [Google Scholar]
- Laimer, M.; Zeiser, M.; Hanzer, V.; Fernandez, E.G.B. In vitro conservation of centennial Austrian Cornelian cherry accessions. Plant Biotechnol. Rep. 2021, 15, 289–298. [Google Scholar] [CrossRef]
- Karapatzak, E.; Dichala, O.; Papanastasi, K.; Manthos, I.; Ganopoulos, I.; Karydas, A.; Badeka, A.V.; Kosma, I.S.; Kyrkas, D.; Yfanti, P.; et al. A Multifaceted Evaluation Approach for Greek Native Neglected and Underutilized Forest Fruit Trees and Shrubs as Natural Sources of Antioxidants: Consolidating the Framework for Their Sustainable Agronomic Exploitation. Plants 2023, 12, 1642. [Google Scholar] [CrossRef] [PubMed]
- Hegi, G. Illustrierte Flora von Mitteleuropa; Pichlers Witwe & Sohn: München, Germany, 1926; Volume 5, pp. 1567–1722. [Google Scholar]
- Filipović, D.; Allué, E.A.; Borić, D. Integrated carpological and anthracological analysis of plant record from the Mesolithic site of Vlasac, Serbia. J. Serb. Archaeol. Soc. 2010, 26, 145–161. [Google Scholar]
- Filipović, D.; Jovanović, J.; Rančić, D. In search of plants in the diet of Mesolithic-Neolithic communities in the Iron Gates. In From Hunter-Gatherers to Farmers: Human Adaptations at the End of the Pleistocene and the First Part of the Holocene; Mărgărit, M., Boroneanţ, A., Eds.; Cetatea de Scaun: Targovişte, Romania, 2017; pp. 93–111. [Google Scholar]
- Borroto Fernández, E.G.; Mokhber, A.; Zeiser, M.; Laimer, M. Phenotypic Characterization of a Wild-Type Population of Cornelian Cherries (Cornus mas L.) from Austria. Erwerbs-Obstbau 2022, 64, 673–683. [Google Scholar] [CrossRef]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (Cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozturkcan, S.A. Bioactive components and biological properties of Cornelian cherry (Cornus mas L.): A comprehensive review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Borroto Fernandez, E.G.; Laimer, M. Züchterische Aspekte der Kornelkirsche. Besseres Obst. 2021, 1, 18–21. [Google Scholar]
- Ellis, J.R.; Burke, J.M. EST-SSRs as a resource for population genetic analyses. Heredity 2007, 99, 125–132. [Google Scholar] [CrossRef]
- Hedrick, P.H. Conservation genetics: Where are we now? Trends Ecol. Evol. 2001, 16, 629–636. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef]
- Eser, E.; Topçu, H.; Kefayati, S.; Sütyemez, M.; Islam, R.; Kafkas, S. Highly polymorphic novel simple sequence repeat markers from Class I repeats in walnut (Juglans regia L.). Turk. J. Agric. For. 2019, 43, 174–183. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Wang, X.; Trigiano, R.; Windham, M.; Scheffler, B.; Rinehart, T.; Spiers, J. Development and characterization of simple sequence repeats for flowering dogwood (Cornus florida L.). Tree Genet. Genomes 2007, 4, 461–468. [Google Scholar] [CrossRef]
- Wadl, P.A.; Hatmaker, E.A.; Fussi, B.; Scheffler, B.E.; Trigiano, R.N. Isolation and characterization of microsatellite loci for Cornus sanguinea (Cornaceae). Appl. Plant Sci. 2013, 1, 1300012. [Google Scholar] [CrossRef] [PubMed]
- Wadl, P.A.; Szyp-Borowska, I.; Piórecki, N.; Schlarbaum, S.E.; Scheffler, B.E.; Trigiano, R.N. Development of microsatellites from Cornus mas L. (Cornaceae) and characterization of genetic diversity of cornelian cherries from China, central Europe, and the United States. Sci. Hortic. 2014, 179, 314–320. [Google Scholar] [CrossRef]
- Hassanpour, H.; Hamidoghli, Y.; Habibollah, S. Estimation of genetic diversity in some Iranian cornelian cherries (Cornus mas L.) accessions using ISSR markers. Biochem. Syst. Ecol. 2013, 48, 257–262. [Google Scholar] [CrossRef]
- Feulgen, R.; Rossenbeck, H. Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seylers Z. Phyiol. Chem. 1924, 135, 203–248. [Google Scholar] [CrossRef]
- Greilhuber, J.; Temsch, E.M. Feulgen densitometry: Some observations relevant to best practice in quantitative nuclear DNA content determination. Acta Bot. Croat. 2001, 60, 285–298. [Google Scholar]
- Borroto Fernandez, E.G.; Fink, S.; Temsch, E.M.; Laimer, M. Flow cytometry and karyotyping of in vitro grown Cornus mas genotypes to evaluate absolute genome size and ploidy. Caryologia, 2023; in preparation. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Yeh, F.C.; Boyle, T.J.B. Population genetic analysis of codominant and dominant markers and quantitative traits. Belg. J. Bot. 1997, 129, 156–159. [Google Scholar]
- Levene, H. On a Matching Problem Arising in Genetics. Ann. Math. Stat. 1949, 20, 91–94. [Google Scholar] [CrossRef]
- Nei, M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Genetic Distance between Populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Fyfe, J.L.; Bailey, N.T.J. Plant breeding studies in leguminous forage crops. I. Natural cross-breeding in winter beans. J. Agric. Sci. 1951, 41, 371–378. [Google Scholar] [CrossRef]
- Ritland, K.; Jain, S.K. A model for the estimation of outcrossing rate using n independent loci. Heredity 1981, 47, 35–52. [Google Scholar] [CrossRef]
- Zonneveld, B.J.M.; Leitch, I.J.; Bennett, M.D. First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 2005, 96, 229–244. [Google Scholar] [CrossRef]
- Truta, E.; Capraru, G.; Roșu, C.M.; Surdu, S.; Giorghita, G.; Rati, V. Preliminary studies concerning chromosome constitution of some Cornus mas L. genotypes (Bacau district). J. Exp. Mol. Biol. 2009, 10, 1–4. [Google Scholar]
- Gepts, P. Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci. 2006, 46, 2278–2292. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Kramarova, D.; Jurikova, T. Selected cultivars of Cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010, 9, 1205–1210. [Google Scholar]
- Yilmaz, K.U.; Zengin, Y.; Ercisli, S.; Orhan, E.; Yalcinkaya, E.; Taner, O.; Erdogan, A. Biodiversity, ex-situ conservation and characterization of Cornelian cherry (Cornus mas L.) genotypes in Turkey. Biotechnol. Biotechnol. Equip. 2009, 23, 1143–1149. [Google Scholar] [CrossRef]
- Available online: https://info.bml.gv.at/im-fokus/forschung/projekte-und-berichte/landwirtschaft/vielfaeltigedirndl.html (accessed on 28 August 2023).
- Ercisli, S.; Orhan, E.; Esitken, A.; Yildirim, N.; Agar, G. Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genet. Resour. Crop Evol. 2008, 55, 613–618. [Google Scholar] [CrossRef]
- Hassanpour, H.; Hamidoghli, Y.; Samizadeh, H. Some fruit characteristics of Iranian cornelian cherries (Cornus mas L.). Not. Bot. Horti Agrobot. 2012, 40, 247–252. [Google Scholar] [CrossRef]
- Klymenko, S. The Cornelian cherry (Cornus mas L.): Collection, preservation, and utilization. J. Fruit Ornam. Plant Res. 2004, 12, 93–98. [Google Scholar]
- Swanson, M.A. Cornus mas L. Cultivar Selection Based on Hardiness and Propagation. Master‘s Thesis, North Dakota State University, Fargo, ND, USA, 2018. [Google Scholar]
- Simirenko, L.P. Crimean Commercial Horticulture; Printing House of J. H. Kushnerev: Moscow, Russia, 1912; Volume 1, 748p. [Google Scholar]
- Gierlinger, S. Proteomic Investigations of Different Tissues and Phenotypes of Cornus mas. Bachelor’s Thesis, BOKU-Universität für Bodenkultur, Vienna, Austria, 2017. [Google Scholar]
- Borroto Fernandez, E.G.; Zoccarato, L.; Laimer, M. Sequencing and De Novo Assembly of Cornus mas genome in Austria using the PacBio and Hi-C technology. J. Syst. Evol. 2023; in preparation. [Google Scholar]
Site | Region | Altitude | Exposition | Nr of Plants | Age of Trees (Years) |
---|---|---|---|---|---|
1 | T | 383 | Forest border/S | 9 | 100–150 |
2 | P | 320 | Open pasture/S | 10 | 50–200 |
3 | P | 344 | Open pasture/S | 9 | 100–200 |
Forest border/S | 5 | ||||
4 | P | 371 | Plantation, not irrigated/S | 12 | 25–100 |
5 | T | 521 | Plantation, irrigated/S | 5 | >50 |
T | 521 | Open pasture/S | 5 | 25–100 | |
6 | P | 344 | Border/S | 7 | >100 |
7 | P | 372 | Border/S | 6 | 50–100 |
Open pasture/S | 7 | ||||
8 | G | 369 | Border/S | 15 | 100–200 |
9 | G | 369 | Border/S | 11 | >200 |
10 | G | 600 | Open pasture/S | 20 | >200 |
11 | P | 371 | Border/S | 15 | 100–400 |
471 | Border/S | 15 | |||
12 | P | 572 | Hilltop | 10 | 100–200 |
13 | P | 600 | Border/S | 6 | 100–400 |
Hilltop | 6 | ||||
14 | P | 600 | Border/S | 9 | 50–200 |
Hilltop | 10 | ||||
15 | P | 580 | Border/S | 6 | 200–400 |
Hilltop | 6 | ||||
16 | P | 600 | Border/S | 12 | 50–100 |
17 | P | 320 | Open pasture/S | 2 | >100 |
18 | T | 350 | Open pasture/S | 5 | 100–200 |
19 | T | 350 | Open pasture/S | 11 | 100–200 |
20 | T | 350 | Open pasture/S | 4 | 100–200 |
21 | T | 420 | Border/S | 6 | 100–200 |
350 | 6 | ||||
22 | T | 570 | Border/S | 11 | >100 |
23 | T | 356 | Open pasture/S | 4 | >200 |
24 | P | 600 | Border/S | 10 | 200–400 |
Hilltop | 10 | ||||
25 | P | 600 | Border and valley/N | 12 | >100 |
26 | P | 372 | H steep hill/S | 5 | 100–200 |
Open pasture/S | 6 | ||||
27 | V | 156 | Plantation, not irrigated/S | 1 | >100 |
1 | 25 | ||||
28 | P | 400 | Border/S | 6 | 100–200 |
Hilltop | 5 | ||||
29 | P | 280 | Plantation irrigated/S | 11 | >10 |
30 | G | 600 | Border/S | 6 | 200–500 |
Hilltop | 6 | ||||
31 | P | 500 | Border/S | 8 | 100–200 |
Hilltop | 9 | ||||
32 | P | 600 | Border/S | 3 | >200 |
33 | P | 550 | Open pasture/S | 16 | 50 –200 |
34 | P | 600 | Open pasture/S | 2 | >200 |
35 | P | 400 | Border/S | 10 | 100–200 |
36 | P | 400 | Open pasture/S | 10 | 100–200 |
37 | P | 460 | Open pasture/S | 5 | >400 |
38 | G | 450 | Open pasture/S | 10 | 100–200 |
39 | T | 600 | Open pasture/S | 2 | 400–1000 |
40 | V | 280 | Plantation, irrigated/S | 20 | >50 |
41 | P | 550 | Border/N | 8 | 100–200 |
Locus | Primer Sequence (5′-3′) | Repeat Motif | Size Range (bp) [32] | No. of Alleles [32] |
---|---|---|---|---|
CF55 | L: tggagtagggcaaaagatcaagag R: tccagggaatgttcggtagattag | (GT)7T(TG)10 | 144–181 | 2 |
CM008 | L: tcgttaatgtgaaattggaacg R: caccgtacacgcaaagtcc | (GT)11 | 158–194 | 6 |
CM020 | L: tggcagactaggttcttgttagc R: ctccactgtctggcttacttgg | (TG)10 | 188–233 | 2 |
CM026 | L: gaattcatgtaatgttgttgtctgc R: cctgcatataattcaggtaaagagc | (CA)14 | 179–203 | 7 |
CM031 | L: taccctctcttgctctttgtcc R: aaacaatcaaacccaaacaacc | (AG)26(TG)13 | 191–224 | 11 |
CM037 | L: aacacagagaaacacgtgcaa R: tggagatctttgaagaacagga | (TG)20 | 172-203 | 10 |
CM043 | L: gtccacacctgttgttcagc R: ggttgcaatgctttcttggt | (TG)16(TA)5 | 213–235 | 8 |
Locus | No. of Alleles (A) | No. of Effective Alleles (Ne) | Index | Observed heterozygosity (Ho) * | Expected Heterozygosity (He) ** | FST | Nm |
---|---|---|---|---|---|---|---|
CF55 | 8 | 2.1299 | 1.0723 | 0.3964 | 0.5311 | 0.0590 | 3.9890 |
CM008 | 6 | 2.2210 | 0.9498 | 0.5203 | 0.5504 | 0.1001 | 2.2473 |
CM020 | 12 | 4.9265 | 1.7978 | 0.5103 | 0.7979 | 0.1128 | 1.9655 |
CM026 | 8 | 3.7798 | 1.5510 | 0.5000 | 0.7363 | 0.0890 | 2.5596 |
CM031 | 10 | 4.7836 | 1.7488 | 0.6937 | 0.7918 | 0.0680 | 3.4267 |
CM037 | 12 | 3.0062 | 1.4218 | 0.5135 | 0.6681 | 0.1497 | 1.4197 |
CM043 | 18 | 6.1419 | 2.1014 | 0.6689 | 0.8381 | 0.0498 | 4.7714 |
Mean | 10.5714 ± 3.9521 | 3.8556 ± 1.5062 | 1.5204 ± 0.4090 | 0.5433 ± 0.1036 | 0.7020 ± 0.1227 | 0.0891 | 2.5574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borroto Fernandez, E.G.; Khayatzadeh, N.; Mészáros, G.; Fink, S.; Hanzer, V.; Sölkner, J.; Laimer, M. Genetic Evaluation of a Wildtype Population of Cornus mas Accessions in Austria. Diversity 2023, 15, 1031. https://doi.org/10.3390/d15101031
Borroto Fernandez EG, Khayatzadeh N, Mészáros G, Fink S, Hanzer V, Sölkner J, Laimer M. Genetic Evaluation of a Wildtype Population of Cornus mas Accessions in Austria. Diversity. 2023; 15(10):1031. https://doi.org/10.3390/d15101031
Chicago/Turabian StyleBorroto Fernandez, Eduviges G., Negar Khayatzadeh, Gábor Mészáros, Simon Fink, Veronika Hanzer, Johann Sölkner, and Margit Laimer. 2023. "Genetic Evaluation of a Wildtype Population of Cornus mas Accessions in Austria" Diversity 15, no. 10: 1031. https://doi.org/10.3390/d15101031
APA StyleBorroto Fernandez, E. G., Khayatzadeh, N., Mészáros, G., Fink, S., Hanzer, V., Sölkner, J., & Laimer, M. (2023). Genetic Evaluation of a Wildtype Population of Cornus mas Accessions in Austria. Diversity, 15(10), 1031. https://doi.org/10.3390/d15101031