Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sample Collection
2.2. Nutrients and Chlorophyll a Concentration
2.3. Picophytoplankton Abundance and Biomass
2.4. DNA Extraction, PCR Amplification, Cloning and Sequencing
2.5. Phylogenetic and Statistical Analyses
3. Results
3.1. Environmental Parameters and Nutrients
3.2. Picocyanobacteria Abundance and Role in Total Picophytoplankton
3.3. PC Molecular Diversity Using ITS and the 16S rRNA Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.K.W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol. Oceanogr. 1994, 39, 169–175. [Google Scholar] [CrossRef]
- Liu, H.; Nolla, H.A.; Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 1997, 12, 39–47. [Google Scholar] [CrossRef]
- Cottrell, M.T.; Kirchman, D.L. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl. Environ. Microbiol. 2009, 15, 4958–4966. [Google Scholar] [CrossRef]
- Michelou, V.K.; Cottrell, M.T.; Kirchman, D.L. Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic Ocean. Appl. Environ. Microbiol. 2007, 73, 5539–5546. [Google Scholar] [CrossRef]
- Huang, S.; Wilhelm, S.W.; Harvey, H.R.; Taylor, K.; Jiao, N.; Chen, F. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 2012, 6, 285–297. [Google Scholar] [CrossRef]
- Zwirglmaier, K.; Jardillier, L.; Ostrowski, M.; Mazard, S.; Garczarek, L.; Vaulot, D.; Massana, R.; Ulloa, O.; Scanlan, D.J. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 2008, 10, 147–161. [Google Scholar] [CrossRef]
- Paulsen, M.L.; Doré, H.; Garczarek, L.; Seuthe, L.; Müller, O.; Sandaa, R.-A.; Bratbak, G.; Larsen, A. Synechococcus in the Atlantic Gateway to the Arctic Ocean. Front. Mar. Sci. 2016, 3, 191. [Google Scholar] [CrossRef]
- Gradinger, R.; Lenz, J. Picocyanobacteria in the high Arctic. Mar. Ecol. Prog. Ser. 1989, 52, 99–101. [Google Scholar] [CrossRef]
- Vincent, W.; Bowman, J.; Rankin, L.; McMeekin, T. Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, NS, Canada, 9–14 August 2000; pp. 317–322. [Google Scholar]
- Waleron, M.; Waleron, K.; Vincent, W.F.; Wilmotte, A. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol. Ecol. 2006, 59, 356–365. [Google Scholar] [CrossRef]
- Gordeev, V.V. River Input of Water, Sediment, Major Ions, Nutrients and Trace Metals from Russian Territory to the Arctic Ocean. In The Freshwater Budget of the Arctic Ocean; Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P., Eds.; NATO Science Series; Springer: Dordrecht, The Netherlands, 2000; p. 70. [Google Scholar]
- Bauch, D.; Torres-Valdes, S.; Polyakov, I.; Novikhin, A.; Dmitrenko, I.; McKay, J.; Mix, A. Halocline water modification and along-slope advection at the Laptev Sea continental margin. Ocean Sci. 2014, 10, 141–154. [Google Scholar] [CrossRef]
- Jones, E.P.; Anderson, L.G.; Swift, J.H. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for circulation. Geophys. Res. Lett. 1998, 25, 765–768. [Google Scholar] [CrossRef]
- Semiletov, I.; Dudarev, O.; Luchin, V.; Charkin, A.; Shin, K.-H.; Tanaka, N. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. 2005, 32, L10614. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Martin, J.M.; Sidorov, I.S.; Sidorova, M.V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the arctic ocean. Am. J. Sci. 1996, 296, 664–691. [Google Scholar] [CrossRef]
- Jakobsson, M. Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem. Geophys. Geosyst. 2002, 3, 1028. [Google Scholar] [CrossRef]
- McLusky, D.S. Marine and estuarine gradients—An overview. Neth. J. Aquat. Ecol. 1993, 27, 489–493. [Google Scholar] [CrossRef]
- Griffin, C.G.; McClelland, J.W.; Frey, K.E.; Fiske, G.; Holmes, R.M. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sens. Environ. 2018, 209, 395–409. [Google Scholar] [CrossRef]
- Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R.M.W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 2017, 7, 13064. [Google Scholar] [CrossRef]
- Tank, S.E.; Striegl, R.G.; McClelland, J.W.; Kokelj, S.V. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the arctic ocean. Environ. Res. Lett. 2016, 11, 054015. [Google Scholar] [CrossRef]
- Metfies, K.; von Appen, W.-J.; Kilias, E.; Nicolaus, A.; Nöthig, E.-M. Biogeography and Photosynthetic Biomass of Arctic Marine Picoeukaryotes during Summer of the Record Sea Ice Minimum 2012. PLoS ONE 2016, 2, e0148512. [Google Scholar]
- Belevich, T.A.; Milyutina, I.A.; Demidov, A.B.; Flint, M.V. Spring Picophytoplankton of the Kara Sea. Oceanology 2022, 62, 646–655. [Google Scholar] [CrossRef]
- Belevich, T.A.; Milyutina, I.A. Species diversity of phototrophic picoplankton in the Kara and Laptev Seas. Microbiology 2022, 91, 67–76. [Google Scholar] [CrossRef]
- Parli, B.V.; Bhaskar, J.T.; Jawak, S.; Jyothibabu, R.; Mishra, N. Mixotrophic plankton and Synechococcus distribution in waters around Svalbard, Norway during June 2019. Polar Sci. 2021, 30, 100697. [Google Scholar] [CrossRef]
- Salazar, V.W.; Tschoeke, D.A.; Swings, J.; Cosenza, C.A.; Mattoso, M.; Thompson, C.C.; Thompson, F.L. A new genomic taxonomy system for the Synechococcus collective. Environ. Microbiol. 2020, 22, 4557–4570. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, A.; Ostrowski, M.; Scanlan, D.J.; Garczarek, L.; Mazard, S.; Palenik, B.P.; Paulsen, I.T.; de Marsac, N.T.; Wincker, P.; Dossat, C.; et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008, 9, R90. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Noh, J.H. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol. Ecol. 2009, 69, 439–448. [Google Scholar] [CrossRef]
- Fuller, N.J.; Marie, D.; Partensky, D.; Vaulot, D.; Post, A.F.; Scanlan, D.J. Clade-Specific 16S Ribosomal DNA Oligonucleotides Reveal the Predominance of a Single Marine Synechococcus Clade throughout a Stratified Water Column in the Red Sea. Appl. Environ. Microbiol. 2003, 69, 2430–2443. [Google Scholar] [CrossRef]
- Ahlgren, N.A.; Rocap, G. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front. Microbiol. 2012, 3, 213. [Google Scholar] [CrossRef]
- Demidov, A.B.; Kopelevich, O.V.; Mosharov, S.A.; Sheberstov, S.V.; Vazyulya, S.V. Modelling Kara Sea phytoplankton primary production: Development and skill assessment of regional algorithms. J. Sea Res. 2017, 125, 1–17. [Google Scholar] [CrossRef]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. (Eds.) Methods of Seawater Analysis, 3rd ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1999; p. 577. [Google Scholar]
- Holm-Hansen, O.; Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 1978, 30, 438–447. [Google Scholar] [CrossRef]
- Ribeiro, C.; Gérikas, M.; dos Santos, A.L.; Brandini, F.P.; Vaulot, D. Estimating microbial populations by flow cytometry: Comparison between instruments. Limnol. Oceanogr. Methods 2016, 14, 750–758. [Google Scholar] [CrossRef]
- Verity, P.G.; Robertson, C.Y.; Tronzo, C.R.; Endrews, M.G.; Nelson, J.R.; Sieracki, M.E. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 1992, 37, 1434–1446. [Google Scholar] [CrossRef]
- DuRand, M.D.; Olson, R.J.; Chisholm, S.W. Phytoplankton population dynamics at the Bermuda Atlantic time-series station in the Sargasso Sea. Deep-Sea Res. II 2001, 48, 1983–2003. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Zaballos, M.; Lopez-Lopez, A.; Ovreas, L.; Bartual, S.G.; D’Auria, G.; Alba, J.C.; Legault, B.; Pushker, R.; Daae, F.L.; Rodrıguez-Valera, F. Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. FEMS Microbiol. Ecol. 2006, 56, 389–405. [Google Scholar] [CrossRef]
- Cai, H.; Wang, K.; Huang, S.; Jiao, N.; Chen, F. Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl. Environ. Microbiol. 2010, 76, 2955–2960. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 2022, 13, 6968. [Google Scholar] [CrossRef] [PubMed]
- Hall, T. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 717 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Rzhetsky, A.; Nei, M. A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 1992, 9, 945–967. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Demidov, A.B.; Gagarin, V.I. Primary production and associated environmental conditions in the East Siberian Sea in autumn. Dokl. Earth Sci. 2019, 487, 1006–1011. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flint, M.V.; Fedorov, A.V.; Sakharova, E.G.; Makkaveev, P.N.; Polukhin, A.A.; Nedospasov, A.A.; Schuka, A.S. First Data on the Structure of Phytoplankton Communities of the East Siberian Sea. Oceanology 2021, 61, 909–929. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of seawater. In The Sea; Hill, M.N., Ed.; Interscience: New York, NY, USA, 1963; Volume 2, pp. 26–77. [Google Scholar]
- Ardyna, M.; Gosselin, M.; Michel, C.; Poulin, M.; Tremblay, J.-É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: Contrasting oligotrophic and eutrophic regions. Mar. Ecol. Prog. Ser. 2011, 442, 37–57. [Google Scholar] [CrossRef]
- Garneau, M.-È.; Gosselin, M.; Klein, B.; Tremblay, J.-É.; Fouilland, E. New and regenerated production during a late summer bloom in an Arctic polynya. Mar. Ecol. Prog. Ser. 2007, 345, 13–26. [Google Scholar] [CrossRef]
- Tremblay, G.; Belzile, C.; Gosselin, M.; Poulin, M.; Roy, S.; Tremblay, J.E. Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: Strong numerical dominance by picoeukaryotes. Aquat. Microb. Ecol. 2009, 54, 55–70. [Google Scholar] [CrossRef]
- Ferland, J.; Gosselin, M.; Starr, M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J. Mar. Syst. 2011, 88, 385–400. [Google Scholar] [CrossRef]
- Lapoussière, A.; Michel, C.; Gosselin, M.; Poulin, M.; Martin, J.; Tremblay, J.-É. Primary production and sinking export during fall in the Hudson Bay system, Canada. Cont. Shelf. Res. 2013, 52, 62–72. [Google Scholar] [CrossRef]
- Belevich, T.A.; Demidov, A.B.; Makkaveev, P.N.; Shchuka, S.A.; Flint, M.V. Picophytoplankton distribution along Khatanga Bay-shelf-continental slope environment gradients in the western Laptev Sea. Heliyon 2021, 7, e06224. [Google Scholar] [CrossRef]
- Moreira-Turcq, P.F.; Martin, J.M. Characterization of fine particles by flow cytometry in estuarine and coastal Arctic waters. J. Sea Res. 1998, 39, 217–226. [Google Scholar] [CrossRef]
- Cauwet, G.; Sidorov, I. The biogeochemistry of Lena River: Organic carbon and nutrients distribution. Mar. Chem. 1996, 53, 211–227. [Google Scholar] [CrossRef]
- Brzezinski, M.A.; Krause, J.W.; Baines, S.B.; Collier, J.L.; Ohnemus, D.C.; Twining, B.S. Patterns and regulation of silicon accumulation in Synechococcus spp. J. Phycol. 2017, 53, 746–761. [Google Scholar] [CrossRef] [PubMed]
- Sherr, E.B.; Sherr, B.F.; Wheeler, P.A.; Thompson, K. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the Central Arctic Ocean. Deep-Sea Res. I 2003, 50, 557–571. [Google Scholar] [CrossRef]
- Lovejoy, C.; Vincent, W.F.; Bonilla, S.; Roy, S.; Martineau, M.-J.; Terrado, R.; Potvin, M.; Massana, R.; Pedrós-Alió, C. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas. J. Phycol. 2007, 4, 78–89. [Google Scholar] [CrossRef]
- Zhang, F.; He, J.; Lin, L.; Jin, H. Dominance of picophytoplankton in the newly open surface water of the Central Arctic Ocean. Polar Biol. 2015, 38, 1081–1089. [Google Scholar] [CrossRef]
- Pedrós-Alió, C.; Potvin, M.; Lovejoy, C. Diversity of planktonic microorganisms in the Arctic. Ocean. Prog. Oceanogr. 2015, 139, 233–243. [Google Scholar] [CrossRef]
- Booth, B.C.; Horner, R.A. Microalgae on the Arctic Ocean Section, 1994: Species abundance and biomass. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 1997, 44, 1607–1622. [Google Scholar] [CrossRef]
- Mostajir, B.; Gosselin, M.; Gratton, Y.; Booth, B.; Vasseur, C.; Garneau, M.E.; Fouilland, E.; Vidussi, F.; Demers, S. Surface water distribution of pico- and nanophytoplankton in relation to two distinctive water masses in the North Water, northern Baffin Bay, during fall. Aquat. Microb. Ecol. 2001, 23, 205–212. [Google Scholar] [CrossRef]
- Lorenz, M.G.; Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microbiol. 1987, 53, 2948–2952. [Google Scholar] [CrossRef]
- Karl, D.M.; Bailiff, M.D. The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnol. Oceanogr. 2012, 34, 543–558. [Google Scholar] [CrossRef]
- DeFlaun, M.; Paul, J.; Jeffrey, W. Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 1987, 38, 65–73. [Google Scholar] [CrossRef]
- Sohm, J.A.; Ahlgren, N.A.; Thomson, Z.J.; Williams, C.; Moffett, J.W.; Saito, M.A.; Webb, E.A.; Rocap, G. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016, 10, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Farrant, G.K.; Doréa, H.; Cornejo-Castillo, F.M.; Partensky, F.; Ratin, M.; Ostrowski, M.; Pitt, F.D.; Wincker, P.; Scanlan, D.J.; Iudicone, D.; et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl. Acad. Sci. USA 2016, 24, E3365–E3374. [Google Scholar] [CrossRef] [PubMed]
- Mazard, S.; Ostrowski, M.; Partensky, F.; Scanlan, D.J. Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ. Microbiol. 2012, 2, 372–386. [Google Scholar] [CrossRef]
- Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; et al. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming? Biogeosciences 2011, 8, 2785–2804. [Google Scholar] [CrossRef]
- Haverkamp, T.; Acinas, S.G.; Doeleman, M.; Stomp, M.; Huisman, J.; Stal, L.J. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 2008, 1, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Guo, W.; Tan, S.; Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 2017, 8, 1254. [Google Scholar] [CrossRef]
- Di Cesare, A.; Cabello-Yeves, P.J.; Chrismas, N.A.; Sánchez-Baracaldo, P.; Salcher, M.M.; Callieri, C. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genom. 2018, 19, 259. [Google Scholar] [CrossRef]
- Sánchez-Baracaldo, P.; Bianchini, G.; Di Cesare, A.; Callieri, C.; Chrismas, N.A. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front. Microbiol. 2019, 10, 45. [Google Scholar] [CrossRef]
- Crosbie, N.D.; Teubner, K.; Weisse, T. Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat. Microb. Ecol. 2003, 33, 53–66. [Google Scholar] [CrossRef]
- Ernst, A.; Becker, S.; Wollenzien, U.I.A.; Postius, C. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 2003, 149, 217–228. [Google Scholar] [CrossRef]
- Herdmafn, M.; Castenholz, R.W.; Iteman, I.; Waterbury, J.B.; Rippka, R. The Archaea and the deeply branching and phototrophic bacteria. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Boone, D.R., Castenholz, R.W., Eds.; Springer: Heidelberg, Germany, 2001; pp. 493–514. [Google Scholar]
- Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincon, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.; Lomas, M.W.; Veneziano, D.; et al. Present and Future Global Distributions of the Marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 2013, 110, 9824–9829. [Google Scholar] [CrossRef] [PubMed]
- Novotny, A.; Serandour, B.; Kortsch, S.; Gauzens, B.; Jan, K.M.G.; Winder, M. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model. Sci. Adv. 2023, 9, eadg1096. [Google Scholar] [CrossRef] [PubMed]
Primer Name, Position | Sequence 5′-3′ | Reference |
---|---|---|
Cya359F (359–378, 16S) | GGGGAATTTTCCGCAATGGG | [36] |
B1055 (1055–1074, 16S, F) | ATGGCTGTCGTCAGCTCGT | [37] |
Picocya16S-F | TGGATCACCTCCTAACAGGG | [38] |
Picocya23S-R | CCTTCATCGCCTCTGTGTGCC | [38] |
Region | Location | Station | H, m | T0 | S0 | N0 × 106 cells/L | N0–60 × 106 cells/L | % |
---|---|---|---|---|---|---|---|---|
Laptev Sea | Khatanga estuary | 5627 * (0) | 15 | 3.6 | 3.5 | 1.16 | 0.72 | 6.7 |
Laptev Sea | Khatanga estuary | 5628 | 12 | 3.6 | 3.5 | 1.25 | 0.93 | 4.8 |
Laptev Sea | Khatanga estuary | 5629 | 21 | 3.3 | 11.2 | 0.22 | 0.13 | 6.5 |
Laptev Sea | Khatanga estuary | 5630 | 26 | 2.3 | 17.2 | 0.31 | 0.11 | 7.1 |
Laptev Sea | shelf | 5632 | 34 | 2.2 | 21.9 | 0.11 | 0.03 | 1.9 |
Laptev Sea | shelf | 5591_2 * (0) | 40 | 2.3 | 22.3 | 0 | 0 | - |
Laptev Sea | shelf | 5633 | 33 | 1.5 | 27.9 | 0.02 | 0.03 | 1 |
Laptev Sea | shelf | 5590_2 * (13) | 63 | 0.7 | 31.6 | 0 | 0.004 | 0.1 |
Laptev Sea | shelf | 5634 * (0) | 186 | −0.4 | 30.0 | 0 | 0.007 | 0.1 |
Laptev Sea | continental slope | 5635 | 857 | −1.3 | 32.3 | 0 | 0.008 | 0.6 |
East Siberian Sea | Indigirka estuary | 5598 * (0) | 12 | 6.2 | 15.2 | 0.04 | 0.07 | 0.8 |
East Siberian Sea | Indigirka estuary | 5600 | 20 | 5.6 | 17.6 | 0.42 | 0.23 | 3.9 |
East Siberian Sea | shelf | 5602 | 25 | 4.2 | 21.2 | 0.09 | 0.51 | 9.8 |
East Siberian Sea | shelf | 5604 * (0) | 22 | 2.9 | 25.7 | 0 | 0.03 | 1.8 |
East Siberian Sea | shelf | 5605 | 43 | 1.1 | 29.1 | 0.02 | 0.08 | 5.3 |
East Siberian Sea | shelf | 5606 | 44 | 0.7 | 30.1 | 0 | 0 | - |
East Siberian Sea | shelf | 5607 * (0, 10) | 56 | −1.4 | 30.3 | 0 | 0 | - |
East Siberian Sea | Kolyma estuary | 5620 * (0) | 18 | 6.0 | 18.4 | 1.16 | 0.37 | 3.8 |
East Siberian Sea | Kolyma estuary | 5619 | 16 | 6.7 | 19.0 | 1.58 | 0.98 | 6.1 |
East Siberian Sea | shelf | 5617 | 22 | 6.1 | 23.3 | 0.4 | 0.16 | 3.4 |
East Siberian Sea | shelf | 5615 * (0) | 2 | 4.0 | 28.1 | 0 | 0.03 | 0.1 |
East Siberian Sea | shelf | 5613 | 34 | 3.1 | 27.6 | 0 | 0.38 | 6.8 |
East Siberian Sea | shelf | 5612 | 50 | 0.5 | 29.3 | 0.02 | 0.14 | 10.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belevich, T.A.; Milyutina, I.A.; Troitsky, A.V. Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution. Diversity 2023, 15, 1049. https://doi.org/10.3390/d15101049
Belevich TA, Milyutina IA, Troitsky AV. Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution. Diversity. 2023; 15(10):1049. https://doi.org/10.3390/d15101049
Chicago/Turabian StyleBelevich, Tatiana A., Irina A. Milyutina, and Aleksey V. Troitsky. 2023. "Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution" Diversity 15, no. 10: 1049. https://doi.org/10.3390/d15101049
APA StyleBelevich, T. A., Milyutina, I. A., & Troitsky, A. V. (2023). Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution. Diversity, 15(10), 1049. https://doi.org/10.3390/d15101049