Diversity of Indicator and Dominant Plant Species along Elevation Gradients in Prince Mohammad Bin Salman Nature Reserve, KSA
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Climate
2.2. Field and Sampling Protocol
2.3. Floristic and Vegetation Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, S.; Zhang, C.; Dong, J.; Adil, M.; Lu, H. Assessing Elevation-Based Forest Dynamics over Space and Time toward REDD+ MRV in Upland Myanmar. Remote Sens. 2022, 14, 6117. [Google Scholar] [CrossRef]
- Mekuate Kamga, S.; Tamungang, S.A.; Awa, T., II; Chmel, K.; Luma Ewome, F.; Lyonga Molua, L.; Uceda-Gómez, G.; Janeček, Š.; Mlíkovský, J.; Riegert, J. Changes in Bird Community Structure on Mount Cameroon Driven by Elevational and Vertical Gradients. Diversity 2023, 15, 727. [Google Scholar] [CrossRef]
- Nada, B.; Beckerman, A.P.; Evans, K.L.; Ballantyne, L.A. The Effects of Tropical Elevations and Associated Habitat Changes on Firefly (Coleoptera: Lampyridae) Diversity in Malaysia. Diversity 2023, 15, 79. [Google Scholar] [CrossRef]
- Halbritter, A.H.; Fior, S.; Keller, I.; Billeter, R.; Edwards, P.J.; Holderegger, R.; Karrenberg, S.; Pluess, A.R.; Widmer, A.; Alexander, J.M. Trait differentiation and adaptation of plants along elevation gradients. J. Evol. Biol. 2018, 31, 784–800. [Google Scholar] [CrossRef]
- Testolin, R.; Attorre, F.; Borchardt, P.; Brand, R.F.; Bruelheide, H.; Chytrý, M.; De Sanctis, M.; Dolezal, J.; Finckh, M.; Haider, S.; et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 2021, 30, 1218–1231. [Google Scholar] [CrossRef]
- Johnson, C.N.; Balmford, A.; Brook, B.W.; Buettel, J.C.; Galetti, M.; Guangchun, L.; Wilmshurst, J.M. Biodiversity losses and conservation responses in the421 Anthropocene. Science 2017, 356, 270–275. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services. 2019. Available online: https://ipbes.net/global-assessment-report-biodiversity-ecosystem-services (accessed on 4 May 2023).
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modeling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef]
- Cao, Y.; Peng, Y.; Peng, N.; Xin, J.; Dong, Q. Effects of landscape pattern evolution on plant species and functional trait diversity in Hunshandak Sandland. J. Arid Environ. 2023, 208, 104860. [Google Scholar] [CrossRef]
- Kreft, H.; Jetz, W. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 2010, 37, 2029–2053. [Google Scholar] [CrossRef]
- Trew, B.T.; Early, R.; Duffy, J.P.; Chown, S.L.; Maclean, I.M. Using near-ground leaf temperatures alters the projected climate change impacts on the historical range of a floristic biodiversity hotspot. Divers. Distrib. 2022, 28, 1282–1297. [Google Scholar] [CrossRef]
- Maestre, F.T.; Escudero, A. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology 2009, 90, 1729–1735. [Google Scholar] [CrossRef]
- Mishra, D.; Singh, G. Slope Aspects and Elevation Influenced Herbaceous Diversity and Soil Characteristics in Tropical Forests of Indian Desert. Int. J. Plant Soil Sci. 2021, 33, 589–605. [Google Scholar] [CrossRef]
- Liang, J.; Ding, Z.; Lie, G.; Zhou, Z.; Singh, P.B.; Zhang, Z.; Hu, H. Species richness patterns of vascular plants and their drivers along an elevational gradient in the central Himalayas. Glob. Ecol. Conserv. 2020, 24, e01279. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Ievinsh, G. Halophytic Clonal Plant Species: Important Functional Aspects for Existence in Heterogeneous Saline Habitats. Plants 2023, 12, 1728. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E. Components of Resource Competition in Plant Communities. In Perspectives on Plant Competition; Academic Press: Cambridge, MA, USA, 1990; pp. 27–49. [Google Scholar]
- Sala, O.E.; Austin, A.T. Strategies of Arid Zone Plants. In Ecosystems of the World 12B—Hot Deserts and Arid Shrublands; Elsevier: Amsterdam, The Netherlands, 2000; pp. 229–248. [Google Scholar]
- Facelli, J.M.; Pickett, S.T. Plant litter: Its dynamics and effects on plant community structure. Bot. Rev. 1991, 57, 1–32. [Google Scholar] [CrossRef]
- Van der Maarel, E. Vegetation Ecology; Blackwell: Hoboken, NJ, USA, 2005. [Google Scholar]
- Abdel-Hameed, U.K.; Obaid, W.A.; Boutraa, T. Phytodiversity in relation to ecovariability of Thawr and Eir mountains, Al-Madinah Al-Munawarah, Saudi Arabia. Pak. J. Bot. 2023, 55, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Mseddi, K.; Alghamdi, A.; Abdelgadir, M.; Sharawy, S.; Chaieb, M.; Miller, T. Phytodiversity distribution in relation to altitudinal gradient in Salma Mountains–Saudi Arabia. Glob. Ecol. Conserv. 2021, 27, e01525. [Google Scholar] [CrossRef]
- Al-Robai, S.A.; Mohamed, H.A.; Ahmed, A.A.; Al-Khulaidi, A.W.A. Effects of elevation gradients and soil components on the vegetation density and species diversity of Alabna escarpment, southwestern Saudi Arabia. Acta Ecol. Sin. 2019, 39, 202–211. [Google Scholar] [CrossRef]
- Al-Namazi, A.A.; Algarni, S.M.; Wan, J.S.; Al Mosallam, M.S.; Alotaibi, F. Floristic composition of Jandaf Mountain as a biodiversity hotspot area in southwestern Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 3654–3660. [Google Scholar] [CrossRef] [PubMed]
- Al-Namazi, A.A.; Al-Khulaidi, A.W.A.; Algarni, S.; Al-Sagheer, N.A. Natural plant species inventory of hotspot areas in Arabian Peninsula: Southwest Al-Baha region, Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 3309–3324. [Google Scholar] [CrossRef]
- Galal, T.M.; Al-Yasi, H.M.; Fadl, M.A. Vegetation zonation along the desert-wetland ecosystem of Taif Highland, Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 3374–3383. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, A.; El-Demerdash, M.; Hosni, H. Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia. J. Arid Environ. 1998, 38, 3–13. [Google Scholar] [CrossRef]
- Yun, C.-W.; Abdiyani, S. Assessing vegetation composition and the indicator species around water source areas in a pine forest plantation: A case study from Watujali and Silengkong Catchments, Kebumen, Indonesia. Forests 2019, 10, 825. [Google Scholar]
- Waheed, M.; Haq, S.M.; Arshad, F.; Bussmann, R.W.; Ali, H.M.; Siddiqui, M.H. Phyto-ecological distribution patterns and identification of alien invasive indicator species in relation to edaphic factors from semi-arid region. Ecol. Indic. 2023, 148, 110053. [Google Scholar] [CrossRef]
- Waheed, M.; Haq, S.M.; Fatima, K.; Arshad, F.; Bussmann, R.W.; Masood, F.R.; Alataway, A.; Dewidar, A.Z.; Almutairi, K.F.; Elansary, H.O.; et al. Ecological Distribution Patterns and Indicator Species Analysis of Climber Plants in Changa Manga Forest Plantation. Diversity 2022, 14, 988. [Google Scholar] [CrossRef]
- Mueller-Dombois, D.; Ellenberg, H. Vegetation Types: A Consideration of Available Methods and Their Suitability for Various Purposes; University of Hawaii: Honolulu, HI, USA, 1974. [Google Scholar]
- Thomas, G.W.; Sparks, D.L. Methods of Soil Analysis, Part 3: Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1009. [Google Scholar]
- Bowles, J.B. A survey of reliability-prediction procedures for microelectronic devices. IEEE Trans. Reliab. 1992, 41, 2–12. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 3: Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 961–1010. [Google Scholar]
- Rowell, D.L. Soil Science: Methods & Applications; Routledge: London, UK, 2014. [Google Scholar]
- Rhoades, P.A.J. Cation Exchange Capacity. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1982; pp. 178–190. [Google Scholar]
- Chaudhary, S.A. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 2000; Volume II, Parts 1–3.
- Collenette, S. Wildflowers of Saudi Arabia; National Commission for Wildlife Conservation and Development (NCWCD): Taif, Saudi Arabia, 1999. [Google Scholar]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring biological diversity. Curr. Biol. 2021, 31, R1174–R1177. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Bonham, C.D. Measurements for Terrestrial Vegetation; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Traveset, A.; Heleno, R.; Nogales, M. The Ecology of Seed Dispersal. In Seeds: The Ecology of Regeneration in Plant Communities; CABI: Wallingford, UK, 2014; pp. 62–93. [Google Scholar]
- Sayed, O.H.; Masrahi, Y.S. Climatology and phytogeography of Saudi Arabia. A review. Arid Land Res. Manag. 2023, 37, 311–368. [Google Scholar] [CrossRef]
- Elkordy, A.; Nour, I.H.; Ellmouni, F.Y.; Al Shaye, N.A.; Al-Bakre, D.A.; EL-Banhawy, A. Floristic Diversity of Jabal Al-Ward, Southwest Tabuk Region, Kingdom of Saudi Arabia. Agronomy 2022, 12, 2626. [Google Scholar] [CrossRef]
- Fakhry, A.M.; Anazi, H.K. Floristic diversity and vegetation structure of Dissah area northwestern Saudi Arabia. Egypt. J. Exp. Biol. Zool. 2017, 13, 447–457. [Google Scholar] [CrossRef]
- Ma, Y.M.; Liu, R.; Wang, S.; Han, F. Reaumuria soongorica-plant model to understand drought adaptive mechanisms of xerophyte and their potentials in improving stress tolerance in plants. J. Environ. Biol. 2023, 44, 1–10. [Google Scholar] [CrossRef]
- Deák, B.; Kovács, B.; Rádai, Z.; Apostolova, I.; Kelemen, A.; Kiss, R.; Lukács, K.; Palpurina, S.; Sopotlieva, D.; Báthori, F.; et al. Linking environmental heterogeneity and plant diversity: The ecological role of small natural features in homogeneous landscapes. Sci. Total. Environ. 2021, 763, 144199. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Purdon, A.; Mole, M.A.; Selier-South, J.; Kruger, J.; Mafumo, H.; Olivier, P. The use of environmental heterogeneity as an indicator of protected area effectiveness in conserving biodiversity. 2022; preprint. [Google Scholar] [CrossRef]
- Hosny, A.M.; Shawky, R.A.; Hashim, A.A. Size structure and floristic diversity of Acacia trees population in Taif Area, Saudi Arabia. J. Biodivers. Endanger. Species 2018, 6, 2. [Google Scholar] [CrossRef]
- Al-Dousari, A.M.; Ahmed, M.O.D.I.; Al-Senafy, M.; Al-Mutairi, M. Characteristics of sabkhas in relation to dominant perennial plant species in Kuwait. Kuwait J. Sci. Eng. 2008, 35, 129. [Google Scholar]
- Lambers, H.; Brundrett, M.C.; Raven, J.A.; Hopper, S.D. Plant mineral nutrition in ancient landscapes: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 2011, 348, 7–27. [Google Scholar] [CrossRef]
- Singh, J.P.; Rathore, V.S.; Roy, M.M. Notes about Haloxylon salicornicum (Moq.) Bunge ex Boiss., a promising shrub for arid regions. Genet. Resour. Crop Evol. 2015, 62, 451–463. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Lata, C.; Kumar, S. Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. S. Afr. J. Bot. 2016, 105, 36–44. [Google Scholar] [CrossRef]
- Dar, B.A.; Assaeed, A.M.; Al-Rowaily, S.L.; Al-Doss, A.A.; Abd-ElGawad, A.M. Vegetation composition of the halophytic grass Aeluropus lagopoides 576 communities within coastal and inland sabkhas of Saudi Arabia. Plants 2022, 11, 666. [Google Scholar] [CrossRef]
Indicator Species (IS) | ELe1 | ELe2 | ELe3 | ELe4 | ELe5 | ELe6 | ELe1 % | ELe2 % | ELe3 % | ELe4 % | ELe5 % | ELe6 % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abutilon bidentatum A. Rich. | 1 | 0.1623 | 1 | 1 | 1 | 1 | 0 | 12.5 | 0 | 0 | 0 | 0 |
Achillea fragrantissima (Forssk.) Sch.Bip. | 0.0006 | 1 | 1 | 1 | 1 | 1 | 50 | 0 | 0 | 0 | 0 | 0 |
Aeluropus lagopoides (L.) Thwaites | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 75 |
Aerva javanica (Burm.f.) Juss. ex Schultes | 0.0008 | 0.1391 | 1 | 1 | 0.1634 | 1 | 40.74 | 13.19 | 0 | 0 | 12.04 | 0 |
Aizoon canariense L. | 0.0154 | 0.0052 | 1 | 1 | 1 | 1 | 21.43 | 28.57 | 0 | 0 | 0 | 0 |
Anastatica hierochuntica L. | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Arnebia hispidissima (Lehm.) DC | 1 | 1 | 1 | 1 | 0.0001 | 1 | 0 | 0 | 0 | 0 | 87.5 | 0 |
Artemisia sieberi Besser | 0.0001 | 1 | 1 | 1 | 1 | 1 | 75 | 0 | 0 | 0 | 0 | 0 |
Arthrocnemum macrostachyum (Moric.) K. Koch | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Avicennia marina (Forssk.) Vierh. | 1 | 1 | 1 | 1 | 1 | 0.0004 | 0 | 0 | 0 | 0 | 0 | 50 |
Blepharis ciliaris (L.) B.L. Burtt. | 0.0031 | 0.0269 | 1 | 1 | 1 | 0.2676 | 34.43 | 22.54 | 0 | 0 | 0 | 9.016 |
Capparis cartilaginea Decne. | 1 | 0.0024 | 1 | 1 | 1 | 1 | 0 | 37.5 | 0 | 0 | 0 | 0 |
Capparis decidua (Forssk.) Edgew. | 1 | 1 | 1 | 0.6142 | 1 | 0.001 | 0 | 0 | 0 | 1.786 | 0 | 42.86 |
Carthamus persicus | 1 | 0.0004 | 1 | 1 | 1 | 1 | 0 | 50 | 0 | 0 | 0 | 0 |
Chrozophora oblongifolia (Delile) A.Juss. ex Spreng. | 0.0312 | 1 | 1 | 1 | 1 | 0.0119 | 21.71 | 0 | 0 | 0 | 0 | 26.32 |
Citrullus colocynthis (L.) Schrad | 0.0001 | 1 | 1 | 0.6574 | 1 | 0.1297 | 61.44 | 0 | 0 | 3.191 | 0 | 13.3 |
Cleome arabica L. | 0.0001 | 1 | 1 | 1 | 1 | 1 | 62.5 | 0 | 0 | 0 | 0 | 0 |
Cleome droserifolia (Forssk.) Del. | 1 | 1 | 1 | 0.0001 | 0.0006 | 1 | 0 | 0 | 0 | 55.26 | 44.74 | 0 |
Cocculus pendulus | 1 | 0.0001 | 1 | 1 | 1 | 0.2732 | 0 | 56.25 | 0 | 0 | 0 | 6.25 |
Cyperus bulbosus Vahl | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Erodium oxyrhinchum M.Bieb. | 1 | 1 | 1 | 1 | 1 | 0.1637 | 0 | 0 | 0 | 0 | 0 | 12.5 |
Fagonia indica Burm.f. | 0.0012 | 0.0001 | 1 | 1 | 1 | 1 | 36.43 | 45 | 0 | 0 | 0 | 0 |
Ferula sinaica Boiss. | 1 | 0.0001 | 1 | 1 | 1 | 1 | 0 | 75 | 0 | 0 | 0 | 0 |
Ficus cordata ssp. salicifolia (Vahl) C.C. Berg. | 1 | 0.0028 | 1 | 1 | 1 | 1 | 0 | 37.5 | 0 | 0 | 0 | 0 |
Forsskaolea tenacissima L. | 0.0037 | 0.0197 | 1 | 0.2169 | 1 | 1 | 33.46 | 24.04 | 0 | 10.58 | 0 | 0 |
Gomphocarpus sinaicus Boiss. | 0.0001 | 1 | 1 | 1 | 1 | 1 | 87.5 | 0 | 0 | 0 | 0 | 0 |
Haloxylon salicornicum (Moq.) Bunge | 0.0004 | 0.0044 | 0.4506 | 0.9983 | 1 | 0.9177 | 32.76 | 27.35 | 17.09 | 6.648 | 4.748 | 11.4 |
Heliotropium curassavicum L. | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 75 |
Hyoscyamus muticus L. | 0.0385 | 1 | 1 | 1 | 1 | 0.0038 | 18 | 0 | 0 | 0 | 0 | 32.5 |
Hyphaene thebaica | 1 | 0.0514 | 1 | 1 | 0.095 | 0.0213 | 0 | 18.75 | 0 | 0 | 15.63 | 23.44 |
Iphiona scabra | 1 | 0.0001 | 1 | 1 | 1 | 0.0754 | 0 | 68.48 | 0 | 0 | 0 | 16.3 |
Lasiurus scindicus Henrard | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Lavandula coronopifolia Poir | 1 | 0.029 | 1 | 1 | 1 | 1 | 0 | 25 | 0 | 0 | 0 | 0 |
Lavandula pubescens Decne. | 0.0219 | 0.0015 | 1 | 1 | 1 | 1 | 22.92 | 39.58 | 0 | 0 | 0 | 0 |
Leptadenia pyrotechnica (Forssk.) Decne. | 1 | 0.0001 | 0.3064 | 0.1034 | 1 | 1 | 0 | 67.16 | 10.26 | 16.42 | 0 | 0 |
Leptochloa fusca (L.) Kunth. | 0.0001 | 1 | 1 | 1 | 1 | 1 | 62.5 | 0 | 0 | 0 | 0 | 0 |
Lycium shawii Roem & Schult | 0.0077 | 0.0001 | 0.9528 | 0.9973 | 1 | 0.5474 | 29.39 | 38.17 | 8.349 | 4.962 | 2.338 | 15.27 |
Maerua crassifolia Forssk. | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 87.5 |
Medicago laciniata var. brachyacantha Boiss. | 1 | 1 | 1 | 1 | 0.0007 | 1 | 0 | 0 | 0 | 0 | 50 | 0 |
Nitraria retusa (Forssk.) Asch | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Ochradenus baccatus Del. | 0.0007 | 0.0001 | 0.5117 | 1 | 0.8879 | 0.9767 | 36.69 | 39.05 | 11.83 | 0 | 5.695 | 2.959 |
Panicum turgidum Forssk. | 1 | 0.0041 | 1 | 1 | 1 | 0.0001 | 0 | 31.4 | 0 | 0 | 0 | 50.87 |
Peganum harmala L. | 0.0025 | 1 | 1 | 1 | 1 | 1 | 37.5 | 0 | 0 | 0 | 0 | 0 |
Pergularia tomentosa L. | 0.0208 | 0.0195 | 1 | 0.2022 | 1 | 1 | 25.38 | 25.38 | 0 | 11.54 | 0 | 0 |
Phoenix caespitosa | 1 | 0.0269 | 1 | 1 | 1 | 1 | 0 | 25 | 0 | 0 | 0 | 0 |
Phragmites australis (Cav.) Trin. Ex. Steudel | 1 | 0.0009 | 1 | 1 | 1 | 0.1102 | 0 | 35.71 | 0 | 0 | 0 | 10.71 |
Plicosepalus acaciae (Zucc.) Wiens & Polhill | 1 | 0.0044 | 1 | 1 | 1 | 0.0005 | 0 | 30.17 | 0 | 0 | 0 | 38.79 |
Pulicaria incisa (Lam.) DC | 0.0104 | 0.229 | 1 | 0.1268 | 1 | 1 | 28.79 | 9.091 | 0 | 13.64 | 0 | 0 |
Pycnocycla saxatilis Danin, Hedge & Lamond | 0.0033 | 1 | 1 | 1 | 1 | 1 | 37.5 | 0 | 0 | 0 | 0 | 0 |
Reseda muricata C.Presl | 0.0034 | 1 | 1 | 1 | 1 | 1 | 37.5 | 0 | 0 | 0 | 0 | 0 |
Retama raetam (Forssk.) Webb. | 0.0001 | 1 | 1 | 1 | 1 | 1 | 100 | 0 | 0 | 0 | 0 | 0 |
Rhazya stricta Decne. | 0.0001 | 1 | 0.2617 | 0.5469 | 0.9601 | 0.0629 | 39.35 | 0 | 17.22 | 12.73 | 5.093 | 23.15 |
Salsola jordanicola Eig | 0.0125 | 0.1611 | 1 | 1 | 1 | 1 | 30.56 | 9.722 | 0 | 0 | 0 | 0 |
Salvadora persica L. | 1 | 1 | 1 | 1 | 1 | 0.0003 | 0 | 0 | 0 | 0 | 0 | 50 |
Seidlitzia rosmarinus Bunge ex Boiss. | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 75 |
Senna holosericea (Fresen) Greuter | 1 | 1 | 1 | 1 | 0.0001 | 1 | 0 | 0 | 0 | 0 | 100 | 0 |
Stipa capensis Thunb. | 0.0001 | 1 | 1 | 1 | 1 | 1 | 87.5 | 0 | 0 | 0 | 0 | 0 |
Stipagrostis plumosa (L.) Munro ex T.Anderson | 1 | 1 | 1 | 1 | 1 | 0.1616 | 0 | 0 | 0 | 0 | 0 | 12.5 |
Tamarix aphylla (L.) Karst | 1 | 1 | 1 | 1 | 1 | 0.0035 | 0 | 0 | 0 | 0 | 0 | 37.5 |
Tamarix nilotica (Ehrenb.) Bunge | 1 | 1 | 1 | 1 | 0.0004 | 0.0001 | 0 | 0 | 0 | 0 | 42.11 | 57.89 |
Tephrosia purpurea ssp. apollinea (Del.) Hosni | 1 | 1 | 1 | 1 | 0.0001 | 1 | 0 | 0 | 0 | 0 | 100 | 0 |
Traganum nudatum Delile | 1 | 1 | 1 | 1 | 1 | 0.004 | 0 | 0 | 0 | 0 | 0 | 37.5 |
Vachellia flava (Forssk.) Kyal. & Boatwr | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Vachellia gerrardii (Benth.) | 0.0001 | 0.3625 | 1 | 1 | 1 | 1 | 75.35 | 5.208 | 0 | 0 | 0 | 0 |
Vachellia oeforta (Forssk) Kyal. & Boatwr | 1 | 1 | 1 | 1 | 1 | 0.1637 | 0 | 0 | 0 | 0 | 0 | 12.5 |
Vachellia tortilis (Forssk.) | 1 | 0.0001 | 0.4705 | 0.0683 | 0.2947 | 1 | 0 | 50.25 | 10.55 | 23.62 | 14.07 | 0 |
Vachellia tortilis subsp. raddiana (Savi) Brenan | 1 | 0.0002 | 0.9445 | 0.4809 | 0.7695 | 0.0028 | 0 | 37.56 | 5.183 | 13.17 | 8.78 | 32.2 |
Vachellia tortilis(Forssk.) | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Zilla spinosa (L.) Prantl | 0.0001 | 1 | 1 | 1 | 1 | 1 | 100 | 0 | 0 | 0 | 0 | 0 |
Ziziphus spina-christi (L.) Desf. | 1 | 0.0001 | 1 | 1 | 0.6201 | 1 | 0 | 95.65 | 0 | 0 | 1.63 | 0 |
Zygophyllum coccineum L. | 1 | 1 | 1 | 1 | 1 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 100 |
Elevation Index | 1st Dominant | 2nd Dominant | Important Species |
---|---|---|---|
Elevation 1 ≥ 1000 m (a.s.l) | Haloxylon salicornicum (Moq.) Bunge [50.02] | Retama raetam (Forssk.) Webb. [36.29] | Zilla Spinosa (L.) Prantl [35.47] |
Rhazya stricta Decne. [29.57] | |||
Vachellia gerrardii (Benth.) [19.64] | |||
Lycium shawii Roem & Schult [19.09] | |||
Elevation 2 = 800 m (a.s.l) | Haloxylon salicornicum (Moq.) Bunge [44.24] | Vachellia tortilis subsp. raddiana (Savi) Brenan [27.49] | Vachellia tortilis (Forssk.) [26.41] |
Ochradenus baccatus Del. [23.51] | |||
Leptadenia pyrotechnica (Forssk.) Decne. [23.03] | |||
Lycium shawii Roem & Schult [20.83] | |||
Elevation 3 = 600 m (a.s.l) | Haloxylon salicornicum (Moq.) Bunge [95.06] | Rhazya stricta Decne. [64.64] | Vachellia tortilis (Forssk.) [37.23] |
Leptadenia pyrotechnica (Forssk.) Decne. [33.03] | |||
Lycium shawii Roem & Schult [27.86] | |||
Vachellia tortilis subsp. raddiana (Savi) Brenan [23.40] | |||
Ochradenus baccatus Del. [18.74 ] | |||
Elevation 4 = 400 m (a.s.l) | Haloxylon salicornicum (Moq.) Bunge [56.52] | Rhazya stricta Decne. [52.56] | Vachellia tortilis (Forssk.) [49.86] |
Vachellia tortilis subsp. raddiana (Savi) Brenan [38.83] | |||
Cleome droserifolia (Forssk.) Del. [27.64] | |||
Leptadenia pyrotechnica (Forssk.) Decne. [25.72] | |||
Lycium shawii Roem & Schult [14.47] | |||
Elevation 5 = 200 m (a.s.l.) | Haloxylon salicornicum (Moq.) Bunge [37.76] | Vachellia tortilis (Forssk.) [34.72] | Tamarix nilotica (Ehrenb.) Bunge [33.68] |
Rhazya stricta Decne. [30.95] | |||
Vachellia tortilis subsp. raddiana (Savi) Brenan [29.47] | |||
Senna holosericea (Fresen) Greuter [25.33] | |||
Tephrosia purpurea ssp. apollinea (Del.) Hosni [21.13] [18.40] | |||
Cleome droserifolia (Forssk.) Del. | |||
Hyphaene thebaica (L.) Mart. [14.63] | |||
Elevation 6 ≤ 100 m (a.s.l.) | Vachellia tortilis (Forssk.) [32.62] | Haloxylon salicornicum (Moq.) Bunge [25.45] | Zygophyllum coccineum L. [23.44] |
Rhazya stricta Decne. [19.44] | |||
Vachellia tortilis subsp. raddiana (Savi) Brenan [16.79] | |||
Tamarix nilotica (Ehrenb.) Bunge [14.51] |
Parameters | Altitudes | MS | F | p Value | |||||
---|---|---|---|---|---|---|---|---|---|
Alt1 | Alt2 | Alt3 | Alt4 | Alt5 | Alt6 | ||||
pH | 8.167 ±0.04 | 8.16 ±0.084 | 7.937 ±0.07 | 8.027 ±0.103 | 8.18 ±0.068 | 8.085 ±0.084 | 0.073 | 1.43 | 0.236 ns |
EC (dS.m−1) | 0.38 ±0.033 | 0.301 ±0.027 | 1.613 ±0.598 | 0.672 ±0.186 | 2.543 ±1.566 | 6.531 ±3.096 a | 45.188 | 2.74 | 0.034 * |
TDS | 243.25 ±21.191 | 189.24 ±17.941 | 1063.2 ±378.96 | 444.58 ±120.56 | 1681 ±994.08 | 4227.3 ±1968.9 | 1.896^07 | 2.83 | 0.030 * |
K (meq/L) | 0.343 ±0.048 | 0.407 ±0.08 | 2.707 ±0.989 a | 0.936 ±0.13 | 0.991 ±0.18 | 0.837 ±0.227 | 5.951 | 3.99 | 0.005 ** |
Na (meq/L) | 0.982 ±0.307 | 0.613 ±0.145 | 6.818 ±4.015 | 1.147 ±0.381 | 22.808 ±13.544 | 39.586 ±20.028 a | 2037.53 | 2.5 | 0.048 * |
Ca (meq/L) | 2.537 ±0.287 | 2.68 ±0.352 | 9.06 ±1.403 | 3.976 ±0.895 | 30.57 ±22.228 | 59.729 ±20.366 a | 4239.4 | 3.24 | 0.016 * |
Mg (meq/L) | 1.181 ±0.166 | 0.95 ±0.097 | 3.693 ±0.865 | 2.591 ±0.932 | 6.063 ±4.057 | 82.906 ±39.957 a | 8563.5 | 3.98 | 0.005 ** |
HCO3 (%) | 1.62 ±0.195 | 1.411 ±0.153 | 4.127 ±1.031 a | 1.873 ±0.324 | 1.256 ±0.164 | 1.041 ±0.125 | 10.289 | 5.85 | 0.0005 *** |
Cl (meq/L) | 0.796 ±0.16 | 1.337 ±0.141 | 6.271 ±2.657 | 2.098 ±0.678 | 54.956 ±43.825 | 176.32 ±91.981 a | 39061.7 | 2.73 | 0.035 * |
SO4 (meq/L) | 2.633 ±0.483 | 1.845 ±0.426 | 12.451 ±3.678 | 4.506 ±1.381 | 27.512 ±18.981 | 128.19 ±54.981 a | 19434.5 | 4.18 | 0.004 ** |
CaCO3 % | 9.117 ±1.923 | 2.872 ±0.528 | 17.044 ±1.733 a | 6.052± 1.258 | 4.267 ±0.69 | 5.962 ±1.041 | 208.008 | 17.09 | <0.0001 *** |
O.M % | 0.257 ±0.051 | 0.392 ±0.141 | 0.471 ±0.11 | 0.171 ±0.08 | 0.197 ±0.038 | 0.278 ±0.046 | 0.107 | 1.6 | 0.185 ns |
Clay % | 5.637 ±0.843 | 3.3 ±0.50 | 7.023 ±0.628 a | 4.018 ±0.727 | 6.425 ±0.413 | 3.362 ±0.692 | 20.892 | 6.29 | 0.0003 *** |
Silt % | 10.836 ±2.185 | 2.775 ±0.936 | 12.361 ±1.969 a | 4.835 ±1.565 | 11.726 ±1.092 | 12.256 ±3.566 | 141.91 | 3.59 | 0.010 * |
Sand % | 83.055 ±2.999 | 93.948 ±1.002 | 78.86 ±2.6056 | 88.95 ±2.895 | 79.844 ±1.758 | 82.76 ±4.147 | 268.21 | 4.54 | 0.002 ** |
MC % | 0.638 ±0.112 | 0.546 ±0.199 | 0.2013 ±0.043 | 0.11 ±0.042 | 0.202 ±0.031 | 0.71 ±0.215 | 0.539 | 4.05 | 0.005 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bakre, D.A. Diversity of Indicator and Dominant Plant Species along Elevation Gradients in Prince Mohammad Bin Salman Nature Reserve, KSA. Diversity 2023, 15, 1081. https://doi.org/10.3390/d15101081
Al-Bakre DA. Diversity of Indicator and Dominant Plant Species along Elevation Gradients in Prince Mohammad Bin Salman Nature Reserve, KSA. Diversity. 2023; 15(10):1081. https://doi.org/10.3390/d15101081
Chicago/Turabian StyleAl-Bakre, Dhafer A. 2023. "Diversity of Indicator and Dominant Plant Species along Elevation Gradients in Prince Mohammad Bin Salman Nature Reserve, KSA" Diversity 15, no. 10: 1081. https://doi.org/10.3390/d15101081
APA StyleAl-Bakre, D. A. (2023). Diversity of Indicator and Dominant Plant Species along Elevation Gradients in Prince Mohammad Bin Salman Nature Reserve, KSA. Diversity, 15(10), 1081. https://doi.org/10.3390/d15101081