Taxonomy and Phylogeny of Endophytic Fungi (Chaetomiaceae) Associated with Healthy Leaves of Mangifera indica in Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Fungi Isolation
2.2. Microscopic Examination
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Phylogenetic Analyses
3. Results
3.1. Phylogenetic Results
3.2. Taxonomy
- Arcopilus X. Wei Wang, Samson & Crous, Studies in Mycology 84: 159 (2016) [36]
- Arcopilus hongheensis E.F. Yang & Tibpromma, sp. nov.
- Dichotomopilus X. Wei Wang, Samson & Crous, Studies in Mycology 84: 185 (2016) [36]
- Humicola Traaen, Nytt Magazin for Naturvidenskapene 52: 31 (1914) [45]
- Humicola wallefii (J.A. Mey & Lanneau) X. Wei Wang & Houbraken, Studies in Mycology 93: 107 (2018) [47]
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, D.; Singh, S.P. Mango: History origin and distribution. J. Pharmacogn. Phytochem. 2017, 6, 1257–1262. [Google Scholar]
- Xin, Y.; Yu, W.B.; Eiadthong, W.; Cao, Z.; Li, Q.; Yang, Z.; Zhao, W.; Xin, P. Comparative analyses of 18 complete chloroplast genomes from eleven Mangifera species (Anacardiaceae): Sequence characteristics and phylogenomics. Horticulturae 2023, 9, 86. [Google Scholar] [CrossRef]
- Gao, A.; Luo, R.; Huang, J.; Zhao, Z.; Chen, Y.; Wang, Y.; Yu, H.; Wei, T. Mango industry development status of China in 2020. Adv. Agric. Hortic. Entomol. 2022, 3, 23–25. [Google Scholar] [CrossRef]
- Zhang, C.X.; Xie, D.H.; Chen, Y.F.; Bai, T.Q.; Ni, Z.G. The development status of Yunnan mango industry. China Fruits 2020, 6, 112–117. (In Chinese) [Google Scholar]
- Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. J. Fungi 2022, 8, 205. [Google Scholar] [CrossRef]
- Kuldau, G.; Bacon, C.W. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol. Control 2008, 46, 57–71. [Google Scholar] [CrossRef]
- Abdelaziz, M.E.; Kim, D.; Ali, S.; Fedoroff, N.V.; Al-Babili, S. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci. 2017, 263, 107–115. [Google Scholar] [CrossRef]
- Phoka, N.; Suwannarach, N.; Lumyong, S.; Ito, S.I.; Matsui, K.; Arikit, S.; Sunpapao, A. Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana. J. Fungi 2020, 6, 341. [Google Scholar] [CrossRef]
- Tian, Y.; Fu, X.; Zhang, G.; Zhang, R.; Kang, Z.; Gao, K.; Mendgen, K. Mechanisms in growth-promoting of cucumber by the endophytic fungus Chaetomium globosum strain ND35. J. Fungi 2022, 8, 180. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef]
- Gautam, A.K.; Avasthi, S. Fungal endophytes: Potential biocontrol agents in agriculture. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Woodhead Publishing: Sawston, UK, 2019; pp. 241–283. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Ateba, C.N. Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms 2020, 8, 1934. [Google Scholar] [CrossRef] [PubMed]
- Vieira, W.A.; Michereff, S.J.; de Morais, M.A.; Hyde, K.D.; Câmara, M.P. Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Divers. 2014, 67, 181–202. [Google Scholar] [CrossRef]
- Dashyal, M.S.; Sangeetha, C.G.; Appanna, V.; Halesh, G.K.; Devappa, V. Isolation and morphological characterization of endophytic fungi isolated from ten different varieties of mango. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 717–726. [Google Scholar] [CrossRef]
- Yang, E.F.; Karunarathna, S.C.; Tibpromma, S.; Stephenson, S.L.; Promputtha, I.; Elgorban, A.M.; Chomnunti, P. Endophytic fungi associated with mango show in vitro antagonism against bacterial and fungal pathogens. Agronomy 2023, 13, 169. [Google Scholar] [CrossRef]
- Gautam, A.K.; Kant, M.; Thakur, Y. Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch. Phytopathol. 2013, 46, 627–635. [Google Scholar] [CrossRef]
- Cao, L.X.; You, J.L.; Zhou, S.N. Endophytic fungi from Musa acuminata leaves and roots in South China. World J. Microbiol. Biotechnol. 2002, 18, 169–171. [Google Scholar] [CrossRef]
- Cui, Y.; Yi, D.; Bai, X.; Sun, B.; Zhao, Y.; Zhang, Y. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 2012, 83, 913–920. [Google Scholar] [CrossRef]
- Wang, X.W.; Han, P.J.; Bai, F.Y.; Luo, A.; Bensch, K.; Meijer, M.; Kraak, B.; Han, D.Y.; Sun, B.D.; Crous, P.W.; et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud. Mycol. 2022, 101, 121–243. [Google Scholar] [CrossRef]
- Lu, L.; Karunarathna, S.C.; Dai, D.Q.; Jayawardena, R.S.; Suwannarach, N.; Tibpromma, S. Three new species of Nigrograna (Dothideomycetes, Pleosporales) associated with Arabica coffee from Yunnan Province, China. MycoKeys 2022, 94, 51. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Yang, E.; Tibpromma, S.; Dai, D.; Promputtha, I.; Mortimer, P.E.; Karunarathna, S.C. Three interesting fungal species associated with the Asian House Gecko in Kunming, China. Phytotaxa 2022, 545, 37–56. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among Ascomycetes: Evidence from an RNA polymerase II. subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, K.; Kumar, P.; Pandey, A.; Ginwal, H.S.; Barthwal, S.; Nautiyal, R.; Meena, R.K. First record of Cladosporium oxysporum as a potential novel fungal hyperparasite of Melampsora medusae f. sp. deltoidae and screening of Populus deltoides clones against leaf rust. 3 Biotech 2023, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Glez-Peña, D.; Gómez-Blanco, D.; Reboiro-Jato, M.; Fdez-Riverola, F.; Posada, D. FALTER: Program oriented conversion of DNA and protein alignments. Nucleic Acids Res. 2010, 38, 14–18. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Zhaxybayeva, O.; Gogarten, J.P. Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. Genomics 2002, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1. 4.0. A Graphical Viewer of Phylogenetic Trees. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 25 June 2023).
- Wang, X.W.; Houbraken, J.; Groenewald, J.Z.; Meijer, M.; Andersen, B.; Nielsen, K.F.; Crous, P.W.; Samson, R.A. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 2016, 84, 145–224. [Google Scholar] [CrossRef] [PubMed]
- Kirk, P.M. Index Fungorum. Available online: http://www.indexfungorum.org/names/names.asp (accessed on 5 May 2023).
- Kabbaj, F.Z.; Lu, S.; Faouzi, M.E.A.; Meddah, B.; Proksch, P.; Cherrah, Y.; Altenbach, H.J.; Aly, A.H.; Chadli, A.; Debbab, A. Bioactive metabolites from Chaetomium aureum: Structure elucidation and inhibition of the Hsp90 machine chaperoning activity. Bioorg. Med. Chem. 2015, 23, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Kanokmedhakul, S.; Kanokmedhakul, K.; Nasomjai, P.; Louangsysouphanh, S.; Soytong, K.; Isobe, M.; Kongsaeree, P.; Prabpai, S.; Suksamrarn, A. Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J. Nat. Prod. 2006, 69, 891–895. [Google Scholar] [CrossRef]
- Liu, C.; Chang, Z. Identifcation of the biocontrol strain LB-2 and determination of its antifungal efects on plant pathogenic fungi. J. Plant Pathol. 2018, 100, 25–32. [Google Scholar] [CrossRef]
- Tavares, D.G.; Guimarães, S.D.S.C.; Piccoli, R.H.; Duarte, W.F.; Cardoso, P.G. Arcopilus eremanthusum sp. nov. as sources of antibacterial and antioxidant metabolites. Arch. Microbiol. 2022, 204, 156. [Google Scholar] [CrossRef]
- Crous, P.W.; Cowan, D.A.; Maggs-Kölling, G.; Yilmaz, N.; Thangavel, R.; Wingfield, M.J.; Noordeloos, M.E.; Dima, B.; Brandrud, T.E.; Jansen, G.M.; et al. Fungal Planet description sheets: 1182–1283. Persoonia 2021, 46, 313. [Google Scholar] [CrossRef]
- Gu, C.B.; Ma, H.; Ning, W.J.; Niu, L.L.; Han, H.Y.; Yuan, X.H.; Fu, Y.J. Characterization, culture medium optimization and antioxidant activity of an endophytic vitexin-producing fungus Dichotomopilus funicola Y3 from pigeon pea [Cajanus cajan (L.) Millsp.]. J. Appl. Microbiol. 2018, 125, 1054–1065. [Google Scholar] [CrossRef]
- Nayak, B.; Choudhary, R. Optimization, purification and characterization of laccase from lignocellulolytic fungi Dichotomopilus funicola NFCCI 4534 and Alternaria padwickii NFCCI 4535. Biocatal. Agric. Biotechnol. 2022, 42, 102344. [Google Scholar] [CrossRef]
- Traaen, A.E. Untersuchungen über Bodenpilze aus Norwegen. Nyt. Mag. Naturvid. 1914, 52, 20–121. [Google Scholar]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed.; CABI Publishing: Wallingford, UK, 2008; p. 771. [Google Scholar] [CrossRef]
- Wang, X.W.; Yang, F.Y.; Meijer, M.; Kraak, B.; Sun, B.D.; Jiang, Y.L.; Wu, Y.M.; Bai, F.Y.; Seifert, K.A.; Crous, P.W.; et al. Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Stud. Mycol. 2019, 93, 65–153. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.L.; Wu, Y.M.; Xu, J.J.; Geng, Y.; Wang, H.; Zhang, T. Four new Humicola species from soil in China. Mycotaxon 2016, 131, 269–275. [Google Scholar] [CrossRef]
- Tiscornia, S.; Segui, C.; Bettucci, L. Composition and characterization of fungal communities from different composted materials. Cryptogam. Mycol. 2009, 30, 363–376. [Google Scholar]
- Betancourt, O.; Zaror, L.; Senn, C. Isolation of filamentous fungi from haircoat cats without skin lesions in temuco, Chile. Rev. Cient. Fac. Cienc. 2013, 23, 380–387. [Google Scholar]
- Ibrahim, S.R.; Mohamed, S.G.; Altyar, A.E.; Mohamed, G.A. Natural products of the fungal genus Humicola: Diversity, biological activity, and industrial importance. Curr. Microbiol. 2021, 78, 2488–2509. [Google Scholar] [CrossRef]
- Joshi, B.K.; Gloer, J.B.; Wicklow, D.T. Bioactive natural products from a sclerotium-colonizing isolate of Humicola fuscoatra. J. Nat. Prod. 2002, 65, 1734–1737. [Google Scholar] [CrossRef]
- Mello-de-Sousa, T.M.; Silva-Pereira, I.; Poças-Fonseca, M.J. Carbon source and pH-dependent transcriptional regulation of cellulase genes of Humicola grisea var. thermoidea grown on sugarcane bagasse. Enzyme Microb. Technol. 2011, 48, 19–26. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Ulhoa, C.J.; Silveira, M.H.L.; Andreaus, J.; Silva-Pereira, I.; Poças-Fonseca, M.J.; Faria, F.P. An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates. World J. Microbiol. Biotechnol. 2013, 29, 19–26. [Google Scholar] [CrossRef]
- Cintra, L.C.; Fernandes, A.G.; de Oliveira, I.C.M.; Siqueira, S.J.L.; Costa, I.G.O.; Colussi, F.; Jesuíno, R.S.A.; Ulhoa, C.J.; de Faria, F.P. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int. J. Biol. Macromol. 2017, 105, 262–271. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, B.; Luo, H.; Meng, K.; Wang, Y.; Liu, M.; Bai, Y.; Yao, B.; Tu, T. Production pectin oligosaccharides using Humicola insolens Y1-derived unusual pectate lyase. J. Biosci. Bioeng. 2020, 129, 16–22. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; Mohamed, S.G.; Sindi, I.A.; Mohamed, G.A. Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): An updated review from 2016 to 2021. Mycol. Prog. 2021, 20, 595–639. [Google Scholar] [CrossRef]
- Haruma, T.; Yamaji, K.; Ogawa, K.; Masuya, H.; Sekine, Y.; Kozai, N. Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in Miscanthus sinensis via increasing the aluminium detoxicants, chlorogenic acid and oosporein. PLoS ONE 2019, 14, e0212644. [Google Scholar] [CrossRef] [PubMed]
- Straatsma, G.; Samson, R.A.; Olijnsma, T.W.; Op Den Camp, H.J.; Gerrits, J.P.; Van Griensven, L.J. Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl. Environ. Microbiol. 1994, 60, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, C. A review on Chaetomium globosum is versatile weapons for various plant pathogens. J. Pharmacogn. Phytochem. 2019, 8, 946–949. [Google Scholar]
- Kumar, R.; Kundu, A.; Dutta, A.; Saha, S.; Das, A.; Bhowmik, A. Chemo-profiling of bioactive metabolites from Chaetomium globosum for biocontrol of Sclerotinia rot and plant growth promotion. Fungal Biol. 2021, 125, 167–176. [Google Scholar] [CrossRef]
- Vivi, V.K.; Martins-Franchetti, S.M.; Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019, 64, 1–7. [Google Scholar] [CrossRef]
- Maheswari, S.; Rajagopal, K. Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Curr. Sci. 2013, 104, 515–518. [Google Scholar]
- Dwibedi, V.; Saxena, S. Arcopilus aureus, a resveratrol-producing endophyte from Vitis vinifera. Appl. Biochem. Biotechnol. 2018, 186, 476–495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, E.-F.; Karunarathna, S.C.; Dai, D.-Q.; Priyashantha, A.K.H.; Promputtha, I.; Elgorban, A.; Tibpromma, S. Taxonomy and Phylogeny of Endophytic Fungi (Chaetomiaceae) Associated with Healthy Leaves of Mangifera indica in Yunnan, China. Diversity 2023, 15, 1094. https://doi.org/10.3390/d15101094
Yang E-F, Karunarathna SC, Dai D-Q, Priyashantha AKH, Promputtha I, Elgorban A, Tibpromma S. Taxonomy and Phylogeny of Endophytic Fungi (Chaetomiaceae) Associated with Healthy Leaves of Mangifera indica in Yunnan, China. Diversity. 2023; 15(10):1094. https://doi.org/10.3390/d15101094
Chicago/Turabian StyleYang, Er-Fu, Samantha C. Karunarathna, Dong-Qin Dai, Alviti Kankanamalage Hasith Priyashantha, Itthayakorn Promputtha, Abdallah Elgorban, and Saowaluck Tibpromma. 2023. "Taxonomy and Phylogeny of Endophytic Fungi (Chaetomiaceae) Associated with Healthy Leaves of Mangifera indica in Yunnan, China" Diversity 15, no. 10: 1094. https://doi.org/10.3390/d15101094
APA StyleYang, E. -F., Karunarathna, S. C., Dai, D. -Q., Priyashantha, A. K. H., Promputtha, I., Elgorban, A., & Tibpromma, S. (2023). Taxonomy and Phylogeny of Endophytic Fungi (Chaetomiaceae) Associated with Healthy Leaves of Mangifera indica in Yunnan, China. Diversity, 15(10), 1094. https://doi.org/10.3390/d15101094