Terrestrial Alien Flora of the Iberian Alboran Coast: Assessment, Attributes, and Future Implications
Abstract
:1. Introduction
- Which alien species are present along the coastlines of Málaga and Granada?
- What is the current invasion of alien species in the study area, and which attributes could influence their invasion?
- Which HCI exhibits the greatest richness of alien species, and what is the occupancy of alien species in each HCI?
- Which species have the potential to become invasive in the study area?
- Which geographical areas along the coastlines of Málaga and Granada have the highest presence of invasive species?
2. Materials and Methods
2.1. Study Area
2.2. Checklist of Vascular Alien Species
2.2.1. Data Collection
2.2.2. Data Collection in HCIs
2.3. Current Invasion and Attributes Related with the Occupied HCI
2.3.1. Current Invasion of Alien Species in the Studied Area
- Super invaders, meaning abundant species with HCI percentages and occupied areas above threshold values;
- Moderate invaders, meaning either scarce species with HCI percentages and occupied areas above the threshold values or abundant species with HCI percentages and occupied areas below the threshold values; this category also includes scarce or abundant species with HCI percentages above the threshold value but occupied area percentages below the threshold value;
- Poor invaders, meaning scarce species with HCI percentages and occupied areas below the threshold value. For further details, see [32].
2.3.2. Relationship between the Attributes of Species and Number of Occupied HCIs
2.4. Richness and Occupancy of Alien Species per HCI
2.5. Potentially Invasive Species
2.6. Heat Distribution Maps and Management
3. Results
3.1. Checklist of Terrestrial Alien Taxa (Naturalised and Invasive) in the Alboran Sea Area
3.2. Current Invasion Degree of Alien Species Based on Geographic Range, Amount of Habitat Occupied by the Species, and Local Abundance
Relationship between Attributes of Species and Number of Occupied HCIs
3.3. Richness and Occupancy of Alien Species per HCI
3.4. Potentially Invasive Species
3.5. Heat Distribution Maps
3.6. Most Invaded Areas and Management
4. Discussion
4.1. Checklist of Terrestrial Alien Taxa of the Alboran Sea Area
4.2. Current Invasion and Attributes Related to Occupied HCI
4.3. Richness and Occupancy of Alien Species per HCI
4.4. Potentially Invasive Species as a Growing Threat
4.5. The Most Invaded Areas and Implications for Management
5. Conclusions
- The terrestrial coast of Málaga and Granada (i.e., the Alboran sea area) exhibit 123 alien plant taxa belonging to 43 taxonomic families and 86 genera. The families Asteraceae, Asparagaceae, and Poaceae present the greatest number of taxa. Most of the alien taxa are neophytes from the American and African continents.
- Almost 20% of the species were classified as super invaders, meaning that they are abundant species invading more than 20% of the HCIs present in the coastal areas of Málaga and Granada. Arundo donax, Acacia saligna, Oxalis pes-caprae, strocylindropuntia subulate, Carpobrotus edulis, Lantana camara, Aizoon pubescens, and Stenotaphrum secundatum are some examples to consider.
- Residence time and intentional introduction for specific uses show a positive and significative effect on the number of HCIs occupied by alien plant species along the terrestrial coasts of Málaga and Granada.
- The HCI groups most invaded are dunes with low shrubs, halophilous or halonitrophilous vegetation, and cliff habitats of Limonium spp., with more than 30 alien species each.
- Along the terrestrial coast of Málaga and Granada, 21 alien taxa are present that may be invasive in the future. Some of those species are Cylindropuntia × tetracantha, Cylindropuntia leptocaulis, Opuntia tuna, Opuntia engelmannii var. lindheimeri, Kleinia nerifolia, Paspalum vaginatum, Agave americana subsp. americana, Agave sisalana, Asparagus asparagoides., Agave sisalana, Agave fourcroydes, Aloe arborescens, Cylindropuntia spp., Ipomea spp., Opuntia engelmannii var. lindheimeri, Opuntia tuna, Paspalum spp., Senecio angulatus, and Tropaeolum majus.
- The heat distribution maps show that the areas most invaded in the province of Málaga are the Ecological Reserve ‘Dunas de Marbella’, the ‘mouth of the Guadalhorce River’ and surroundings, El Cantal, and Nerja. In Granada, eradication zones include the ‘mouth of the Guadalfeo River’, coastal areas of Motril, and La Rábita.
- Prevention areas include the Punta de la Mona in Granada, while eradication areas in Málaga include the protected area the ‘mouth of the Guadalhorce River’ and surroundings, and also, several localities such as El Cantal, and Nerja.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayoral, O.; Podda, L.; Porceddu, M. Invasive Alien Flora on Coastal Mediterranean Habitats: Insights into Seed and Germination Physiology under Saline Conditions. In Handbook of Halophytes; Grigore, M.-N., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 569–597. ISBN 978-3-030-57634-9. [Google Scholar]
- Vilà, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Nentwig, W.; Olenin, S.; Roques, A.; Roy, D.; et al. How Well Do We Understand the Impacts of Alien Species on Ecosystem Services? A Pan-European, Cross-Taxa Assessment. Front. Ecol. Environ. 2010, 8, 135–144. [Google Scholar] [CrossRef]
- Keller, R.P.; Geist, J.; Jeschke, J.M.; Kühn, I. Invasive Species in Europe: Ecology, Status, and Policy. Environ. Sci. Eur. 2011, 23, 23. [Google Scholar] [CrossRef]
- Clavero, M.; García-Berthou, E. Invasive Species Are a Leading Cause of Animal Extinctions. Trends Ecol. Evol. 2005, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D. Given the Stakes, Our Modus Operandi in Dealing with Invasive Species Should Be “Guilty until Proven Innocent”. Conserv. Mag. 2007, 8, 18–19. [Google Scholar]
- Sala, O.E.; Stuart Chapin, F.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Giulio, S.; Acosta, A.T.R.; Carboni, M.; Campos, J.A.; Chytrý, M.; Loidi, J.; Pergl, J.; Pyšek, P.; Isermann, M.; Janssen, J.A.M.; et al. Alien Flora across European Coastal Dunes. Appl. Veg. Sci. 2020, 23, 317–327. [Google Scholar] [CrossRef]
- Hulme, P.E. Biological Invasions in Europe: Drivers, Pressures, States, Impacts and Responses. In Biodiversity under Threat; Royal Society of Chemistry: London, UK, 2007; Volume 25, pp. 56–80. [Google Scholar]
- Gaertner, M.; Den Breeyen, A.; Hui, C.; Richardson, D.M. Impacts of Alien Plant Invasions on Species Richness in Mediterranean-Type Ecosystems: A Meta-Analysis. Prog. Phys. Geogr. Earth Environ. 2009, 33, 319–338. [Google Scholar] [CrossRef]
- Fried, G.; Laitung, B.; Pierre, C.; Chagué, N.; Panetta, F.D. Impact of Invasive Plants in Mediterranean Habitats: Disentangling the Effects of Characteristics of Invaders and Recipient Communities. Biol. Invasions 2014, 16, 1639–1658. [Google Scholar] [CrossRef]
- Karmezi, M.; Krigas, N.; Papatheodorou, E.M.; Argyropoulou, M.D. The Invasion of Alien Populations of Solanum elaeagnifolium in Two Mediterranean Habitats Modifies the Soil Communities in Different Ways. Plants 2023, 12, 2193. [Google Scholar] [CrossRef]
- Asensi, A.; Díez-Garretas, B.; Pereña, J. Alien Plants of Coastal Dune Habitats in Southern Spain. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2016, 150, 477–483. [Google Scholar] [CrossRef]
- Directive, H. Council Directive 92/43/EEC Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Union 1992, 206, 50. [Google Scholar]
- European Commission. Interpretation Manual of European Union Habitats; EUR 28; Luxemburg DG-ENV: Brussels, Belgium, 2013; p. 144.
- REDIAM. Guía de Identificación de Hábitats de Interés Comunitario en Andalucía; REDIAM: Seville, Spain, 2020. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Peña, L.; Onaindia, M.; Muñoz, O.; Amaya, A.; Fernández de Manuel, B.; Ametzaga-Arregi, I. Soluciones Basadas en la Naturaleza Frente al Cambio Climático: Restauración de Dunas y Marismas. Rev. Investig. Mar. AZTI 2020, 27, 69–72. [Google Scholar]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future Response of Global Coastal Wetlands to Sea-Level Rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Everard, M.; Jones, L.; Watts, B. Have We Neglected the Societal Importance of Sand Dunes? An Ecosystem Services Perspective. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 476–487. [Google Scholar] [CrossRef]
- Van Der Biest, K.; De Nocker, L.; Provoost, S.; Boerema, A.; Staes, J.; Meire, P. Dune Dynamics Safeguard Ecosystem Services. Ocean Coast. Manag. 2017, 149, 148–158. [Google Scholar] [CrossRef]
- Chytrý, M.; Maskell, L.C.; Pino, J.; Pyšek, P.; Vilà, M.; Font, X.; Smart, S.M. Habitat Invasions by Alien Plants: A Quantitative Comparison among Mediterranean, Subcontinental and Oceanic Regions of Europe. J. Appl. Ecol. 2008, 45, 448–458. [Google Scholar] [CrossRef]
- Meddour, R.; Sahar, O.; Fried, G. A Preliminary Checklist of the Alien Flora of Algeria (North Africa): Taxonomy, Traits and Invasiveness Potential. Bot. Lett. 2020, 167, 453–470. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M.; Rejmánek, M.; Webster, G.L.; Williamson, M.; Kirschner, J. Alien Plants in Checklists and Floras: Towards Better Communication between Taxonomists and Ecologists. Taxon 2004, 53, 131–143. [Google Scholar] [CrossRef]
- Miller, C.; Kettunen, M.; Shine, C. Scope Options for EU Action on Invasive Alien Species (IAS); Final Report for the European Commission; Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2006; Volume 109.
- Pereña-Ortiz, J.F. Valor Patrimonial Y Estado de Conservación de Hábitats Litorales en Espacios Naturales Protegidos del Sur de España. Modelos de Gestión. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, 2018. [Google Scholar]
- Lloret, F.; Médail, F.; Brundu, G.; Camarda, I.; Moragues, E.; Rita, J.; Lambdon, P.; Hulme, P.E. Species Attributes and Invasion Success by Alien Plants on Mediterranean Islands. J. Ecol. 2005, 93, 512–520. [Google Scholar] [CrossRef]
- Acosta, A.; Izzi, C.; Stanisci, A. Comparison of Native and Alien Plant Traits in Mediterranean Coastal Dunes. Community Ecol. 2006, 7, 35–41. [Google Scholar] [CrossRef]
- Farris, E.; Pisanu, S.; Ceccherelli, G.; Filigheddu, R. Human Trampling Effects on Mediterranean Coastal Dune Plants. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2013, 147, 1043–1051. [Google Scholar] [CrossRef]
- Casimiro-Soriguer Solanas, F.; García-Sánchez, J. Contribución al Conocimiento de La Flora Vascular de La Desembocadura del Río Guadalhorce y Su Entorno (Málaga, España). Acta Bot. Malacit. 2017, 42, 249–270. [Google Scholar] [CrossRef]
- Yokomizo, H.; Possingham, H.P.; Thomas, M.B.; Buckley, Y.M. Managing the Impact of Invasive Species: The Value of Knowing the Density–Impact Curve. Ecol. Appl. 2009, 19, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Guarino, R.; Chytrý, M.; Attorre, F.; Landucci, F.; Marcenò, C. Alien Plant Invasions in Mediterranean Habitats: An Assessment for Sicily. Biol. Invasions 2021, 23, 3091–3107. [Google Scholar] [CrossRef]
- Fristoe, T.S.; Chytrý, M.; Dawson, W.; Essl, F.; Heleno, R.; Kreft, H.; Maurel, N.; Pergl, J.; Pyšek, P.; Seebens, H.; et al. Dimensions of Invasiveness: Links between Local Abundance, Geographic Range Size, and Habitat Breadth in Europe’s Alien and Native Floras. Proc. Natl. Acad. Sci. USA 2021, 118, e2021173118. [Google Scholar] [CrossRef] [PubMed]
- Staples, G.W.; Herbst, D.R.; Imada, C.T. Survey of Invasive or Potentially Invasive Cultivated Plants in Hawaii; Bishop Museum Occasional Papers; Bishop Museum: Honolulu, HI, USA, 2000. [Google Scholar]
- Fumanal, B.; Girod, C.; Fried, G.; Bretagnolle, F.; Chauvel, B. Can the Large Ecological Amplitude of Ambrosia artemisiifolia Explain Its Invasive Success in France? Weed Res. 2008, 48, 349–359. [Google Scholar] [CrossRef]
- Sheth, S.N.; Morueta-Holme, N.; Angert, A.L. Determinants of Geographic Range Size in Plants. New Phytol. 2020, 226, 650–665. [Google Scholar] [CrossRef]
- Colautti, R.; Colautti, R.; Parker, J.D.; Cadotte, M.W.; Pyšek, P.; Brown, C.S.; Sax, D.; Richardson, D. Quantifying the Invasiveness of Species. Neobiota 2014, 21, 7–27. [Google Scholar] [CrossRef]
- Moravcová, L.; Pyšek, P.; Jarošík, V.; Pergl, J. Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species. PLoS ONE 2015, 10, e0123634. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Dawson, W.; Maurel, N. Characteristics of Successful Alien Plants. Mol. Ecol. 2015, 24, 1954–1968. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Richardson, D.M. Traits Associated with Invasiveness in Alien Plants: Where Do We Stand? In Biological Invasions; Nentwig, W., Ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2007; Volume 193, pp. 97–125. ISBN 978-3-540-77375-7. [Google Scholar]
- Pyšek, P.; Jarošík, V. Residence Time Determines the Distribution of Alien Plants. In Invasive Plants: Ecological and Agricultural Aspects; Inderjit, S., Ed.; Birkhäuser-Verlag: Basel, Switzerland, 2005; pp. 77–96. ISBN 978-3-7643-7137-1. [Google Scholar]
- Weber, E. Horticulture and the Invasive Plant Species Issue. Acta Hortic. 2004, 643, 25–30. [Google Scholar] [CrossRef]
- Liendo, D.; Biurrun, I.; Campos, J.A.; Herrera, M.; Loidi, J.; García-Mijangos, I. Invasion Patterns in Riparian Habitats: The Role of Anthropogenic Pressure in Temperate Streams. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2015, 149, 289–297. [Google Scholar] [CrossRef]
- Law 22/1988 Ley 22/1988, de 28 de Julio, de Costas. 1988; Vol. 181, BOE-A-1988-18762. Available online: https://www.boe.es/buscar/pdf/1988/BOE-A-1988-18762-consolidado.pdf (accessed on 10 July 2023).
- Muñoz-Rojas, M.; De La Rosa, D.; Zavala, L.M.; Jordán, A.; Anaya-Romero, M. Changes in Land Cover and Vegetation Carbon Stocks in Andalusia, Southern Spain (1956–2007). Sci. Total Environ. 2011, 409, 2796–2806. [Google Scholar] [CrossRef] [PubMed]
- Loidi, J. (Ed.) The Vegetation of the Iberian Peninsula; Plant and Vegetation; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-54867-8. [Google Scholar]
- Sanz Elorza, M.; Dana, E.; Sobrino, E. Checklist of Invasive Alien Plants in Spain (Iberian Peninsula and Balearic Islands). Lazaroa 2001, 22, 121–131. [Google Scholar]
- Dana Sanchez, E.D. Especies Vegetales Invasoras en Andalucía; Dirección General de la Red de Espacios Naturales Protegidos y Servicios Ambientales: Sevilla, Spain, 2005; ISBN 978-84-96329-41-6. [Google Scholar]
- Blanca, G.; Cabezudo, B.; Cueto, M.; Salazar, C.; Morales, C. Flora Vascular de Andalucía Oriental. [Vascular Flora of Eastern Andalusia]; Universidad de Almería: Almería, Spain; Universidad de Granada: Granada, Spain; Universidad de Jaén: Jaén, Spain; Universidad de Málaga: Málaga, Spain, 2011. (In Spanish) [Google Scholar]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org/ (accessed on 1 August 2023).
- Fuentes, J.; Cueto, M. New Contributions for the Flora Allochthonous of Andalusia (South Spain). An. Biol. 2017, 39, 43–47. [Google Scholar] [CrossRef]
- CABI. k Compendium A Leading Scientific Knowledge Resource for Environmental and Agricultural Production, Health and Biosecurity; CABI: Wallingford, UK, 2023. [Google Scholar]
- EPPO. EPPO Global Database; European and Mediterranean Plant Protection Organization: Paris, France, 2007.
- Richardson, D.M.; Pyšek, P. Plant Invasions: Merging the Concepts of Species Invasiveness and Community Invasibility. Prog. Phys. Geogr. Earth Environ. 2006, 30, 409–431. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P.; Rejmanek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and Invasion of Alien Plants: Concepts and Definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Castroviejo, S. 1986–2022. Floraiberica. Real Jardín Botánico, CSIC, Madrid. Available online: http://www.floraiberica.es/ (accessed on 5 May 2023).
- Sánchez de Lorenzo Cáceres, J.M.S.; López Lillo, A.; Trigo Perez, M.D.M. Flora Ornamental Española. Las Plantas Cultivadas En La España Peninsular e Insular. TI: Magnoliaceae a Casuarinaceae; de Andalucía, J., de Agricultura y Pesca, C., Eds.; Ediciones Mundi-Prensa: Madrid, Spain, 2000; Volume 1, ISBN 84-7114-947-8. [Google Scholar]
- Sanz Elorza, M.; Dana Sanchez, E.D.; Sobrino Vesperinas, E. Atlas de las Plantas Aloctonas Invasoras en Espana; Ministerio de Medio Ambiente: Madrid, Spain, 2004; ISBN 978-84-8014-575-6. [Google Scholar]
- Kattge, J.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Bönisch, G.; Garnier, E.; Westoby, M.; Reich, P.B.; Wright, I.J.; et al. TRY—A Global Database of Plant Traits. Glob. Chang. Biol. 2011, 17, 2905–2935. [Google Scholar] [CrossRef]
- IUCN. Guidance for Interpretation of the CBD Categories of Pathways for the Introduction of Invasive Alien Species; Publications Office of the European Union: Montreal, QC, Canada, 2017; ISBN 978-92-76-22743-4.
- Udvardy, M.D. A Classification of the Biogeographical Provinces of the World. IUCN Occ. Pap. 1975, 18, 1–48. [Google Scholar]
- RDL 630/2013 Real Decreto 630/2013, de 2 de Agosto, Por El Que Se Regula El Catálogo Español de Especies Exóticas Invasoras. 2013; Vol. 185, BOE-A-2013-8565. Available online: https://www.boe.es/buscar/pdf/2013/BOE-A-2013-8565-consolidado.pdf (accessed on 10 June 2023).
- Braun-Blanquet, J. Plant Sociology. In The Study of Plant Communities, 1st ed.; McGraw-Hill Book Co., Inc.: New York, NY, USA; London, UK, 1932. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 15 July 2023).
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. Package ‘Mass’. Cran R 2013, 538, 113–120. [Google Scholar]
- Moravcová, L.; Pyšek, P.; Jarošík, V.; Havlíčková, V.; Zákravský, P. Reproductive Characteristics of Neophytes in the Czech Republic: Traits of Invasive and Non-Invasive Species. Preslia 2010, 82, 365–390. [Google Scholar]
- RENPA. Ley 2/1989, de 18 de Julio, Por La Que Se Aprueba El Inventario de Espacios Naturales Protegidos de Andalucía y Se Establecen Medidas Adicionales Para Su Protección; 1989; Vol. 201, BOE-A-1989-20636. Available online: https://www.boe.es/buscar/pdf/1989/BOE-A-1989-20636-consolidado.pdf (accessed on 17 October 2023).
- Instituto de Estadística y Cartografía de Andalucía Enp_FiguraProteccion—Datos Espaciales de Referencia de Andalucía (DERA). Available online: https://www.juntadeandalucia.es/institutodeestadisticaycartografia/DERA/servicios.htm (accessed on 27 September 2023).
- Instituto de Estadística y Cartografia de Andalucía RedNatura_ZEC—Datos Espaciales de Referencia de Andalucía (DERA). Available online: https://www.juntadeandalucia.es/institutodeestadisticaycartografia/DERA/g11.htm (accessed on 20 October 2023).
- Ferrer Merino, F.J.; Donat-Torres, M. Invasive Plants in the Coastal Vegetal Communities in Valencia (Spain). Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 9–17. [Google Scholar] [CrossRef]
- Podda, L.; Fraga, I.; Arguimbau, P.; Mascia, F.; Mayoral García-Berlanga, O.; Bacchetta, G. Comparison of the Invasive Alien Flora in Continental Islands: Sardinia (Italy) and Balearic Islands (Spain). Rend. Lincei. Sci. Fis. Nat. 2011, 22, 31–45. [Google Scholar] [CrossRef]
- Pyšek, P.; Pergl, J.; Essl, F.; Lenzner, B.; Dawson, W.; Kreft, H.; Weigelt, P.; Winter, M.; Kartesz, J.; Nishino, M. Naturalized Alien Flora of the World: Species Diversity, Taxonomic and Phylogenetic Patterns, Geographic Distribution and Global Hotspots of Plant Invasion. Preslia 2017, 89, 203–274. [Google Scholar] [CrossRef]
- Willis, K. State of the World’s Plants 2017; Royal Botanics Gardens Kew: London, UK, 2017. [Google Scholar]
- Patzelt, A.; Pyšek, P.; Pergl, J.; Van Kleunen, M. Alien Flora of Oman: Invasion Status, Taxonomic Composition, Habitats, Origin, and Pathways of Introduction. Biol. Invasions 2022, 24, 955–970. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Bassi, L.; Brundu, G.; Camarda, I.; Carli, E.; D’Auria, G.; Del Guacchio, E.; Domina, G.; Ferretti, G.; Foggi, B.; et al. Plant Invasions on Small Mediterranean Islands: An Overview. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1119–1133. [Google Scholar] [CrossRef]
- Turbelin, A.J.; Malamud, B.D.; Francis, R.A. Mapping the Global State of Invasive Alien Species: Patterns of Invasion and Policy Responses: Mapping the Global State of Invasive Alien Species. Glob. Ecol. Biogeogr. 2017, 26, 78–92. [Google Scholar] [CrossRef]
- Sarmati, S.; Bonari, G.; Angiolini, C. Conservation Status of Mediterranean Coastal Dune Habitats: Anthropogenic Disturbance May Hamper Habitat Assignment. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 623–636. [Google Scholar] [CrossRef]
- Pretto, F.; Celesti-Grapow, L.; Carli, E.; Brundu, G.; Blasi, C. Determinants of Non-Native Plant Species Richness and Composition across Small Mediterranean Islands. Biol. Invasions 2012, 14, 2559–2572. [Google Scholar] [CrossRef]
- Gómez-Zotano, J. La Degradación de Dunas Litorales en Andalucía: Aproximación Geohistórica y Multiescalar. Investig. Geográficas 2014, 62, 23–39. [Google Scholar] [CrossRef]
- Sharma, G.P.; Raghubanshi, A.S.; Singh, J.S. Lantana Invasion: An Overview. Weed Biol. Manag. 2005, 5, 157–165. [Google Scholar] [CrossRef]
- Vila, M.; Gimeno, I. Potential for Higher Invasiveness of the Alien Oxalis pes-caprae on Islands than on the Mainland. Plant Ecol. 2006, 183, 47–53. [Google Scholar] [CrossRef]
- Quinn, L.D.; Holt, J.S. Ecological Correlates of Invasion by Arundo donax in Three Southern California Riparian Habitats. Biol. Invasions 2008, 10, 591–601. [Google Scholar] [CrossRef]
- Del Vecchio, S.; Acosta, A.; Stanisci, A. The Impact of Acacia saligna Invasion on Italian Coastal Dune EC Habitats. Comptes Rendus Biol. 2013, 336, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, L.; Bolpagni, R.; Buffa, G.; Gentili, R.; Lonati, M.; Stinca, A.; Acosta, A.T.R.; Adorni, M.; Aleffi, M.; Allegrezza, M.; et al. Impact of Invasive Alien Plants on Native Plant Communities and Natura 2000 Habitats: State of the Art, Gap Analysis and Perspectives in Italy. J. Environ. Manag. 2020, 274, 111140. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Richardson, D.M.; Rouget, M.; Procheş, Ş.; Amis, M.A.; Henderson, L.; Thuiller, W. Residence Time and Potential Range: Crucial Considerations in Modelling Plant Invasions. Divers. Distrib. 2007, 13, 11–22. [Google Scholar] [CrossRef]
- Lambdon, P.W.; Lloret, F.; Hulme, P.E. How Do Introduction Characteristics Influence the Invasion Success of Mediterranean Alien Plants? Perspect. Plant Ecol. Evol. Syst. 2008, 10, 143–159. [Google Scholar] [CrossRef]
- Milton, S.J.; Dean, W.R.J.; Sielecki, L.E.; Van Der Ree, R. The Function and Management of Roadside Vegetation. In Handbook of Road Ecology; Van Der Ree, R., Smith, D.J., Grilo, C., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 373–381. ISBN 978-1-118-56818-7. [Google Scholar]
- Avis, A.M. A Review of Coastal Dune Stabilization in the Cape Province of South Africa. Landsc. Urban Plan. 1989, 18, 55–68. [Google Scholar] [CrossRef]
- Andreu, J.; Manzano-Piedras, E.; Bartomeus, I.; Dana, E.D.; Vila, M. Vegetation Response after Removal of the Invasive Carpobrotus Hybrid Complex in Andalucia, Spain. Ecol. Restor. 2010, 28, 440–448. [Google Scholar] [CrossRef]
- Dehnen-Schmutz, K.; Touza, J.; Perrings, C.; Williamson, M. A Century of the Ornamental Plant Trade and Its Impact on Invasion Success. Divers. Distrib. 2007, 13, 527–534. [Google Scholar] [CrossRef]
- Campos, J.A.; Herrera, M.; Biurrun, I.; Loidi, J. The Role of Alien Plants in the Natural Coastal Vegetation in Central-Northern Spain. Biodivers. Conserv. 2004, 13, 2275–2293. [Google Scholar] [CrossRef]
- Nikolić, T.; Mitić, B.; Milašinović, B.; Jelaska, S.D. Invasive Alien Plants in Croatia as a Threat to Biodiversity of South-Eastern Europe: Distributional Patterns and Range Size. Comptes Rendus Biol. 2013, 336, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; Maun, M.; Psuty, N. The Fragility and Conservation of the World’s Coastal Dunes: Geomorphological, Ecological and Socioeconomic Perspectives. In Coastal Dunes: Ecology and Conservation; Springer: Berlin/Heidelberg, Germany, 2008; pp. 355–369. [Google Scholar]
- Anderson, L.G.; Rocliffe, S.; Haddaway, N.R.; Dunn, A.M. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0140833. [Google Scholar] [CrossRef]
- Ciccarelli, D.; Picciarelli, P.; Bedini, G.; Sorce, C. Mediterranean Sea Cliff Plants: Morphological and Physiological Responses to Environmental Conditions. J. Plant Ecol. 2016, 9, 153–164. [Google Scholar] [CrossRef]
- Mortensen, D.A.; Rauschert, E.S.J.; Nord, A.N.; Jones, B.P. Forest Roads Facilitate the Spread of Invasive Plants. Invasive Plant Sci. Manag. 2009, 2, 191–199. [Google Scholar] [CrossRef]
- Deeley, B.; Petrovskaya, N. Propagation of Invasive Plant Species in the Presence of a Road. J. Theor. Biol. 2022, 548, 111196. [Google Scholar] [CrossRef]
- Kowarik, I. On the Role of Alien Species in Urban Flora and Vegetation. In Urban Ecology: An International Perspective on the Interaction between Humans and Nature; Springer: Boston, MA, USA, 2008; pp. 321–338. [Google Scholar]
- Pyšek, P.; Chytrý, M.; Pergl, J.; Sadlo, J.; Wild, J. Plant Invasions in the Czech Republic: Current State, Introduction Dynamics, Invasive Species and Invaded Habitats. Preslia 2012, 84, 575–629. [Google Scholar]
- Kabrna, M.; Hendrychová, M.; Prach, K. Establishment of Target and Invasive Plant Species on a Reclaimed Coal Mining Dump in Relation to Their Occurrence in the Surroundings. Int. J. Min. Reclam. Environ. 2014, 28, 242–249. [Google Scholar] [CrossRef]
- Basnou, C.; Iguzquiza, J.; Pino, J. Examining the Role of Landscape Structure and Dynamics in Alien Plant Invasion from Urban Mediterranean Coastal Habitats. Landsc. Urban Plan. 2015, 136, 156–164. [Google Scholar] [CrossRef]
- Kourantidou, M.; Cuthbert, R.N.; Haubrock, P.J.; Novoa, A.; Taylor, N.G.; Leroy, B.; Capinha, C.; Renault, D.; Angulo, E.; Diagne, C.; et al. Economic Costs of Invasive Alien Species in the Mediterranean Basin. Neobiota 2021, 67, 427–458. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Pergl, J.; Randall, R.; Chytrý, M.; Kühn, I.; Tichý, L.; Danihelka, J.; Chrtek Jun, J.; Sádlo, J. The Global Invasion Success of Central European Plants Is Related to Distribution Characteristics in Their Native Range and Species Traits. Divers. Distrib. 2009, 15, 891–903. [Google Scholar] [CrossRef]
- Donaldson, J.E.; Hui, C.; Richardson, D.M.; Robertson, M.P.; Webber, B.L.; Wilson, J.R.U. Invasion Trajectory of Alien Trees: The Role of Introduction Pathway and Planting History. Glob. Chang. Biol. 2014, 20, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Morin, L.; Batchelor, K.; Scott, J. The Biology of Australian Weeds 44. Asparagus asparagoides (L.) Druce. Plant Prot. Q. 2006, 21, 46–62. [Google Scholar]
- Smith, G.F.; Figueiredo, E. Naturalized Species of Agave L. (Agavaceae) on the Southeastern Coast of Portugal. Haseltonia 2007, 13, 52–60. [Google Scholar] [CrossRef]
- Riefner, R.E., Jr.; Columbus, J.T. Paspalum vaginatum (Poaceae), a New Threat to Wetland Diversity in Southern California. J. Bot. Res. Inst. Tex. 2008, 2, 743–759. [Google Scholar]
- Fried, G.; Mandon-Dalger, I. A Review on Some Emerging Invasive Species in France; Association Française de Protection des Plantes (AFPP): Alfortville, France, 2013; pp. 691–700.
- Novoa, A.; Le Roux, J.J.; Robertson, M.P.; Wilson, J.R.U.; Richardson, D.M. Introduced and Invasive Cactus Species: A Global Review. AoB Plants 2015, 7, plu078. [Google Scholar] [CrossRef]
- Casimiro-Soriguer, F.; García Caballero, J.; Goncalves, E.; Pereña Ortiz, J.; Milán Contreras, S.; Zafra, M.; Hidalgo Triana, N. New Contributions to the Alien Flora of Malaga and Granada (Andalusia). Acta Bot. Malacit. 2023; in submitted. [Google Scholar]
- Kaushik, P.; Pati, P.K.; Khan, M.L.; Khare, P.K. Plant Functional Traits Best Explain Invasive Species’ Performance within a Dynamic Ecosystem—A Review. Trees For. People 2022, 8, 100260. [Google Scholar] [CrossRef]
- Heger, T.; Trepl, L. Predicting Biological Invasions. Biol. Invasions 2003, 5, 301–309. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A Global Assessment of Invasive Plant Impacts on Resident Species, Communities and Ecosystems: The Interaction of Impact Measures, Invading Species’ Traits and Environment. Glob. Chang. Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Hidalgo-Triana, N.; Casimiro-Soriguer Solanas, F.; Solakis Tena, A.; Manteca-Bautista, D.; Picornell, A.; García-Sánchez, J.; Navarro, T.; Pérez-Latorre, A.V. Assessment Protocol to Evaluate the Degree of Conservation of Habitats of Community Interest: A Case Study for the 5220* HCI in the Westernmost Localities of Europe. Land 2023, 12, 190. [Google Scholar] [CrossRef]
Variable | df | Deviance | Residual df | Residual Deviance | p |
---|---|---|---|---|---|
First year of introduction | 1 | 5.794 | 82 | 116.533 | 0.016081 * |
Introduction pathway | 2 | 11.116 | 80 | 105.416 | 0.003856 * |
Biogeographical origin | 8 | 11.446 | 72 | 93.97 | 0.177677 |
Biotype | 7 | 10.209 | 65 | 83.761 | 0.17702 |
HCI Group | Super Invader (%) | Moderate Invader (%) | Poor Invader (%) | χ2 | p |
---|---|---|---|---|---|
1A | 35.14 | 48.65 | 16.22 | 16.46 | 2.66 × 10−4 |
1H | 33.33 | 40.48 | 26.19 | 2.97 | 2.26 × 10−1 |
1He* | 65 | 20 | 15 | 45.50 | 1.31 × 10−10 |
1L* | 55.56 | 33.33 | 11.11 | 30.38 | 2.52 × 10−7 |
2A* | 64 | 32 | 4 | 54.08 | 1.80 × 10−12 |
2M | 37.25 | 29.41 | 33.33 | 0.97 | 6.15 × 10−1 |
5M | 72.73 | 27.27 | 0 | 81.74 | 1.77 × 10−18 |
5M* | 52.38 | 38.1 | 9.52 | 27.44 | 1.10 × 10−6 |
6P* | 66.67 | 33.33 | 0 | 67.34 | 2.38 × 10−15 |
9Br | 73.68 | 15.79 | 10.53 | 72.85 | 1.51 × 10−16 |
No HIC | 35.9 | 38.46 | 25.64 | 2.48 | 2.89 × 10−1 |
Super Invader | Moderate Invader | Poor Invader | |
---|---|---|---|
High invasiveness | 6 | 21 | 3 |
Medium invasiveness | 11 | 10 | 21 |
Low invasiveness | 1 | 3 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncalves, E.; Casimiro-Soriguer Solanas, F.; García-Caballero, J.; Hidalgo-Triana, N. Terrestrial Alien Flora of the Iberian Alboran Coast: Assessment, Attributes, and Future Implications. Diversity 2023, 15, 1120. https://doi.org/10.3390/d15111120
Goncalves E, Casimiro-Soriguer Solanas F, García-Caballero J, Hidalgo-Triana N. Terrestrial Alien Flora of the Iberian Alboran Coast: Assessment, Attributes, and Future Implications. Diversity. 2023; 15(11):1120. https://doi.org/10.3390/d15111120
Chicago/Turabian StyleGoncalves, Estefany, Federico Casimiro-Soriguer Solanas, Javier García-Caballero, and Noelia Hidalgo-Triana. 2023. "Terrestrial Alien Flora of the Iberian Alboran Coast: Assessment, Attributes, and Future Implications" Diversity 15, no. 11: 1120. https://doi.org/10.3390/d15111120
APA StyleGoncalves, E., Casimiro-Soriguer Solanas, F., García-Caballero, J., & Hidalgo-Triana, N. (2023). Terrestrial Alien Flora of the Iberian Alboran Coast: Assessment, Attributes, and Future Implications. Diversity, 15(11), 1120. https://doi.org/10.3390/d15111120