Discovery of Cyanobacteria Associated with Cycads and Description of Three Novel Species in Desmonostoc (Nostocaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Isolation Protocol
2.2. Morphological Evaluations
2.3. Molecular Evaluations
2.4. 16S rRNA Gene Analysis
2.5. 16S-23S Internal Transcribed Spacer (ITS) Region Analyses
3. Results
3.1. Host, Locality, and Taxonomic Assessment of the Cyanobionts
3.1.1. Desmonostoc debaoense M. Pecundo, N. Li et T. Chen sp. nov. (Figure 2)
3.1.2. Desmonostoc meilinense M. Pecundo, N. Li et T. Chen sp. nov. (Figure 3)
3.1.3. Desmonostoc xianhuense M. Pecundo, N. Li et T. Chen sp. nov. (Figure 4)
3.1.4. Distinction of the Novel Cyanobacterial Strains from Known Species
3.2. 16S rRNA Gene Sequence Similarity and Phylogenetic Analyses
3.3. 16S–23S rRNA ITS Region Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, D.G.; Duggan, P. Cyanobacteria-bryophyte symbioses. J. Exp. Bot. 2008, 59, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L. The Unique Symbiotic System between a Fern and a Cyanobacterium, Azolla-Anabaena Azollae: Their Potential as Biofertilizer, Feed, and Remediation; IntechOpen: London, UK, 2017. [Google Scholar]
- Bergman, B.; Johansson, C.; Soderback, E. The Nostoc-Gunnera symbiosis. New Phytol. 1992, 122, 379–400. [Google Scholar] [CrossRef]
- Pecundo, M.H.; Chang, A.C.G.; Chen, T.; dela Cruz, T.E.E.; Ren, H.; Li, N. Full-length 16S rRNA and ITS Gene Sequencing Revealed Rich Microbial Flora in Roots of Cycas spp. in China. Evol. Bioinform. 2021, 17, 1176934321989713. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.C.G.; Chen, T.; Li, N.; Duan, J. Perspectives on endosymbiosis in coralloid roots: Association of cycads and cyanobacteria. Front. Microbiol. 2019, 10, 1888. [Google Scholar] [CrossRef] [PubMed]
- Hrouzek, P.; Ventura, S.; Lukešová, A.; Mugnai, M.A.; Turicchia, S.; Komárek, J. Diversity of soil Nostoc strains: Phylogenetic and phenotypic variability. Algol. Stud. 2005, 117, 251–264. [Google Scholar] [CrossRef]
- Komárek, J. Cyanoprokaryota: 3rd Part: Heterocystous Genera. In Süsswasserflora von Mitteleuropa; Büdel, B., Krienitz, L., Gärtner, G., Schagerl, M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2013; Volume 19, pp. 1–1130. [Google Scholar]
- Papaefthimiou, D.; Hrouzek, P.; Mugnai, M.A.; Lukešová, A.; Turicchia, S.; Rasmussen, U.; Ventura, S. Differential patterns of evolution and distribution of the symbiotic behaviour in Nostocacean cyanobacteria. Int. J. Syst. Evol. Microbiol. 2008, 58, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Hrouzek, P.; Lukešová, A.; Mareš, J.; Ventura, S. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 2013, 13, 201–213. [Google Scholar] [CrossRef]
- Pecundo, M.H.; Cai, F.; Chang, A.C.G.; Ren, H.; Li, N.; Li, R.; Chen, T. Polyphasic approach identifies two new species of Desmonostoc (Nostocales, Cyanobacteria) in the coralloid roots of Cycas fairylakea (Cycadales). Phycologia 2021, 60, 653–668. [Google Scholar] [CrossRef]
- Genuário, D.B.; Vaz, M.G.M.V.; Hentschke, G.S.; Sant’Anna, C.L.; Fiore, M.F. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int. J. Syst. Evol. Microbiol. 2015, 65, 663–675. [Google Scholar] [CrossRef]
- Řeháková, K.; Johansen, J.R.; Casamatta, D.A.; Xuesong, L.; Vincent, J. Morphological and molecular characterization of selected desert soil cyanobacteria: Three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 2007, 46, 481–502. [Google Scholar] [CrossRef]
- Johansen, J.R.; Casamatta, D.A. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol. Stud. 2005, 117, 71–93. [Google Scholar] [CrossRef]
- Komárek, J. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 2010, 639, 245–259. [Google Scholar] [CrossRef]
- Komárek, J.; Kastovsky, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 2014, 86, 295–335. [Google Scholar]
- Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
- Strunecký, O.; Ivanovaš, A.P.; Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2022, 59, 12–51. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.V.M.; Vaz, M.G.M.V.; de Castro, N.V.; Genuário, D.B.; Oder, J.C.; de Souza, P.A.M.; Martins, S.B.; Machado, M.; Nunes-Nesi, A.; Araújo, W.L. How diverse a genus can be: An integrated multi-layered analysis into Desmonostoc (Nostocaceae, Cyanobacteria). Syst. Appl. Microbiol. 2023, 46, 126422. [Google Scholar] [CrossRef]
- Nowruzi, B.; Becerra-Absalón, I.; Metcalf, J.S. A Novel Microcystin-Producing Cyanobacterial Species from the Genus Desmonostoc, Desmonostoc alborizicum sp. nov., Isolated from a Water Supply System of Iran. Curr. Microbiol. 2023, 80, 49. [Google Scholar] [CrossRef]
- de Alvarenga, L.; Vaz, M.; Genuário, D.; Esteves-Ferreira, A.; Almeida, A.; De Castro, N.; Lizieri, C.; Souza, J.J.L.L.; Schaefer, C.E.G.R.; Nunes-Nesi, A.; et al. Extending the ecological distribution of Desmonostoc genus: Proposal of Desmonostoc salinum sp. nov., a novel Cyanobacteria from a saline-alkaline lake. Int. J. Syst. Evol. Microbiol. 2018, 68, 2770–2782. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, S.N.; Dubey, N.; Singh, P. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 3329–3338. [Google Scholar] [CrossRef]
- Hentschke, G.S.; Johansen, J.R.; Pietrasiak, N.; Rigonato, J.; Fiore, M.F.; Sant’Anna, C.L. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): A new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 2017, 17, 178–190. [Google Scholar] [CrossRef]
- Saraf, A.G.; Dawda, H.G.; Singh, P. Desikacharya gen. nov., a phylogenetically distinct genus of Cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int. J. Syst. Evol. Microbiol. 2019, 69, 307–315. [Google Scholar] [PubMed]
- Cai, F.; Li, X.; Yang, Y.; Jia, N.; Huo, D.; Li, R. Compactonostoc shennongjiaensis gen. & sp. nov. (Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia 2019, 58, 200–210. [Google Scholar]
- Cai, F.; Peng, X.; Li, R. Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China. Algae 2020, 35, 1–15. [Google Scholar] [CrossRef]
- Soares, F.; Ramos, V.; Trovão, J.; Cardoso, S.M.; Tiago, I.; Portugal, A. Parakomarekiella sesnandensis gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). Eur. J. Phycol. 2021, 56, 301–315. [Google Scholar] [CrossRef]
- Alvarenga, D.O.; Andreote, A.P.D.; Branco, L.H.Z.; Delbaje, E.; Cruz, R.B.; de Mello Varani, A.; Fiore, M.F. Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen nov., sp. nov., nostocacean cyanobacteria from Brazilian environments. Int. J. Syst. Evol. Microbiol. 2021, 71, 004811. [Google Scholar] [CrossRef]
- Saraf, A.; Dawda, H.; Suradkar, A.; Behere, I.; Kotulkar, M.; Shaikh, Z.; Kumat, A.; Batule, P.; Mishra, D.; Singh, P. Description of two new species of Aliinostoc and one new species of Desmonostoc from India based on the polyphasic approach and reclassification of Nostoc punensis to Desmonostoc punense comb. nov. FEMS Microbiol. Lett. 2018, 365, fny272. [Google Scholar] [CrossRef]
- Kabirnataj, S.; Nematzadeh, G.A.; Talebi, A.F.; Saraf, A.; Suradkar, A.; Tabatabaei, M.; Singh, P. Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. Int. J. Syst. Evol. Microbiol. 2020, 70, 3413–3426. [Google Scholar] [CrossRef]
- Maltseva, S.; Bachura, Y.; Erst, T.; Kulikovskiy, M.; Maltsev, Y. Description of Desmonostoc caucasicum sp. nov. (Cyanobacteria) using an integrative taxonomic approach. Phycologia 2022, 61, 514–527. [Google Scholar] [CrossRef]
- Miscoe, L.H.; Johansen, J.R.; Vaccarino, M.A.; Pietrasiak, N.; Sherwood, A.R. The diatom flora and cyanobacteria from caves on Kauai, Hawaii. II. Novel cyanobacteria from caves on Kauai, Hawaii. Bibl. Phycol. 2016, 123, 75–152. [Google Scholar]
- Cai, F.; Yang, Y.; Wen, Q.; Li, R. Desmonostoc danxiaense sp. nov. (Nostocales, Cyanobacteria) from Danxia mountain in China based on polyphasic approach. Phytotaxa 2018, 367, 233–244. [Google Scholar] [CrossRef]
- Grobbelaar, N.; Scott, W.E.; Hattingh, W.; Marshall, J. The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. S. Afr. J. Bot. 1987, 53, 111–118. [Google Scholar] [CrossRef]
- Costa, J.L.; Paulsrud, P.; Lindblad, P. Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol. Ecol. 1999, 28, 85–91. [Google Scholar] [CrossRef]
- Pecundo, M.H.; dela Cruz, T.E.E.; Chen, T.; Notarte, K.I.; Ren, H.; Li, N. Diversity, Phylogeny and Antagonistic Activity of Fungal Endophytes Associated with Endemic Species of Cycas (Cycadales) in China. J. Fungi 2021, 7, 572. [Google Scholar] [CrossRef] [PubMed]
- Iteman, I.; Rippka, R.; Tandeau De Marsac, N.; Herdman, M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Int. J. Syst. Evol. Microbiol. 2000, 146, 1275–1286. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQTREE: A fast-online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, 232–235. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES science gateway: A community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, Salt Lake City, UT, USA, 18–21 July 2011; pp. 1–8. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree. Tree Figure Drawing Tool Version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh. 2010. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 15 July 2021).
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Lotti, F.; Giovanetti, L.; Margheri, M.C.; Ventura, S.; Materassi, R. Diversity of DNA methylation pattern and total DNA restriction pattern in symbiotic Nostoc. World J. Microbiol. Biotechnol. 1996, 12, 38–42. [Google Scholar] [CrossRef]
- Gehringer, M.M.; Pengelly, J.J.L.; Cuddy, W.S.; Fieker, C.; Forster, P.I.; Neilan, B.A. Host Selection of Symbiotic Cyanobacteria in 31 Species of the Australian Cycad Genus: Macrozamia (Zamiaceae). Mol. Plant-Microbe Interact. 2010, 23, 811–822. [Google Scholar] [CrossRef]
- Zheng, W.; Song, T.; Bao, X.; Bergman, B.; Rasmussen, U. High cyanobacterial diversity in coralloid roots of cycads revealed by PCR fingerprinting. FEMS Microbiol. Ecol. 2002, 40, 215–222. [Google Scholar] [CrossRef]
- Thajuddin, N.; Muralitharan, G.; Sundaramoorthy, M.; Ramamoorthy, R.; Ramachandran, S.; Akbarsha, M.A.; Gunasekaran, M. Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J. Basic Microbiol. 2010, 50, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Ohkubo, S.; Miyashita, H.; Setoguchi, H. Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae). FEMS Microbiol. Ecol. 2012, 81, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Bohunická, M.; Pietrasiak, N.; Johansen, J.R.; Gómez, E.B.; Hauer, T.; Gaysina, L.A.; Lukešová, A. Roholtiella, gen. nov. (Nostocales, Cyanobacteria): A tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 2015, 197, 84–103. [Google Scholar] [CrossRef]
- Lee, N.-J.; Bang, S.-D.; Kim, T.; Ki, J.-S.; Lee, O.-M. Pseudoaliinostoc sejongens gen. & sp. nov. (Nostocales, Cyanobacteria) from floodplain soil of the Geum River in Korea based on polyphasic approach. Phytotaxa 2021, 479, 55–70. [Google Scholar]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Kaštovský, J.; Berrendero Gomez, E.; Hladil, J.; Johansen, J.R. Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 2014, 181, 279–292. [Google Scholar] [CrossRef]
- Baldarelli, L.M.; Pietrasiak, N.; Osorio-Santos, K.; Johansen, J.R. Mojavia aguilerae and M. dolomitestris—Two new Nostocaceae (Cyanobacteria) species from the Americas. J. Phycol. 2022, 58, 502–516. [Google Scholar]
- Mesfin, M.; Johansen, J.R.; Pietrasiak, N.; Baldarelli, L.M. Nostoc oromo sp. nov. (Nostocales, Cyanophyceae) from Ethiopia: A new species based on morphological and molecular evidence. Phytotaxa 2020, 433, 81–93. [Google Scholar] [CrossRef]
- Kumar, N.; Saraf, A.; Pal, S.; Mishra, D.; Singh, P.; Johansen, J.R. Circumscription of Fulbrightiella gen. nov. and Sherwoodiella gen. nov., Two Novel Genera in the Calotrichaceae (Nostocales, Cyanobacteria). J. Phycol. 2022, 59, 204–220. [Google Scholar] [CrossRef]
- Mai, T.; Johansen, J.R.; Pietrasiak, N.B.M.; Martin, M.P. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 2018, 365, 1–59. [Google Scholar] [CrossRef]
- Pietrasiak, N.; Osorio-Santos, K.; Shalygin, S.; Martin, M.P.; Johansen, J.R. When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. J. Phycol. 2019, 55, 976–996. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Santos, K.; Pietrasiak, N.; Bohunická, M.; Miscoe, L.H.; Kováčik, L.; Martin, M.P.; Johansen, J.R. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria). Eur. J. Phycol. 2014, 49, 450–470. [Google Scholar] [CrossRef]
- Svenning, M.M.; Eriksson, T.; Rasmussen, U. Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch. Microbiol. 2005, 183, 19–26. [Google Scholar] [CrossRef]
- Fiore, M.F.; Neilan, B.A.; Copp, J.N.; Rodrigues, J.L.M.; Tsai, S.M.; Lee, H.; Trevors, J.T. Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Res. 2005, 39, 5017–5026. [Google Scholar] [CrossRef]
- Tawong, W.; Pongcharoen, P.; Pongpadung, P.; Ponza, S.; Saijuntha, W. Amazonocrinis thailandica sp. nov. (Nostocales, Cyanobacteria), a novel species of the previously monotypic Amazonocrinis genus from Thailand. Algae 2022, 37, 1–14. [Google Scholar] [CrossRef]
Species | Vegetative Cells Shape and Size (µm) | Heterocytes Shape and Size (µm) | Akinetes Shape and Size (µm) | Source—Locality (Habitat Condition) | Phylogenetic Position/Reference |
---|---|---|---|---|---|
D. debaoense CSM 005-N | Spherical to subspherical W: 2.3–6.5; L: 2.4–7.8 | Spherical to subspherical W: 3.5–8.6; L: 2.9–7.6 | Spherical, subspherical to oval; W: 4–8.1; L: 3.1–9.5 | Coralloid root of C. debaoensis from a natural karst habitat, Debao County | Cluster E (D1); this study |
D. meilinense CSM 017-N | Barrel-shaped to subspherical W: 2.4–5.9; L: 1.9–7.1 | Spherical to subspherical W: 3.5–5.6; L: 3.8–6.3 | Spherical to subspherical to oval W: 4.4–7.6; L: 3.7–8.8 | Coralloid root of C. fairylakea from natural moist forest, Meilin Nature Reserve | Cluster A (D1); this study |
D. xianhuense | |||||
CSM 008-B | Barrel-shaped to spherical to subspherical W: 3.5–6; L: 2.9–9.9 | Spherical to subspherical W: 4.5–9.5; L: 4.5–10.9 | Spherical to subspherical to oval W: 4.8–9.2; L: 4.5–12.4 | Coralloid root of C. fairylakea from an ex-situ conservation site in Xianhu/Fairy Lake botanical garden | Cluster F (D2); this study |
CSM 010-B | Barrel-shaped to spherical to subspherical W: 3.5–5.9; L: 2.9–9.8 | Spherical to subspherical W: 5–9; L: 4.5–10.7 | Spherical to subspherical to oval W: 5–9; L: 4.8–12.9 | Coralloid root of Ceratozamia robusta from an ex-situ conservation site in Xianhu/Fairy Lake botanical garden | |
D. aggregatum | |||||
CSM 022-B | Spherical to subspherical to barrel-shaped W: 2–5; L: 1.8–4.2 | Conical to spherical to subspherical W: 4–5.5; L: 3.7–6.5 | Not observed | Coralloid root of Ceratozamia robusta from Xianhu/Fairy Lake botanical garden | Cluster C (D1); this study |
CF06 | Barrel-shaped to subspherical W: 2.3–5.6; L: 2.3–4.7 | Conical to spherical or subspherical W: 4.1–5.6; L: 3.8–6.7 | Coralloid root of C. fairylakea from Xianhu/Fairy Lake botanical garden | Cluster C (D1); [10] | |
D. lechangense | |||||
CSM 014-B | Barrel-shaped to subspherical W: 2.5–4.9; L: 2.5–6.1 | Spherical to subspherical to oval W: 3.8–5.3; L: 4.1–5.9 | Spherical to subspherical to oval W: 3.9–6.0; L: 4.8–6.9 | Coralloid root of C. elongata from Xianhu/Fairy Lake botanical garden | Cluster B (D1); this study |
CF01 | Barrel-shaped to subspherical W: 2.5–4.9; L: 2.5–6.1 | Spherical to subspherical to oval W: 4.1–5.6; L: 3.8–6.7 | Spherical to oval/subspherical W: 3.9–6.0; L: 4.8–6.9 | Coralloid root of C. fairylakea, initially grown from a natural habitat in northern Guangdong and later introduced to Xianhu Botanical Garden | Cluster B (D1); [10] |
D. danxiaense CHAB5868 | Barrel-shaped to oval W: 2.65–3.9; L: 2.48–4.4 | Spherical to oval W: 3.54; L: 3.97 | Oval W: 5.59; L: 7.94 | Rocky wall in Danxia Mountain, Guangdong | D1 subcluster; [32] |
D. muscorum NIVA-CYA818 (TYPE SPECIES) | Barrel-shaped to cylindrical W: 4–5.9; L: 2.8–6.8 | Barrel-shaped to spherical W: 4.4–7.2; L: 5.3–10.2 | Oval W: 3.4–6.3; L: 4.5–9.4 | Soil, arable field in Dlouhá ves, Czech Republic | D2 subcluster; [9] |
D. geniculatum HA4340-LM1 | Spherical, compressed, globose, or irregularly obovoid W: 3–8; L: 2.5–8 | Spherical or hemispherical with homogenous content W: 3.6–6.1; L: 2.7–5.8 | Smooth, thickened wall, minutely granular W: 5.5–7; 3.3–7.5 | Dry wall of Maniniholo Cave in Kilauea, Hawaii | D2 subcluster; [31] |
D. salinum CCM-UFV059 | Barrel-shaped or subspherical W: 3.3–4.5; L: 3.7–5.4 | Subspherical W: 3.7–4.6; L: 5.8–8.3 | Spherical or subspherical W: 5–8.3; L: 8.3–10 | Periphytic microbial mats in a saline-alkaline lake (H2O temperature 6 °C; pH 9.5), Laguna Amarga, Torres del Paine National Park, Chile | D1 subcluster; [20] |
D. magnisporum AR6-PS | Barrel-shaped, rarely isodiametric W: 4.1–4.7; L: 4–4.5 | Spherical to oblong W: 4.8–5.6; L: 5.3–6 | Irregular shape W: 5–7.7; L: 11.8–13.4 | Freshwater habitat (pH 7.3; temperature 32.4 °C) in Shrirampur, Maharashtra, India | D1 subcluster; [28] |
D. persicum SA14 | Barrel-shaped to cylindrical W: 2.2–5.4; L: 1.9–5.5 | Spherical to oblong W: 4.5–7.1; L: 4.6–7.1 | Oval W: 3.9–5.2; L: 5.5–8.8 | Rice field (temperature 9.8 °C; pH 7.3; clay-loam) Amol, Mazandaran, Iran | D1 subcluster; [29] |
D. punense MCC 2741 | Barrel-shaped W: 3.1–4.9; L: 3.5–4.5 | Spherical or subspherical W: 3.7–5.1; L: 4.7–5.5 | Oblong W: 3.8–4.5; L: 6.5–8 | Freshwater habitat in Pune, India | D1 subcluster; [28] |
D. caucasicum MZ-C154 | Barrel-shaped to subspherical W: 3.1–4.7; L: 2.9–4.5 | Spherical to oval W: 3.1–4.4; L: 3–4.6 | Not observed | Meadow subalpine soil in the Greater Caucasus (an altitude of 2100 masl), Russia | D1 subcluster; [30] |
D. alborizicum 1387 | Spherical or slightly oblong at first and oblong to ellipsoidal at a later stage W: 0.7–4.2; L: 2.5–8.5 | Spherical or oblong W: 2–2.5; L:2–6 | Oblong to ellipsoidal W: 5–6; L: 7.5–9 | Freshwater from the qanat water supply system (pH 7.1; nitrate 0.09 mgL−1; phosphate 0.1 mgL−1), Iran | D1 subcluster; [19] |
D. vinosum HA7617-LM4 | Compressed, globose to longer than broad W:0.5–1.6; L: 2–4 | Spherical to compressed W: 2.5–3; L: 2.5–3.5 | Granular W: 3–7; L: 3–6.7 | With mixed algae on the right-hand wall of Waikapala‘e Cave in Hawaii | See Figure 5; [31] |
Strains | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 D. debaoense CSM 005-N1/N2 | 2.1 | ||||||||||||
2 D. meilinense CSM 017-N/CSM 018-N | 12.1 | 1.4 | |||||||||||
3 D. xianhuense CSM 008-B/009-B/010-B | 21.0 | 20.7 | 1.3 | ||||||||||
4 Desmonostoc sp. CSM 013-B | 12.6 | 13.6 | 21.1 | – | |||||||||
5 D. aggregatum CSM 019-B/022-B/021-B | 11.8 | 10.1 | 19.3 | 13.8 | 2.0 | ||||||||
6 D. lechangense CF01/CSM014-B | 11.4 | 10.0 | 23.2 | 8.4 | 13.7 | 1.6 | |||||||
7 D. danxiaense CHAB5868 | 12.4 | 12.4 | 24.3 | 15.3 | 15.1 | 13.8 | – | ||||||
8 D. alborizicum 1387 | 17.6 | 19.1 | 25.1 | 17.1 | 19.0 | 17.0 | 18.7 | – | |||||
9 D. geniculatum HA4340-LM1 clone37D | 21.2 | 22.2 | 9.4 | 21.9 | 22.9 | 22.4 | 22.7 | 10.6 | – | ||||
10 Desmonostoc sp. CCIBT3489 | 16.0 | 18.2 | 24.6 | 16.9 | 18.4 | 15.7 | 16.5 | 4.2 | 10.9 | – | |||
11 D. caucasicum MZ_C154 | 28.8 | 27.5 | 34.1 | 28.3 | 28.7 | 25.6 | 29.2 | 29.8 | 34.2 | 28.8 | – | ||
12 D. vinosum HA7617-LM4 | 21.7 | 22.0 | 21.3 | 23.7 | 23.3 | 21.5 | 24.7 | 12.1 | 9.3 | 11.6 | 32.4 | – | |
13 Desmonostoc sp. 7N/81-NMI_ANAB | 21.1 | 20.5 | 5.0 | 21.6 | 19.3 | 22.5 | 23.9 | 10.7 | 3.5 | 10.5 | 34.5 | 9.8 | 0.2 |
14 Desmonostoc sp. CCM-UFV020 | 16.9 | 17.4 | 24.5 | 12.2 | 17.0 | 11.3 | 17.5 | 7.0 | 10.5 | 6.2 | 28.2 | 11.6 | 10.4 |
Strains | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 D. debaoense CSM 005-N clone1/clone2 | 0.2 | |||||||
2 D. meilinense CSM 017-N clone1/clone2 | 6.1 | 0 | ||||||
3 D. xianhuense CSM 010-B clone1/clone2 | 11.6 | 12.7 | 0.2 | |||||
4 Desmonostoc sp. CSM 013-B clone1/clone2 | 10.2 | 9.0 | 10.6 | 0 | ||||
5 D. aggregatum CSM 020-B/CF06 | 8.3 | 9.2 | 12.3 | 10.2 | 1.7 | |||
6 D. lechangense CSM 016-B | 10.0 | 6.4 | 12.9 | 11.2 | 10.2 | |||
7 D. salinum CCM-UFV059 | 12.9 | 11.1 | 15.5 | 8.8 | 13.3 | 11.8 | ||
8 D. geniculatum HA4340-LM1 clone 37A/37C | 14.0 | 13.4 | 2.9 | 11.5 | 13.8 | 14.4 | 7.0 | 0.5 |
9 Desmonostoc sp. 111_CR4_BG11B | 13.1 | 11.3 | 15.5 | 8.8 | 13.8 | 13.1 | 0.4 | 6.9 |
Species | Vegetative Cells Shape and Size (µm) | Heterocytes Shape and Size (µm) | Akinetes Shape and Size (µm) | Source—Locality | Phylogenetic Position/Reference |
---|---|---|---|---|---|
Dendronalium sp. CSM 003-B | Barrel-shaped to spherical to compressed subspherical, or quadratic W: 2.7–5.6; L: 2.3–5.2 | Spherical to subspherical W: 4.1–5.6; L: 3.8–6.7 | Spherical to subspherical to oval W: 3.5–7.3; L: 5.2–9 | Coralloid root of C. fairylakea from Xianhu/Fairy Lake botanical garden | Cluster G (G-IV); this study |
Dendronalium sp. CSM 024-R | Spherical to subspherical to cylindrical or oval W: 2.1–4.8; L: 2.9–6.7 | Spherical to subspherical W: 4.1–5.6; L: 3.8–6.7 | Spherical to subspherical to oval W: 3.5–7.3; L:5.2–9 | Coralloid root of C. debaoensis from the reintroduction site in Debao County | Cluster G (G-IV); this study |
Dendronalium phyllosphericum CENA369 | Cylindrical, barrel-shaped, or rounded W: 1.3–2.6; L: 1.4–4.0 | Conical-rounded to spherical W: 1.6–3.1; L: 1.2–5 | Cylindrical, rounded to elliptical W: 2.9–3.9; L: 3.5–5 | Leaves of Euterpe edulis from Atlantic Forest in Brazil | Cluster G (G-I); [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecundo, M.H.; Chen, T.; dela Cruz, T.E.E.; Griffith, M.P.; Hu, Z.; Chen, H.; Li, N. Discovery of Cyanobacteria Associated with Cycads and Description of Three Novel Species in Desmonostoc (Nostocaceae). Diversity 2023, 15, 1132. https://doi.org/10.3390/d15111132
Pecundo MH, Chen T, dela Cruz TEE, Griffith MP, Hu Z, Chen H, Li N. Discovery of Cyanobacteria Associated with Cycads and Description of Three Novel Species in Desmonostoc (Nostocaceae). Diversity. 2023; 15(11):1132. https://doi.org/10.3390/d15111132
Chicago/Turabian StylePecundo, Melissa H., Tao Chen, Thomas Edison E. dela Cruz, M. Patrick Griffith, Zhangli Hu, Huirong Chen, and Nan Li. 2023. "Discovery of Cyanobacteria Associated with Cycads and Description of Three Novel Species in Desmonostoc (Nostocaceae)" Diversity 15, no. 11: 1132. https://doi.org/10.3390/d15111132
APA StylePecundo, M. H., Chen, T., dela Cruz, T. E. E., Griffith, M. P., Hu, Z., Chen, H., & Li, N. (2023). Discovery of Cyanobacteria Associated with Cycads and Description of Three Novel Species in Desmonostoc (Nostocaceae). Diversity, 15(11), 1132. https://doi.org/10.3390/d15111132