The Cell Wall-Related Gene Families of Wheat (Triticum aestivum)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Asseng, S.; Guarin, J.R.; Raman, M.; Monje, O.; Kiss, G.; Despommier, D.D.; Meggars, F.M.; Gauthier, P.P.G. Wheat yield potential in controlled-environment vertical farms. Proc. Natl. Acad. Sci. USA 2020, 117, 19131–19135. [Google Scholar] [CrossRef]
- Wheat Explorer. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0410000 (accessed on 21 August 2023).
- Tripathi, M.K.; Karim, S.A.; Chaturvedi, O.H.; Verma, D.L. Nutritional value of animal feed grade wheat as a replacement for maize in lamb feeding for mutton production. J. Sci. Food Agric. 2007, 87, 2447–2455. [Google Scholar] [CrossRef]
- Patwa, N.; Penning, B.W. Environmental impact on cereal crop grain damage from pre-harvest sprouting and late maturity alpha-amylase. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 23–41. [Google Scholar] [CrossRef]
- Farrokhi, N.; Burton, R.A.; Brownfield, L.; Hrmova, M.; Wilson, S.M.; Bacic, A.; Fincher, G.B. Plant Cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol. J. 2006, 4, 145–167. [Google Scholar] [CrossRef]
- Shrivastava, B.; Jain, K.K.; Kalra, A.; Kuhad, R.C. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Sci. Rep. 2014, 4, 6360. [Google Scholar] [CrossRef] [PubMed]
- Tsegaye, B.; Balomajumder, C.; Roy, P. Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers. Manag. 2019, 186, 82–92. [Google Scholar] [CrossRef]
- Yong, W.; Link, B.; O’Malley, R.; Tewari, J.; Hunter, C.T.; Lu, C.A.; Li, X.; Bleecker, A.B.; Koch, K.E.; McCann, M.C.; et al. Genomics of plant cell wall biogenesis. Planta 2005, 221, 747–751. [Google Scholar] [CrossRef]
- Nirmal, R.C.; Furtado, A.; Rangan, P.; Henry, R.J. Fasciclin-like arabinogalactan protein gene expression is associated with yield of flour in the milling of wheat. Sci. Rep. 2017, 7, 12539. [Google Scholar] [CrossRef]
- Penning, B.W. Gene expression differences related to pre-harvest sprouting uncovered in related wheat varieties by RNAseq analysis. Plant Gene 2023, 33, 100404. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucl. Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef] [PubMed]
- Penning, B.W.; McCann, M.C.; Carpita, N.C. Evolution of the cell wall gene families of grasses. Front. Plant Sci. 2019, 10, 1205. [Google Scholar] [CrossRef]
- Penning, B.W.; Hunter, C.T.; Tayengwa, R.; Eveland, A.L.; Dugard, C.K.; Olek, A.T.; Vermerris, W.; Koch, K.E.; McCarty, D.R.; Davis, M.F.; et al. Genetic Resources for maize cell wall biology. Plant Physiol. 2009, 151, 1703–1728. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER webserver: 2018 update. Nucl. Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, C.J.A.; de Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, L.; Xenarios, I. New and continuing developments at PROSITE. Nucl. Acids Res. 2013, 41, D344–D347. [Google Scholar] [CrossRef]
- Carpita, N.C. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 445–476. [Google Scholar] [CrossRef]
- Penning, B.W.; Shiga, T.M.; Klimek, J.F.; SanMiguel, P.J.; Shreve, J.; Thimmapuram, J.; Sykes, R.W.; Davis, M.F.; McCann, M.C.; Carpita, N.C. Expression profiles of cell-wall related genes vary broadly between two common maize inbreds during stem development. BMC Genom. 2019, 20, 785. [Google Scholar] [CrossRef] [PubMed]
- CAZY. Available online: http://www.cazy.org/ (accessed on 10 August 2023).
- Orellana, A.; Moraga, C.; Araya, M.; Moreno, A. Overview of nucleotide sugar transporter gene family functions across multiple species. J. Mol. Biol. 2016, 428, 3150–3165. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Chapple, C. The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu. Rev. Genet. 2010, 44, 337–363. [Google Scholar] [CrossRef]
- Reiter, W.D.; Vanzin, G.F. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol. Biol. 2001, 47, 95–113. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, J.; Gu, X.; Bar-Peled, M.; Xu, Y. Evolution of plant nucleotide-sugar interconversion enzymes. PLoS ONE 2011, 6, e27995. [Google Scholar] [CrossRef]
- Favery, B.; Ryan, E.; Foreman, J.; Linstead, P.; Boudonck, K.; Steer, M.; Shaw, P.; Dolan, L. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 2001, 15, 79–89. [Google Scholar] [CrossRef]
- Holland, N.; Holland, D.; Helentjaris, T.; Dhugga, K.; Xoconostle-Cazares, B.; Delmer, D.P. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 2000, 123, 1313–1323. [Google Scholar] [CrossRef]
- Burton, R.A.; Wilson, S.M.; Hrmova, M.; Harvey, A.J.; Shirley, N.J.; Medhurst, A.; Stone, B.A.; Newbigin, E.J.; Bacic, A.; Fincher, G.B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-b-D-glucans. Science 2006, 311, 1940–1942. [Google Scholar] [CrossRef]
- Cocuron, J.C.; Lerouxel, O.; Drakakaki, G.; Alonso, A.P.; Liepman, A.H.; Keegstra, K.; Raikhel, N.; Wilkerson, C.G. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA 2007, 104, 8550–8555. [Google Scholar] [CrossRef]
- Dhugga, K.S.; Barreiro, R.; Whitten, B.; Stecca, K.; Hazebroek, J.; Randhawa, G.S.; Dolan, M.; Kinney, A.J.; Tomes, D.; Nichols, S.; et al. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 2004, 303, 363–366. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Zhang, W.; Xu, W.; Li, S.; Chen, X.; Chen, H. Genome-wide bioinformatics analysis of cellulose synthase gene family in common bean (Phaseolus vulgaris L.) and the expression in the pod development. BMC Genom. Data 2022, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Andargie, M.; Fang, R. The function and biosynthesis of callose in high plants. Heliyon 2022, 8, e09248. [Google Scholar] [CrossRef]
- Anders, N.; Wilkinson, M.D.; Lovegrove, A.; Freeman, J.; Tryfona, T.; Pellny, T.K.; Weimar, T.; Mortimer, J.C.; Stott, K.; Baker, J.M.; et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc. Natl. Acad. Sci. USA 2012, 109, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Chiniquy, D.; Sharma, V.; Schultink, A.; Baidoo, E.E.; Rautengarten, C.; Cheng, K.; Carroll, A.; Ulvskov, P.; Harholt, J.; Keasling, J.D.; et al. XAX1 from glycosyltransferase family 61 mediates xylosyl transfer to rice xylan. Proc. Natl. Acad. Sci. USA 2012, 109, 17117–17122. [Google Scholar] [CrossRef] [PubMed]
- Feijao, C.; Morreel, K.; Anders, A.; Tryfona, T.; Busse-Wicher, M.; Kotake, T.; Boerjan, W.; Dupree, P. Hydroxycinnamic acid-modified xylan side chains and their cross-linking products in rice cell walls are reduced in the Xylosyl arabinosyl substitution of xylan 1 mutant. Plant J. 2022, 109, 1152–1167. [Google Scholar] [CrossRef]
- Egelund, J.; Obel, N.; Ulvskov, P.; Geshi, N.; Pauly, M.; Bacic, A.; Petersen, B.L. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. Plant Mol. Biol. 2007, 64, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Scheller, H.V.; Jensen, J.K.; Sørensen, S.O.; Harholt, J.; Geshi, N. Biosynthesis of pectin. Physiol. Plant. 2007, 129, 283–295. [Google Scholar] [CrossRef]
- Sterling, J.D.; Atmodjo, M.A.; Inwood, S.E.; Kolli, V.S.K.; Quigley, H.F.; Hahn, M.G.; Mohnen, D. Functional identification of an Arabidopsis pectin biosynthesic homogalacturonan galacturonosyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 5236–5241. [Google Scholar] [CrossRef]
- Lee, C.; Zhong, R.; Richardson, E.A.; Himmelsbach, D.S.; McPhail, B.T.; Ye, Z.H. The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol. 2007, 48, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Egelund, J.; Gilson, P.R.; Houghton, F.; Gleeson, P.A.; Schultz, C.J.; Bacic, A. Identification of a novel group of putative Arabidopsis thaliana β-(1,3)-galactosyltransferases. Plant Mol. Biol. 2008, 68, 43–59. [Google Scholar] [CrossRef]
- Strasser, R.; Bondili, J.S.; Vavra, U.; Schoberer, J.; Svoboda, B.; Glössl, J.; Léonard, R.; Stadlmann, J.; Altmann, F.; Steinkellner, H.; et al. A unique β1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell 2007, 19, 2278–2292. [Google Scholar] [CrossRef]
- Cavalier, D.M.; Lerouxel, O.; Neumetzler, L.; Yamauchi, K.; Reinecke, A.; Freshour, G.; Zabotina, O.A.; Hahn, M.G.; Burgert, I.; Pauly, M.; et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 2008, 20, 1519–1537. [Google Scholar] [CrossRef] [PubMed]
- Sarria, R.; Wagner, T.A.; O’Neill, M.A.; Faik, A.; Wilkerson, C.G.; Keegstra, K.; Raikhel, N.V. Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. Plant Physiol. 2001, 127, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Vanzin, G.F.; Madson, M.; Carpita, N.C.; Raikhel, N.V.; Keegstra, K.; Reiter, W.D. The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc. Natl. Acad. Sci. USA 2002, 99, 3340–3345. [Google Scholar] [CrossRef] [PubMed]
- Harholt, J.; Jensen, J.K.; Sørensen, S.O.; Orfila, C.; Pauly, M.; Scheller, H.V. ARABINAN DEFICIENT1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol. 2006, 140, 49–58. [Google Scholar] [CrossRef]
- Jensen, J.K.; Sørensen, S.O.; Harholt, J.; Geshi, N.; Sakuragi, Y.; Møller, I.; Zandleven, J.; Bernal, A.J.; Jensen, N.B.; Sørensen, C.; et al. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 2008, 20, 1289–1302. [Google Scholar] [CrossRef]
- Madson, M.; Dunand, C.; Li, X.; Verma, R.; Vanzin, G.F.; Caplan, J.; Shoue, D.A.; Carpita, N.C.; Reiter, W.-D. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 2003, 15, 1662–1670. [Google Scholar] [CrossRef]
- Peña, M.J.; Zhong, R.; Zhou, G.K.; Richardson, E.A.; O’Neill, M.A.; Darvill, A.G.; York, W.S.; Ye, Z.H. Arabidopsis irregular xylem8 and irregular xylem9: Implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 2007, 19, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Peña, M.J.; Zhou, G.K.; Nairn, C.J.; Wood-Jones, A.; Richardson, E.A.; Morrison, W.H.; Darvill, A.G.; York, W.S.; Ye, Z.-H. Arabidopsis fragile fiber8, which encodes a putative glucuronosyltransferase, is essential for normal secondary wall synthesis. Plant Cell 2005, 17, 3390–3408. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Zhang, Z.; Stephens, E.; Dupree, P.; Turner, S.R. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J. 2009, 57, 732–746. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 2000, 407, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.K.C.; Braam, J.; Fry, S.C.; Nishitani, K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol. 2002, 43, 1421–1435. [Google Scholar] [CrossRef]
- Akiyama, T.; Pillai, M.A.; Sentoku, N. Cloning, characterization and expression of OsGLN2, a rice endo-1,3-beta-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 2004, 220, 129–139. [Google Scholar] [CrossRef]
- Liu, B.; Lu, Y.; Xin, Z.; Zhang, Z. Identification and antifungal assay of a wheat B-1,3-glucanase. Biotechnol. Lett. 2009, 31, 1005–1010. [Google Scholar] [CrossRef]
- Minic, Z. Physiological roles of plant glycoside hydrolases. Planta 2008, 227, 723–740. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Rehman, H.M.; Imtiaz, M.; Baloch, F.S.; Lee, J.D.; Yang, S.H.; Lee, S.I.; Chung, G. Systems identification and characterization of cell wall reassembly and degradation related genes in Glycine max (L.) Merill, a bioenergy legume. Sci. Rep. 2017, 7, 10862. [Google Scholar] [CrossRef]
- Schlumbaum, A.; Mauch, F.; Vögeli, U.; Boller, T. Plant chitinases are potent inhibitors of fungal growth. Nature 1986, 324, 365–367. [Google Scholar] [CrossRef]
- Jindou, S.; Xu, Q.; Kenig, R.; Shulman, M.; Shoham, Y.; Bayer, E.A.; Lamed, R. Novel architecture of family-9 glycoside hydrolases identified in cellulosal enzymes of Acetivibrio cellulyticus and Clostridium thermocellum. FEMS Microbiol. Lett. 2006, 254, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, E.S.; Paul, W.; Craze, M.; Whitelaw, A.; Weigand, A.; Roberts, J.A. Dehiscence-related expression of an Arabidopsis thaliana gene encoding a polygalacturonase in transgenic plants of Brassica napus. Plant Cell Environ. 1999, 22, 159–167. [Google Scholar] [CrossRef]
- Sampedro, J.; Gianzo, C.; Iglesias, N.; Guitián, E.; Revilla, G.; Zarra, I. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiol. 2012, 158, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.Y.; Miller, L.M.; Hou, G.; Yu, X.H.; Chen, X.Y.; Liu, C.J. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 2012, 24, 50–65. [Google Scholar] [CrossRef]
- Philippe, F.; Pelloux, J.; Rayon, C. Plant pectin acetylesterase structure and function: New insights from bioinformatic analysis. BMG Genom. 2017, 18, 456. [Google Scholar] [CrossRef]
- Louvet, R.; Cavel, E.; Gutierrez, L.; Guénin, S.; Roger, D.; Gillet, F.; Guerineau, F.; Pelloux, J. Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 2006, 224, 782–791. [Google Scholar] [CrossRef]
- Domingo, C.; Roberts, K.; Stacey, N.J.; Connerton, I.; Ruíz-Teran, F.; McCann, M.C. A pectate lyase from Zinnia elegans is auxin inducible. Plant J. 1998, 13, 17–28. [Google Scholar] [CrossRef]
- Ochoa-Jiménez, V.A.; Berumen-Varela, G.; Burgara-Estrella, A.; Orozco-Avitia, J.A.; Ojeda-Contreras, A.J.; Trillo-Hernández, E.A.; Rivera-Domínguez, M.; Troncoso-Rojas, R.; Báez-Sañudo, R.; Datsenka, T.; et al. Functional analysis of tomato rhamnogalacturonan lyase gene Solyc11g011300 during fruit development and ripening. J. Plant Physiol. 2018, 231, 31–40. [Google Scholar] [CrossRef]
- Canut, H.; Albenne, C.; Jamet, E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. Biochim. Biophys. Acta–Proteins Proteom. 2016, 1864, 983–990. [Google Scholar] [CrossRef]
- Sterjiades, R.; Dean, J.F.D.; Gamble, G.; Himmelsbach, D.S.; Eriksson, K.L. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Planta 1993, 190, 75–83. [Google Scholar] [CrossRef]
- Brown, D.M.; Zeef, L.A.H.; Ellis, J.; Goodacre, R.; Turner, S.R. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 2005, 17, 2281–2295. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, Q.; Zhou, Y.; Yan, M.; Sun, L.; Zhang, M.; Fu, Z.; Wang, Y.; Han, B.; Pang, X.; et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 2003, 15, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, S.M.; Ricardi, M.M.; Poulsen, C.P.; Oikawa, A.; Dilokpimol, A.; Halim, A.; Mangano, S.; Juarez, S.P.D.; Marzol, E.; Salter, J.D.S.; et al. Complex regulation of prolyl-5-hydroxylases impacts root hair expansion. Mol. Plant 2015, 8, 734–746. [Google Scholar] [CrossRef]
- Califar, B.; Sng, N.J.; Zupanska, A.; Paul, A.L.; Ferl, R.J. Root skewing-associated genes impact the spaceflight response of Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 239. [Google Scholar] [CrossRef]
- Sedbrook, J.C.; Carroll, K.L.; Hung, K.F.; Masson, P.H.; Somerville, C.R. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 2002, 14, 1635–1648. [Google Scholar] [CrossRef]
- Zhou, C.; Dong, Z.; Zhang, T.; Wu, J.; Yu, S.; Zeng, Q.; Han, D.; Tong, W. Genome-scale analysis of homologous genes among subgenomes of bread wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2020, 21, 3015. [Google Scholar] [CrossRef]
- Johnson, D.A.; Thomas, M.A. The monosaccharide transporter gene family in Arabidopsis and rice: A history of duplications, adaptive evolution, and functional divergence. Mol. Biol. Evol. 2007, 24, 2412–2423. [Google Scholar] [CrossRef]
- Xu, A.F.; Molinuevo, R.; Fazzari, E.; Tom, H.; Zhang, Z.; Menendez, J.; Casey, K.M. Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates. eLife 2023, 12, e78695. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, L.; Rimbert, H.; Rodriguez, J.C.; Deal, K.R.; De Oliveira, R.; Choulet, F.; Keeble-Gagnère, G.; Tibbits, J.; Rogers, J.; et al. Optical maps refine the bread wheat Triticum aestivum cv Chinese Spring genome assembly. Plant J. 2021, 107, 303–314. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- International Wheat Genome Sequencing Consortium. Available online: https://www.wheatgenome.org/ (accessed on 21 August 2023).
- MaizeGDB. Available online: https://www.maizegdb.org/ (accessed on 21 August 2023).
- Rice Genome Annotation Project. Available online: http://rice.uga.edu/ (accessed on 21 August 2023).
- The Arabidopsis Information Reseource. Available online: https://www.arabidopsis.org/ (accessed on 21 August 2023).
- Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D. Multiple sequence alignment with the Clustal series of programs. Nucl. Acids Res. 2003, 31, 3497–3500. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Chevenet, F.; Brun, C.; Banuls, A.L.; Jacq, B.; Christen, R. TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinform. 2006, 7, 439. [Google Scholar] [CrossRef]
- HMMER. Available online: https://www.ebi.ac.uk/Tools/hmmer/ (accessed on 11 August 2023).
- Prosite. Available online: https://prosite.expasy.org (accessed on 11 August 2023).
- Clustal Omega. Available online: https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 11 August 2023).
- Madeira, F.; Pearce, M.; Tivey, A.R.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucl. Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Pellny, T.K.; Patil, A.; Wood, A.J.; Freeman, J.; Halsey, K.; Plummer, A.; Kosik, O.; Temple, H.; Collins, J.D.; Dupree, P.; et al. Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases cross-linking. Plant Biotech. J. 2020, 18, 2316–2327. [Google Scholar] [CrossRef]
- Gille, S.; Hänsel, U.; Ziemann, M.; Pauly, M. Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases. Proc. Natl. Acad. Sci. USA 2009, 25, 14699–14704. [Google Scholar] [CrossRef]
- Knoch, E.; Dilokpimol, A.; Tryfona, T.; Poulsen, C.P.; Xiong, G.; Harholt, J.; Petersen, B.L.; Ulvskov, P.; Hadi, M.Z.; Kotake, T.; et al. A β-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J. 2013, 76, 1016–1029. [Google Scholar] [CrossRef]
- Sampedro, J.; Cosgrove, D.J. The expansin superfamily. Genome Biol. 2005, 6, 242. [Google Scholar] [CrossRef]
- Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant Sci. 2015, 5, 771. [Google Scholar] [CrossRef]
- Chono, M.; Honda, I.; Shinoda, S.; Kushiro, T.; Kamiya, Y.; Nambara, E.; Kawakami, N.; Kaneko, S.; Watanabe, Y. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: Molecular and chemical analysis of pre-harvest sprouting. J. Exp. Bot. 2006, 57, 2421–2434. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Zhu, M.; Yu, Y.; Zhang, Y.; Wei, Z. Generation and characterization of transgenic poplar plants overexpressing a cotton laccase gene. Plant Cell Tissue Organ Cult. 2008, 93, 303–310. [Google Scholar] [CrossRef]
- Shigeto, J.; Tsutsumi, Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016, 209, 1395–1402. [Google Scholar] [CrossRef]
- Zipor, G.; Duarte, P.; Carqueijeiro, I.; Shahar, L.; Ovadia, R.; Teper-Bamnolker, P.; Eshel, D.; Levin, Y.; Doron-Faigenboim, A.; Sottomayor, M.; et al. In planta anthocyanin degradation by a vacuolar class III peroxidase in Brunfelsia calycina flowers. New Phytol. 2015, 205, 653–665. [Google Scholar] [CrossRef]
- Martinez, M.; Gómez-Cabellos, S.; Giménez, M.J.; Barro, F.; Diaz, I.; Diaz-Mendoza, M. Plant Proteases: From key enzymes in germination to allies for fighting human gluten-related disorders. Front. Plant Sci. 2019, 10, 721. [Google Scholar] [CrossRef]
- Berthet, S.; Thevin, J.; Baratiny, D.; Demont-Caulet, N.; Debeaujon, I.; Bidzinski, P.; Leple, J.; Huis, R.; Hawkins, S.; Gomez, L.D.; et al. Chapter 5—Role of plant laccases in lignin polymerization. In Advances in Botanical Research; Jouanin, J., Lapierre, C., Eds.; Academic Press: London, UK, 2012; Volume 61, pp. 145–172. [Google Scholar] [CrossRef]
- Pant, S.; Huang, Y. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation. Sci. Rep. 2022, 12, 22537. [Google Scholar] [CrossRef]
- Riaz, M.W.; Yousaf, M.I.; Hussain, Q.; Yasir, M.; Sajjad, M.; Shah, L. Role of lignin in wheat plant for the enhancement of resistance against lodging and biotic and abiotic stresses. Stresses 2023, 3, 434–453. [Google Scholar] [CrossRef]
- Pellny, T.K.; Lovegrove, A.; Freeman, J.; Tosi, P.; Love, C.G.; Knox, J.P.; Shewry, P.R.; Mitchell, R.A.C. Cell walls of developing wheat starchy endosperm: Comparison of composition and RNA-seq transcriptome. Plant Phyisol. 2012, 158, 612–627. [Google Scholar] [CrossRef]
Number of Genes per Family | ||||
---|---|---|---|---|
Cell Wall Family | Wheat | Maize | Rice | Arabidopsis |
Nucleotide Sugar Transferases | 133 | 63 | 50 | 51 |
PP 4CL | 45 | 10 | 14 | 13 |
PP C3H_C4H_F5H | 50 | 8 | 10 | 6 |
PP CAD | 48 | 4 | 12 | 9 |
PP CCoAOMT | 21 | 6 | 6 | 7 |
PP COMT | 33 | 3 | 7 | 16 |
PP CCR | 121 | 18 | 24 | 7 |
PP HCT | 149 | 38 | 5 | 1 |
PP PAL | 47 | 10 | 9 | 4 |
GT1–NSI–AUD_SUD | 15 | 9 | 6 | 6 |
GT1–NSI–AXS | 3 | 1 | 1 | 2 |
GT1–NSI–GAE | 15 | 9 | 4 | 6 |
GT1–NSI–GER | 3 | 1 | 1 | 2 |
GT1–NSI–GMD | 6 | 1 | 1 | 2 |
GT1–NSI–GME | 6 | 2 | 2 | 1 |
GT1–NSI–RHM_UER | 8 | 4 | 3 | 4 |
GT1–NSI–UGD | 12 | 3 | 5 | 4 |
GT1–NSI–UGE | 9 | 3 | 4 | 5 |
GT1–NSI–UXE | 9 | 4 | 3 | 4 |
GT2–CesA | 28 | 20 | 10 | 10 |
GT2–CSL A | 38 | 10 | 11 | 9 |
GT2–CSL C | 15 | 8 | 6 | 5 |
GT2–CSL D | 15 | 5 | 5 | 5 |
GT2–CSL E | 12 | 2 | 3 | 1 |
GT2–CSL F | 18 | 7 | 8 | 0 |
GT2–CSL G & H | 11 | 1 | 3 | 3 |
GT4–Sucrose Synthases | 21 | 5 | 7 | 6 |
GT8–A | 15 | 7 | 4 | 5 |
GT8–B | 13 | 2 | 2 | 8 |
GT8–C | 21 | 10 | 8 | 10 |
GT8–D | 52 | 23 | 22 | 15 |
GT8–E | 12 | 5 | 5 | 3 |
GT10 | 6 | 3 | 3 | 3 |
GT13 | 6 | 1 | 1 | 1 |
GT14 | 44 | 10 | 11 | 9 |
GT16 | 3 | 1 | 1 | 1 |
GT17 | 11 | 4 | 4 | 6 |
GT21 | 3 | 1 | 1 | 1 |
GT22 | 9 | 6 | 4 | 3 |
GT24 | 3 | 2 | 1 | 1 |
GT29 | 12 | 8 | 5 | 3 |
GT30 | 3 | 1 | 1 | 1 |
GT31 | 107 | 40 | 39 | 33 |
GT32 | 6 | 2 | 2 | 6 |
GT33 | 6 | 2 | 2 | 1 |
GT34 | 24 | 17 | 7 | 6 |
GT37 | 53 | 17 | 18 | 10 |
GT41 | 6 | 2 | 3 | 2 |
GT43 | 27 | 16 | 10 | 4 |
GT47 | 126 | 50 | 38 | 39 |
GT48–Callose Synthases | 35 | 7 | 7 | 12 |
GT50 | 2 | 1 | 1 | 1 |
GT57 | 3 | 1 | 1 | 1 |
GT58 | 3 | 1 | 1 | 1 |
GT59 | 3 | 1 | 1 | 1 |
GT61 | 117 | 33 | 24 | 8 |
GT64 | 6 | 3 | 3 | 3 |
GT66 | 9 | 4 | 2 | 2 |
GT68 | 3 | 1 | 1 | 3 |
GT75–RGP | 12 | 9 | 3 | 5 |
GT76 | 3 | 2 | 1 | 1 |
GT77 | 74 | 23 | 16 | 18 |
GT92 | 9 | 3 | 3 | 3 |
GT96 | 3 | 2 | 1 | 1 |
GH9 | 82 | 22 | 25 | 25 |
GH16–XTHs | 142 | 31 | 28 | 33 |
GH17 | 209 | 51 | 60 | 47 |
GH18–Yieldins | 60 | 10 | 9 | 10 |
GH28–Pgases–A | 29 | 12 | 11 | 13 |
GH28–Pgases–B | 18 | 0 | 1 | 10 |
GH28–Pgases–C | 11 | 8 | 8 | 9 |
GH28–Pgases–D | 34 | 7 | 9 | 6 |
GH28–Pgases–E | 15 | 3 | 3 | 8 |
GH28–Pgases–F | 14 | 16 | 6 | 10 |
GH28–Pgases–G | 13 | 1 | 4 | 8 |
GH35–Beta Galactosidases | 48 | 16 | 10 | 17 |
Expansins | 248 | 55 | 61 | 34 |
CE8–PMEs | 120 | 34 | 41 | 66 |
CE13–PAEs | 53 | 11 | 10 | 11 |
PL1–Pectin Lyases | 31 | 12 | 12 | 26 |
PL4–RG Lyases | 15 | 4 | 3 | 7 |
P4H | 28 | 10 | 12 | 11 |
Laccases | 113 | 24 | 27 | 17 |
Peroxidases | 643 | 124 | 135 | 73 |
SKU | 34 | 12 | 4 | 3 |
COBRA-like | 38 | 9 | 11 | 11 |
GDPlike | 15 | 7 | 6 | 7 |
Proteases | 296 | 49 | 50 | 18 |
HIP-like | 11 | 3 | 3 | 3 |
AGPs | 22 | 9 | 8 | 39 |
HRGPs | 3 | 2 | 2 | 13 |
Total | 4086 | 1118 | 1036 | 955 |
Gene Family | Location (bp) | Distance Apart (kb) | ||
---|---|---|---|---|
Wheat Gene | Start | Stop | ||
CAD | TraesCS2A03G0131200 | 34,450,307 | 34,451,760 | 19.9 |
TraesCS2A03G0131300 | 34,471,637 | 34,473,153 | ||
CAD | TraesCS2B03G0178200 | 50,262,749 | 50,264,076 | 78.9 |
TraesCS2B03G0178300 | 50,342,947 | 50,344,421 | ||
CAD | TraesCS2B03G0191100 | 54,229,490 | 54,230,578 | 33.8 |
TraesCS2B03G0191300 | 54,264,332 | 54,266,016 | ||
CAD | TraesCS3A03G1041000 | 688,689,431 | 688,692,028 | 34.1 |
TraesCS3A03G1041600 | 688,726,119 | 688,729,557 | ||
CAD | TraesCS3B03G1199000 | 745,631,611 | 745,634,419 | 321.7 |
TraesCS3B03G1200700 | 745,956,098 | 745,958,925 | ||
CAD | TraesCS3D03G0968100 | 552,033,322 | 552,035,463 | 116.5 |
TraesCS3D03G0968500 | 552,151,988 | 552,155,191 | ||
CAD | TraesCS6A03G0939400 | 597,869,237 | 597,875,251 | 17.6 |
TraesCS6A03G0939600LC | 597,892,856 | 597,894,201 | 21.3 | |
TraesCS6A03G0939900 | 597,915,465 | 597,921,915 | ||
CAD | TraesCS6B03G1146700 | 690,063,231 | 690,067,770 | 26.8 |
TraesCS6B03G1147100 | 690,094,598 | 690,099,654 | 43.3 | |
TraesCS6B03G1147200 | 690,142,991 | 690,147,748 | ||
CAD | TraesCS6D03G0816500 | 470,593,540 | 470,597,691 | 26.6 |
TraesCS6D03G0816600 | 470,624,314 | 470,629,321 | 26.0 | |
TraesCS6D03G0817100 | 470,655,366 | 470,661,613 | ||
PAL | TraesCS1A03G0089500 | 22,809,328 | 22,817,055 | 2.8 |
TraesCS1A03G0089700 | 22,819,864 | 22,822,522 | ||
PAL | TraesCS1B03G0108100 | 30,156,990 | 30,159,840 | 13.2 |
TraesCS1B03G0108300 | 30,173,031 | 30,175,842 | 48.2 | |
TraesCS1B03G0108400 | 30,224,080 | 30,226,937 | 67.0 | |
TraesCS1B03G0108600 | 30,293,907 | 30,296,751 | 37.8 | |
TraesCS1B03G0108700 | 30,334,559 | 30,337,342 | ||
PAL | TraesCS1D03G0078900 | 20,552,689 | 20,561,537 | 1.4 |
TraesCS1D03G0079200 | 20,562,959 | 20,565,612 | ||
PAL | TraesCS2A03G0922600 | 628,113,634 | 628,116,620 | 32.0 |
TraesCS2A03G0922700 | 628,148,609 | 628,151,525 | 49.4 | |
TraesCS2A03G0922800 | 628,200,915 | 628,203,659 | 8.4 | |
TraesCS2A03G0922900 | 628,212,066 | 628,214,916 | ||
PAL | TraesCS2B03G1014000 | 572,920,722 | 572,923,789 | 145.0 |
TraesCS2B03G1015000 | 573,068,831 | 573,071,748 | 140.2 | |
TraesCS2B03G1015300 | 573,211,969 | 573,214,748 | ||
PAL | TraesCS2D03G0862600 | 483,823,970 | 483,826,687 | 84.6 |
TraesCS2D03G0863100 | 483,911,277 | 483,914,370 | 268.0 | |
TraesCS2D03G0863200 | 484,182,377 | 484,185,488 | 23.8 | |
TraesCS2D03G0863300 | 484,209,252 | 484,211,934 | ||
CslA | TraesCS7A03G0953700 | 576,059,990 | 576,064,129 | 49.7 |
TraesCS7A03G0953800 | 576,113,787 | 576,117,206 | ||
CslA | TraesCS7B03G0796700 | 537,109,006 | 537,112,692 | 3.1 |
TraesCS7B03G0796800 | 537,115,750 | 537,132,129 | ||
CslA | TraesCS7D03G0919100 | 506,334,490 | 506,337,868 | 9.5 |
TraesCS7D03G0919200 | 506,347,416 | 506,352,132 | ||
CslE | TraesCS5A03G0631600 | 469,521,391 | 469,527,274 | 2.4 |
TraesCS5A03G0631700 | 469,529,676 | 469,535,899 | ||
CslE | TraesCS5B03G0653700 | 437,270,468 | 437,275,686 | 2.7 |
TraesCS5B03G0653800 | 437,278,393 | 437,284,101 | ||
CslE | TraesCS5D03G0599500 | 370,151,008 | 370,156,445 | 4.7 |
TraesCS5D03G0599600 | 370,161,140 | 370,165,637 | ||
GH18 | TraesCS3A03G0882000 | 623,487,813 | 623,487,813 | 6.4 |
TraesCS3A03G0882100 | 623,494,204 | 623,495,097 | 2.5 | |
TraesCS3A03G0882200 | 623,497,609 | 623,498,502 | 137.5 | |
TraesCS3A03G0882500 | 623,636,002 | 623,636,895 | 13.2 | |
TraesCS3A03G0882600 | 623,650,108 | 623,651,001 | 6.9 | |
TraesCS3A03G0882700 | 623,657,857 | 623,658,750 | 26.5 | |
TraesCS3A03G0882800 | 623,685,242 | 623,686,135 | 214.1 | |
TraesCS3A03G0883100 | 623,900,253 | 623,901,602 | ||
GH18 | TraesCS3B03G1008300 | 655,681,956 | 655,682,987 | 4.1 |
TraesCS3B03G1008400 | 655,687,134 | 655,688,027 | 27.7 | |
TraesCS3B03G1008600 | 655,715,751 | 655,716,644 | 6.3 | |
TraesCS3B03G1008700 | 655,722,943 | 655,723,836 | 6.7 | |
TraesCS3B03G1009100 | 655,730,571 | 655,731,464 | 122.3 | |
TraesCS3B03G1009200 | 655,853,730 | 655,854,731 | ||
GH18 | TraesCS3D03G0810000 | 480,870,250 | 480,871,131 | 3.9 |
TraesCS3D03G0810100 | 480,875,009 | 480,875,902 | 31.7 | |
TraesCS3D03G0810300LC | 480,907,624 | 480,908,268 | 199.2 | |
TraesCS3D03G0810400 | 481,107,472 | 481,108,365 | 16.6 | |
TraesCS3D03G0810500 | 481,124,934 | 481,125,827 | 457.3 | |
TraesCS3D03G0810900 | 481,583,081 | 481,584,377 | ||
PAE | TraesCS3A03G1263600 | 748,276,487 | 748,280,357 | 53.1 |
TraesCS3A03G1264000 | 748,333,460 | 748,335,357 | 20.7 | |
TraesCS3A03G1264100 | 748,356,041 | 748,358,835 | 3.3 | |
TraesCS3A03G1264200 | 748,362,146 | 748,365,282 | 8.5 | |
TraesCS3A03G1264400 | 748,373,743 | 748,377,054 | ||
PAE | TraesCS3B03G1508100 | 844,439,077 | 844,442,856 | 27.3 |
TraesCS3B03G1508200 | 844,470,116 | 844,472,978 | 28.1 | |
TraesCS3B03G1508300 | 844,501,107 | 844,509,112 | 13.6 | |
TraesCS3B03G1508500 | 844,522,685 | 844,524,017 | 22.3 | |
TraesCS3B03G1508700 | 844,546,309 | 844,549,502 | ||
PAE | TraesCS3D03G1188000 | 615,245,943 | 615,249,493 | 29.9 |
TraesCS3D03G1188400 | 615,279,382 | 615,282,166 | 9.9 | |
TraesCS3D03G1188500 | 615,292,106 | 615,295,886 | 2.7 | |
TraesCS3D03G1188600 | 615,298,614 | 615,301,615 | 31.6 | |
TraesCS3D03G1188700 | 615,333,190 | 615,336,310 | 40.9 | |
TraesCS3D03G1188900 | 615,377,258 | 615,380,183 | ||
PAE | TraesCS5A03G1140500 | 658,736,919 | 658,740,227 | 72.9 |
TraesCS5A03G1140600 | 658,813,140 | 658,817,069 | ||
PAE | TraesCS5B03G1211700 | 666,788,941 | 666,792,805 | 127.0 |
TraesCS5B03G1212500 | 666,919,777 | 666,924,347 | ||
PAE | TraesCS5D03G1094700 | 532,276,790 | 532,280,796 | 29.9 |
TraesCS5D03G1094800 | 532,310,668 | 532,314,929 |
ProteinV1 | Description from Penning 2023 | ProteinV2_1 | Gene Family |
---|---|---|---|
TraesCS5A01G405700.1 | Cellulose synthase-like protein | TraesCS5A03G0962500.1 | GT2–CSL C |
TraesCS5B01G410400.1 | Cellulose synthase-like protein | TraesCS5B03G1012800.1 | GT2–CSL C |
TraesCS5D01G415700.1 | Cellulose synthase-like protein | TraesCS5D03G0916900.2 | GT2–CSL C |
TraesCS7A01G298600.1 | Cellulose synthase-like protein | TraesCS7A03G0733400.1 | GT2–CSL F |
TraesCS7B01G188400.2 | Cellulose synthase-like protein | TraesCS7B03G0538200.1 | GT2–CSL F |
TraesCS1A01G152500.1 | UDP-glucose:glycoprotein glucosyltransferase | TraesCS1A03G0409400.1 | GT24 |
TraesCS1D01G149400.1 | UDP-glucose:glycoprotein glucosyltransferase | TraesCS1D03G0377700.1 | GT24 |
TraesCS6A01G102100.1 | Glycosyltransferase | TraesCS6A03G0237900.1 | GT61 |
TraesCS3A01G440800.1 | glycosyltransferase family exostosin protein | TraesCS3A03G1025100.1 | GT47 E |
TraesCS3D01G433400.1 | glycosyltransferase family exostosin protein | TraesCS3D03G0953500.2 | GT47 E |
TraesCS2A01G051600.2 | O-methyltransferase | TraesCS2A03G0099800.2 | 1.3 COMT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penning, B.W. The Cell Wall-Related Gene Families of Wheat (Triticum aestivum). Diversity 2023, 15, 1135. https://doi.org/10.3390/d15111135
Penning BW. The Cell Wall-Related Gene Families of Wheat (Triticum aestivum). Diversity. 2023; 15(11):1135. https://doi.org/10.3390/d15111135
Chicago/Turabian StylePenning, Bryan W. 2023. "The Cell Wall-Related Gene Families of Wheat (Triticum aestivum)" Diversity 15, no. 11: 1135. https://doi.org/10.3390/d15111135
APA StylePenning, B. W. (2023). The Cell Wall-Related Gene Families of Wheat (Triticum aestivum). Diversity, 15(11), 1135. https://doi.org/10.3390/d15111135