Metal Concentration in Palaemon elegans along the Coastal Areas of Gran Canaria (Canary Islands): Potential Bioindicator of Pollution
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatvijitkul, S.; Boyd, C.E.; Davis, D.A.; McNevin, A.A. Pollution Potential Indicators for Feed-Based Fish and Shrimp Culture. Aquaculture 2017, 477, 43–49. [Google Scholar] [CrossRef]
- Gardner, C.; Watson, R.A.; Jayanti, A.D.; Suadi, J.; AlHusaini, M.; Lovrich, G.; Thiel, M. Crustaceans as Fisheries Resources: General Overview. In Fisheries and Aquaculture; Oxford University Press: Oxford, UK, 2020; Volume 9, p. 9. [Google Scholar]
- Ajeeshkumar, K.K.; Visnu, K.V.; Remyakumari, K.R.; Navaneethan, R.; Asha, K.K.; Ganesan, B.; Chatterjee, N.S.; Anandan, R.; Mathew, S. Biochemical Composition and Heavy Metal Content of Selected Marine Fish from the Gulf of Mannar, India. Fish. Technol. 2015, 52, 164. [Google Scholar]
- Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres, F. Fishing Down Marine Food Webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.A.; Cheung, W.W.L.; Anticamara, J.A.; Sumaila, R.U.; Zeller, D.; Pauly, D. Global Marine Yield Halved as Fishing Intensity Redoubles. Fish Fish. 2013, 14, 493–503. [Google Scholar] [CrossRef]
- Jennings, S.; Reynolds, J.D.; Mills, S.C. Life History Correlates of Responses to Fisheries Exploitation. Proc. R Soc. Lond B Biol. Sci. 1998, 265, 333–339. [Google Scholar] [CrossRef]
- Pezzullo, P.C. Toxic Tourism: Rhetorics of Pollution, Travel, and Environmental Justice; University of Alabama Press: Tuscaloosa, AL, USA, 2009; ISBN 0817355871. [Google Scholar]
- Lerner, A.P. Priorities and Pollution: Comment. Am. Econ. Rev. 1974, 64, 715–717. [Google Scholar]
- Mele, M.; Magazzino, C. Pollution, Economic Growth, and COVID-19 Deaths in India: A Machine Learning Evidence. Environ. Sci. Pollut. Res. 2021, 28, 2669–2677. [Google Scholar] [CrossRef]
- Harrison, R.M. Pollution: Causes, Effects and Control; Royal Society of Chemistry: London, UK, 2001; ISBN 0854046216. [Google Scholar]
- Sindermann, C.J. Ocean Pollution: Effects on Living Resources and Humans; CRC Press: Boca Raton, FL, USA, 1995; ISBN 1482229749. [Google Scholar]
- Katircioglu, S.T. International Tourism, Energy Consumption, and Environmental Pollution: The Case of Turkey. Renew. Sustain. Energy Rev. 2014, 36, 180–187. [Google Scholar] [CrossRef]
- Wear, S.L.; Thurber, R.V. Sewage Pollution: Mitigation Is Key for Coral Reef Stewardship. Ann. N. Y. Acad. Sci. 2015, 1355, 15–30. [Google Scholar] [CrossRef]
- Cabral-Oliveira, J.; Pardal, M.A. Sewage Discharges in Oceanic Islands: Effects and Recovery of Eulittoral Macrofauna Assemblages. J. Coast. Conserv. 2016, 20, 307–314. [Google Scholar] [CrossRef]
- Amiel, A.J.; Navrot, J. Nearshore Sediment Pollution in Israel by Trace Metals Derived from Sewage Effluent. Mar. Pollut. Bull. 1978, 9, 10–14. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, J.; Ouyang, Z.; Söderlund, L.; Liu, G. Impacts of Sewage Irrigation on Heavy Metal Distribution and Contamination in Beijing, China. Environ. Int 2005, 31, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Roth, F.; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S. Impacts of a High-Discharge Submarine Sewage Outfall on Water Quality in the Coastal Zone of Salvador (Bahia, Brazil). Mar. Pollut. Bull. 2016, 106, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Bilbao, E.; Alcázar-Treviño, J. Sewage Pipe Waters Affect Colour Composition in Palaemon Shrimp from the Intertidal in the Canary Islands: A New Non-Lethal Bioindicator of Anthropogenic Pollution. Diversity 2023, 15, 658. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; González-Delgado, S.; Alcázar-Treviño, J. Use of Survival Rates of the Barnacle Chthamalus Stellatus as a Bioindicator of Pollution. Environ. Sci. Pollut. Res. 2021, 28, 1247–1253. [Google Scholar] [CrossRef]
- Ruilian, Y.; Xing, Y.; Zhao, Y.; Hu, G.; Tu, X. Heavy Metal Pollution in Intertidal Sediments from Quanzhou Bay, China. J. Environ. Sci. 2008, 20, 664–669. [Google Scholar] [CrossRef]
- Sadeghi, P.; Loghmani, M.; Frokhzad, S. Human Health Risk Assessment of Heavy Metals via Consumption of Commercial Marine Fish (Thunnus Albacares, Euthynnus Affinis, and Katsuwonus Pelamis) in Oman Sea. Environ. Sci. Pollut. Res. 2020, 27, 14944–14952. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Espinosa, J.M.; Thorne-Bazarra, T.; Hardisson, A.; Paz, S.; González-Weller, D.; Rubio, C.; Gutiérrez, Á.J. Monitoring Different Sources of Marine Pollution in the Canarian Intertidal Zone Using Anemonia Sulcata as a Bioindicator. Mar. Pollut. Bull. 2023, 195, 115538. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Alcázar-Treviño, J.; Alduán, M.; Lozano, G.; Hardisson, A.; Rubio, C.; González-Weller, D.; Paz, S.; Carrillo, M.; Gutiérrez, Á.J. Metal Content in Stranded Pelagic vs Deep-Diving Cetaceans in the Canary Islands. Chemosphere 2021, 285, 131441. [Google Scholar] [CrossRef]
- Anderson, M.R. The Resource for the Power Industry Professional. Proc. ASME Power 2004, 32, 35–40. [Google Scholar]
- Anderson, M.; Braak, C. Ter Permutation Tests for Multi-Factorial Analysis of Variance. J. Stat. Comput. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Kocasoy, G. Effects of Tourist Population Pressure on Pollution of Coastal Seas. Environ. Manag. 1995, 19, 75–79. [Google Scholar] [CrossRef]
- Yanes Luque, A.; Rodríguez-Báez, J.A.; Máyer Suárez, P.; Dorta Antequera, P.; López-Díez, A.; Díaz-Pacheco, J.; Pérez-Chacón, E. Marine Storms in Coastal Tourist Areas of the Canary Islands. Nat. Hazards 2021, 109, 1297–1325. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A.; van Loon, A.J. Cadmium Pollution in the Tourism Environment: A Literature Review. Geosciences 2020, 10, 242. [Google Scholar] [CrossRef]
- Carrillo, J.; González, A.; Pérez, J.C.; Expósito, F.J.; Díaz, J.P. Projected Impacts of Climate Change on Tourism in the Canary Islands. Reg. Environ. Chang. 2022, 22, 61. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Andrade, F. Intertidal Communities as Indicators of Environmental Change and Their Potencial Use in Biomonitoring: The Troia Resort (Portugal), a Large-Scale Tourist Development, as a Case Study. Bol. Inst. Esp. Oceanogr. 2003, 19, 253. [Google Scholar]
- Cravo, A.; Bebianno, M.J. Bioaccumulation of Metals in the Soft Tissue of Patella Aspera: Application of Metal/Shell Weight Indices. Estuar. Coast. Shelf. Sci. 2005, 65, 571–586. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Benjakul, S.; Kishimura, H.; Tsai, Y.H. Chemical Compositions and Nutritional Value of Asian Hard Clam (Meretrix Lusoria) from the Coast of Andaman Sea. Food Chem. 2013, 141, 4138–4145. [Google Scholar] [CrossRef]
- Raman, A.V. Pollution Effects in Visakhapatnam Harbour, India: An Overview of 23 Years of Investigations and Monitoring. Helgoländer Meeresunters 1995, 49, 633–645. [Google Scholar] [CrossRef]
- Mostafa, A.R.; Barakat, A.O.; Qian, Y.; Wade, T.L.; Yuan, D. An Overview of Metal Pollution in the Western Harbour of Alexandria, Egypt. Soil Sediment Contam. 2004, 13, 299–311. [Google Scholar] [CrossRef]
- Campanella, L.; Conti, M.E.; Cubadda, F.; Sucapane, C. Trace Metals in Seagrass, Algae and Molluscs from an Uncontaminated Area in the Mediterranean. Environ. Pollut. 2001, 111, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Guerra-García, J.M.; García-Gómez, J.C. Assessing Pollution Levels in Sediments of a Harbour with Two Opposing Entrances. Environmental Implications. J. Environ. Manag. 2005, 77, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Coelho, J.P.; Baptista, J.; Martinho, F.; Pereira, M.E.; Pardal, M.A. Mercury Accumulation in Fish Species along the Portuguese Coast: Are There Potential Risks to Human Health? Mar. Pollut. Bull. 2020, 150, 110740. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- He, F.J.; MacGregor, G.A. Beneficial Effects of Potassium on Human Health. Physiol. Plant. 2008, 133, 725–735. [Google Scholar] [CrossRef]
- Páez-Osuna, F.; Guerrero-Galván, S.R.; Ruiz-Fernández, A.C. The Environmental Impact of Shrimp Aquaculture and the Coastal Pollution in Mexico. Mar. Pollut. Bull. 1998, 36, 65–75. [Google Scholar] [CrossRef]
- Olgunoğlu, M.P.; Olgunoğlu, İ.A.; Bayhan, Y.K. Heavy Metal Concentrations (Cd, Pb, Cu, Zn, Fe) in Giant Red Shrimp (Aristaeomorpha Foliacea Risso 1827) from the Mediterranean Sea. Pol. J. Environ. Stud. 2015, 24, 631–635. [Google Scholar] [CrossRef]
- Vazquez, F.G.; Sharma, V.K.; Mendoza, Q.A.; Hernandez, R. Metals in Fish and Shrimp of the Campeche Sound, Gulf of Mexico. Bull. Environ. Contam. Toxicol. 2001, 67, 756–762. [Google Scholar] [CrossRef]
- Markus, T.; Sánchez, P.P.S. Managing and Regulating Underwater Noise Pollution. In Handbook on Marine Environment Protection: Science, Impacts and Sustainable Management; Salomon, M., Markus, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 971–995. ISBN 978-3-319-60156-4. [Google Scholar]
- Anand, K.S.; Giraud-Carrier, F.C. Pollution Regulation of Competitive Markets. Manag. Sci. 2020, 66, 4193–4206. [Google Scholar] [CrossRef]
- Ward-paige, C.A. A Global Overview of Shark Sanctuary Regulations and Their Impact on Shark Fi Sheries. Mar. Policy 2017, 82, 87–97. [Google Scholar] [CrossRef]
- Yang, D.; Yang, X.; Wang, X.; Huang, C.; Zhu, S. Migration Paths and Laws of Pb from Source to Ocean. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 295, p. 12046. [Google Scholar]
- Hua, S.; Pei, X.; Li, W.; Cheng, H.; Zhao, H.; Sturdivant, D. Migration and Deposition Law of Pollutants in Urban Sewage Confluence Pipe Network from the Perspective of Ecology. J. Environ. Public Health 2022, 2022, 9893246. [Google Scholar] [CrossRef] [PubMed]
- Ghomian, T.; Kizilkaya, O.; Choi, J.-W. Lead Sulfide Colloidal Quantum Dot Photovoltaic Cell for Energy Harvesting from Human Body Thermal Radiation. Appl. Energy 2018, 230, 761–768. [Google Scholar] [CrossRef]
- Yilmaz, A.B. Comparison of Heavy Metal Levels of Grey Mullet (Mugil cephalus L.) and Sea Bream (Sparus aurata L.) Caught in Iskenderun Bay (Turkey). Turk. J. Vet. Anim. Sci. 2005, 29, 257–262. [Google Scholar]
- Uysal, K.; Emre, Y.; Köse, E. The Determination of Heavy Metal Accumulation Ratios in Muscle, Skin and Gills of Some Migratory Fish Species by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem. J. 2008, 90, 67–70. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Dai, G. Review of Maritime Transportation Air Emission Pollution and Policy Analysis. J. Ocean Univ. China 2009, 8, 283–290. [Google Scholar] [CrossRef]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; Van Aardenne, J. Impact of Maritime Transport Emissions on Coastal Air Quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Cameron, V.; Vance, D. Heavy Nickel Isotope Compositions in Rivers and the Oceans. Geochim. Cosmochim. Acta 2014, 128, 195–211. [Google Scholar] [CrossRef]
- Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. Global Thermal Pollution of Rivers from Thermoelectric Power Plants. Environ. Res. Lett. 2016, 11, 104011. [Google Scholar] [CrossRef]
- Jithesh, M.; Radhakrishnan, M.V. Seasonal Variation in Accumulation of Metals in Selected Tissues of the Ribbon Fish, Trichiurus Lepturus Collected from Chaliyar River, Kerala, India. J. Entomol. Zool. Stud. 2017, 5, 51–56. [Google Scholar]
- Squadrone, S.; Prearo, M.; Brizio, P.; Gavinelli, S.; Pellegrino, M.; Scanzio, T.; Guarise, S.; Benedetto, A.; Abete, M.C. Heavy Metals Distribution in Muscle, Liver, Kidney and Gill of European Catfish (Silurus glanis) from Italian Rivers. Chemosphere 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Chafi, S.; Azzouz, A.; Ballesteros, E. Occurrence and Distribution of Endocrine Disrupting Chemicals and Pharmaceuticals in the River Bouregreg (Rabat, Morocco). Chemosphere 2022, 287, 132202. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Andersson, S.; Baden, S.; Moksnes, P.-O. Trophic Role of the Omnivorous Grass Shrimp Palaemon Elegans in a Swedish Eelgrass System. Mar. Ecol. Prog. Ser. 2008, 371, 203–212. [Google Scholar] [CrossRef]
- Lorenzon, S.; Francese, M.; Ferrero, E.A. Heavy Metal Toxicity and Differential Effects on the Hyperglycemic Stress Response in the Shrimp Palaemon Elegans. Arch. Environ. Contam. Toxicol. 2000, 39, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Achituv, Y.; Cook, P.A. The Influence of Temperature Variations and Thermal Pollution on Various Aspects of the Biology of the Prawn Palaemon Pacificus (Stimpson). J. Exp. Mar. Biol. Ecol. 1984, 74, 291–302. [Google Scholar] [CrossRef]
- Fishery in the Aegean Sea (Izmir Bay, Turkey). J. Appl. Ichthyol. 2008, 24, 339–341. [CrossRef]
- Devineau, J.; Amiard Triquet, C. Patterns of Bioaccumulation of an Essential Trace Element (Zinc) and a Pollutant Metal (Cadmium) in Larvae of the Prawn Palaemon Serratus. Mar. Biol. 1985, 86, 139–143. [Google Scholar] [CrossRef]
- Penha-Lopes, G.; Torres, P.; Cannicci, S.; Narciso, L.; Paula, J. Monitoring Anthropogenic Sewage Pollution on Mangrove Creeks in Southern Mozambique: A Test of Palaemon Concinnus Dana, 1852 (Palaemonidae) as a Biological Indicator. Environ. Pollut. 2011, 159, 636–645. [Google Scholar] [CrossRef]
- Burger, J. Bioindicators: A Review of Their Use in the Environmental Literature 1970–2005. Environ. Bioindic. 2006, 1, 136–144. [Google Scholar] [CrossRef]
- Markert, B.A.; Breure, A.M.; Zechmeister, H.G. Bioindicators and Biomonitors; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 0080527973. [Google Scholar]
- Manickavasagam, S.; Sudhan, C.; Aanand, S. Bioindicators in Aquatic Environment and Their Significance. J. Aquac. Trop. 2019, 34, 73–79. [Google Scholar] [CrossRef]
- Li, J.; Lusher, A.L.; Rotchell, J.M.; Deudero, S.; Turra, A.; Bråte, I.L.N.; Sun, C.; Shahadat Hossain, M.; Li, Q.; Kolandhasamy, P.; et al. Using Mussel as a Global Bioindicator of Coastal Microplastic Pollution. Environ. Pollut. 2019, 244, 522–533. [Google Scholar] [CrossRef]
- Lozano, G.; Herraiz, E.; Hardisson, A.; Gutiérrez, A.J.; González-Weller, D.; Rubio, C. Heavy and Trace Metal Concentrations in Three Rockpool Shrimp Species (Palaemon elegans, Palaemon adspersus and Palaemon serratus) from Tenerife (Canary Islands). Environ. Monit. Assess. 2010, 168, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Lozano, E.; Lozano, G.; Hardisson, A.; Rubio, C. Contenido de Metales Pesados y Elementos Traza en Especies de Camarones de La Isla de Tenerife. Capitán 2016, 28, 60–72. [Google Scholar]
- Adebiyi, F.M.; Ore, O.T.; Ogunjimi, I.O. Evaluation of Human Health Risk Assessment of Potential Toxic Metals in Commonly Consumed Crayfish (Palaemon hastatus) in Nigeria. Heliyon 2020, 6, e03092. [Google Scholar] [CrossRef]
- Kurun, A.; Balkıs, H.; Balkıs, N. Accumulations of Total Metal in Dominant Shrimp Species (Palaemon adspersus, Palaemon serratus, Parapenaeus longirostris) and Bottom Surface Sediments Obtained from the Northern Inner Shelf of the Sea of Marmara. Environ. Monit. Assess. 2007, 135, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Nugegoda, D.; Rainbow, P.S. The Uptake of Dissolved Zinc and Cadmium by the Decapod Crustacean Palaemon Elegans. Mar. Pollut. Bull. 1995, 31, 460–463. [Google Scholar] [CrossRef]
Metal | Wavelength (nm) | Limit of Detection (mg/L) | Limit of Quantification (mg/L) |
---|---|---|---|
Al | 167.0 | 0.004 | 0.012 |
B | 249.7 | 0.003 | 0.012 |
Cd | 226.5 | 0.0003 | 0.001 |
Fe | 259.9 | 0.002 | 0.005 |
Li | 670.8 | 0.005 | 0.013 |
Ni | 231.6 | 0.0007 | 0.003 |
Pb | 220.3 | 0.0003 | 0.001 |
Zn | 206.2 | 0.002 | 0.007 |
Confital | Bañaderos | Agaete | Arinaga | Arguineguín | ||
---|---|---|---|---|---|---|
TL | Mean | 3.72 | 3.78 | 3.76 | 3.72 | 3.72 |
Sd | 0.16 | 0.28 | 0.27 | 0.16 | 0.21 | |
Min | 3.5 | 3.4 | 3.4 | 3.5 | 3.4 | |
Max | 4.0 | 4.2 | 4.2 | 4.0 | 4.0 | |
Al | Mean | 40.70 | 36.30 | 42.23 | 36.52 | 49.14 |
Sd | 2.27 | 2.57 | 4.12 | 3.58 | 4.51 | |
Min | 36.68 | 32.04 | 34.86 | 31.39 | 42.25 | |
Max | 43.27 | 39.34 | 47.08 | 41.94 | 56.43 | |
Zn | Mean | 19.23 | 17.14 | 19.92 | 17.18 | 22.82 |
Sd | 2.22 | 2.07 | 2.63 | 1.81 | 1.53 | |
Min | 16.26 | 14.78 | 17.15 | 15.17 | 20.78 | |
Max | 23.68 | 21.53 | 25.77 | 21.10 | 25.70 | |
Cd | Mean | 0.073 | 0.065 | 0.075 | 0.065 | 0.084 |
Sd | 0.016 | 0.014 | 0.017 | 0.013 | 0.014 | |
Min | 0.058 | 0.052 | 0.057 | 0.051 | 0.070 | |
Max | 0.096 | 0.088 | 0.105 | 0.086 | 0.109 | |
Pb | Mean | 0.132 | 0.118 | 0.137 | 0.118 | 0.152 |
Sd | 0.028 | 0.026 | 0.033 | 0.026 | 0.016 | |
Min | 0.107 | 0.098 | 0.109 | 0.096 | 0.132 | |
Max | 0.201 | 0.182 | 0.218 | 0.179 | 0.184 | |
Ni | Mean | 0.590 | 0.525 | 0.609 | 0.523 | 0.695 |
Sd | 0.186 | 0.164 | 0.188 | 0.152 | 0.222 | |
Min | 0.376 | 0.342 | 0.409 | 0.369 | 0.496 | |
Max | 0.903 | 0.789 | 0.928 | 0.773 | 1.094 | |
Fe | Mean | 20.21 | 18.01 | 20.98 | 18.0 | 22.974 |
Sd | 3.27 | 2.98 | 3.94 | 2.641 | 0.92 | |
Min | 16.29 | 14.81 | 17.73 | 15.97 | 21.49 | |
Max | 27.75 | 25.22 | 30.19 | 24.72 | 24.62 | |
B | Mean | 4.128 | 3.681 | 4.265 | 3.687 | 5.04 |
Sd | 0.840 | 0.768 | 0.890 | 0.721 | 0.442 | |
Min | 2.839 | 2.479 | 3.089 | 2.430 | 4.451 | |
Max | 5.789 | 5.263 | 6.299 | 5.158 | 5.657 | |
Li | Mean | 38.59 | 34.39 | 39.95 | 34.56 | 47.64 |
Sd | 2.51 | 2.34 | 3.23 | 2.93 | 2.86 | |
Min | 34.93 | 31.75 | 36.24 | 31.11 | 43.92 | |
Max | 42.17 | 38.33 | 45.88 | 40.28 | 54.20 |
Groups | TL | Al | Zn | Cd | Pb | Ni | Fe | B | Li |
---|---|---|---|---|---|---|---|---|---|
Bañaderos, Confital | 0.688 | 0.009 * | 0.088 | 0.306 | 0.348 | 0.483 | 0.203 | 0.327 | 0.009 * |
Bañaderos. Agaete | 0.882 | 0.007 * | 0.034 * | 0.237 | 0.235 | 0.352 | 0.131 | 0.215 | 0.001 * |
Bañaderos, Arinaga | 0.706 | 0.923 | 0.967 | 0.973 | 0.956 | 0.997 | 0.974 | 0.985 | 0.912 |
Bañaderos, Arguineguín | 0.696 | 0.001 * | 0.002 * | 0.015 * | 0.007 * | 0.127 | 0.003 * | 0.003 * | 0.001 * |
Confital, Agaete | 0.839 | 0.424 | 0.609 | 0.725 | 0.721 | 0.832 | 0.706 | 0.760 | 0.399 |
Confital, Arinaga | 0.986 | 0.020 * | 0.077 | 0.273 | 0.321 | 0.484 | 0.184 | 0.320 | 0.022 * |
Confital, Arguineguín | 0.955 | 0.002 * | 0.009 * | 0.115 | 0.079 | 0.311 | 0.048 * | 0.029 * | 0.001 * |
Agaete, Arinaga | 0.857 | 0.019 * | 0.036 * | 0.200 | 0.267 | 0.342 | 0.119 | 0.212 | 0.002 * |
Agaete, Arguineguín | 0.842 | 0.007 * | 0.031 * | 0.276 | 0.217 | 0.446 | 0.156 | 0.041 * | 0.003 * |
Arinaga, Arguineguín | 0.963 | 0.001 * | 0.002 * | 0.016 * | 0.009 * | 0.042 * | 0.002 * | 0.001 * | 0.001 * |
Confital | Bañaderos | Agaete | Arinaga | Arguineguín | |
---|---|---|---|---|---|
Al | 0.400 ± 0.112 | 0.383 ± 0.150 | 0.481 ± 0.178 | 0.388 ± 0.119 | 0.502 ± 0.186 |
Zn | 0.067 ± 0.040 | 0.063 ± 0.027 | 0.075 ± 0.051 | 0.069 ± 0.034 | 0.078 ± 0.060 |
Cd | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.002 ± 0.001 | 0.001 ± 0.000 | 0.001 ± 0.001 |
Pb | 0.003 ± 0.002 | 0.003 ± 0.001 | 0.005 ± 0.003 | 0.003 ± 0.002 | 0.004 ± 0.003 |
Ni | 0.060 ± 0.040 | 0.059 ± 0.042 | 0.072 ± 0.042 | 0.062 ± 0.041 | 0.073 ± 0.051 |
Fe | 0.521 ± 0.251 | 0.519 ± 0.241 | 0.561 ± 0.273 | 0.520 ± 0.244 | 0.566 ± 0.271 |
B | 1.861 ± 0.620 | 1.851 ± 0.614 | 1.900 ± 0.714 | 1.854 ± 0.624 | 1.915 ± 0.661 |
Li | 0.052 ± 0.003 | 0.050 ± 0.003 | 0.060 ± 0.004 | 0.051 ± 0.004 | 0.062 ± 0.005 |
Groups | Al | Zn | Cd | Pb | Ni | Fe | B | Li |
---|---|---|---|---|---|---|---|---|
Bañaderos, Confital | 0.005 * | 0.988 | 0.321 | 0.357 | 0.235 | 0.210 | 0.427 | 0.008 * |
Bañaderos. Agaete | 0.005 * | 0.024 * | 0.257 | 0.214 | 0.450 | 0.141 | 0.235 | 0.002 * |
Bañaderos, Arinaga | 0.532 | 0.857 | 0.943 | 0.958 | 0.985 | 0.920 | 0.915 | 0.922 |
Bañaderos, Arguineguín | 0.001 * | 0.002 * | 0.005 * | 0.006 * | 0.110 | 0.001 * | 0.005 * | 0.002 * |
Confital, Agaete | 0.317 | 0.655 | 0.521 | 0.472 | 0.252 | 0.758 | 0.760 | 0.772 |
Confital, Arinaga | 0.009 * | 0.085 | 0.241 | 0.358 | 0.417 | 0.178 | 0.620 | 0.012 * |
Confital, Arguineguín | 0.003 * | 0.007 * | 0.215 | 0.087 | 0.320 | 0.038 * | 0.019 * | 0.002 * |
Agaete, Arinaga | 0.009 * | 0.046 * | 0.218 | 0.350 | 0.471 | 0.222 | 0.522 | 0.001 * |
Agaete, Arguineguín | 0.007 * | 0.022 * | 0.242 | 0.310 | 0.358 | 0.165 | 0.011 * | 0.004 * |
Arinaga, Arguineguín | 0.001 * | 0.001 * | 0.011 * | 0.005 * | 0.032 * | 0.001 * | 0.001 * | 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Bilbao, E.; González, J.A.; Lorenzo, J.M.; Thorne-Bazarra, T.; Hardisson, A.; Rubio, C.; González-Weller, D.; Paz, S.; Gutiérrez, Á.J. Metal Concentration in Palaemon elegans along the Coastal Areas of Gran Canaria (Canary Islands): Potential Bioindicator of Pollution. Diversity 2023, 15, 1151. https://doi.org/10.3390/d15111151
Lozano-Bilbao E, González JA, Lorenzo JM, Thorne-Bazarra T, Hardisson A, Rubio C, González-Weller D, Paz S, Gutiérrez ÁJ. Metal Concentration in Palaemon elegans along the Coastal Areas of Gran Canaria (Canary Islands): Potential Bioindicator of Pollution. Diversity. 2023; 15(11):1151. https://doi.org/10.3390/d15111151
Chicago/Turabian StyleLozano-Bilbao, Enrique, José Antonio González, José María Lorenzo, Thabatha Thorne-Bazarra, Arturo Hardisson, Carmen Rubio, Dailos González-Weller, Soraya Paz, and Ángel J. Gutiérrez. 2023. "Metal Concentration in Palaemon elegans along the Coastal Areas of Gran Canaria (Canary Islands): Potential Bioindicator of Pollution" Diversity 15, no. 11: 1151. https://doi.org/10.3390/d15111151
APA StyleLozano-Bilbao, E., González, J. A., Lorenzo, J. M., Thorne-Bazarra, T., Hardisson, A., Rubio, C., González-Weller, D., Paz, S., & Gutiérrez, Á. J. (2023). Metal Concentration in Palaemon elegans along the Coastal Areas of Gran Canaria (Canary Islands): Potential Bioindicator of Pollution. Diversity, 15(11), 1151. https://doi.org/10.3390/d15111151