Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Real-Time RT-PCR Detection
2.1.1. Origin of ToBRFV Isolate
2.1.2. Indicator Plants and Symptoms on Inoculated Plants
2.1.3. Real-Time RT-PCR Detection
2.1.4. Transmission Electron Microscopy
2.2. Small RNA Sequencing
2.3. Bioinformatics and Data Evaluation
3. Results
3.1. Real-Time RT-PCR Detection and Correlation with the Symptoms
3.2. Description of the Molecular Level of the Czech ToBRFV Isolate
3.2.1. ToBRFV Isolate PP1 and TT2
3.2.2. Comparison of Isolates PP1 and TT2
- coverage = (read count * read length)/total genome size
- coverage for PP1 = (2,421,807 * 36)/6368 = 13,691
- coverage for TT2 = (1,154,559 * 36)/6370 = 6524
3.2.3. Conserved miRNAs
3.2.4. Transmission Electron Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, N.; Mansour, A.; Ciuffo, M.; Falk, B.W.; Turina, M. A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 2016, 161, 503–506. [Google Scholar] [CrossRef]
- Luria, N.; Smith, E.; Reingold, V.; Bekelman, I.; Lapidot, M.; Levin, I.; Elad, N.; Tam, Y.; Sela, N.; Abu-Ras, A.; et al. A New Israeli Tobamovirus Isolate Infects Tomato Plants Harboring Tm-22 Resistance Genes. PLoS ONE 2017, 12, e0170429. [Google Scholar] [CrossRef] [Green Version]
- Tomato Brown Rugose Fruit Virus (TOBRFV)[Overview]|EPPO Global Database. Available online: https://gd.eppo.int/taxon/tobrfv (accessed on 15 November 2022).
- Salem, N.M.; Cao, M.; Odeh, S.; Turina, M.; Tahzima, R. First Report of Tobacco Mild Green Mosaic Virus and Tomato Brown Rugose Fruit Virus Infecting Capsicum annuum in Jordan. Plant Dis. 2020, 104, 601. [Google Scholar] [CrossRef]
- Cambrón-Crisantos, J.M.; Rodríguez-Mendoza, J.; Valencia-Luna, J.B.; Alcasio-Rangel, S.; García-Ávila, C.D.J.; López-Buenfil, J.A.; Ochoa-Martínez, D.L. Primer reporte de Tomato brown rugose fruit virus (ToBRFV) en Michoacán, México. Mex. J. Phytopathol. 2019, 37, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Fidan, H.; Sarikaya, P.; Calis, O. First report of Tomato brown rugose fruit virus on tomato in Turkey. New Dis. Rep. 2019, 39, 18. [Google Scholar] [CrossRef] [Green Version]
- Panno, S.; Caruso, A.G.; Davino, S. First Report of Tomato Brown Rugose Fruit Virus on Tomato Crops in Italy. Plant Dis. 2019, 103, 1443. [Google Scholar] [CrossRef]
- Ling, K.-S.; Tian, T.; Gurung, S.; Salati, R.; Gilliard, A. First Report of Tomato Brown Rugose Fruit Virus Infecting Greenhouse Tomato in the United States. Plant Dis. 2019, 103, 1439. [Google Scholar] [CrossRef]
- Menzel, W.; Knierim, D.; Winter, S.; Hamacher, J.; Heupel, M. First report of Tomato brown rugose fruit virus infecting tomato in Germany. New Dis. Rep. 2019, 39, 1. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.-Y.; Ma, H.-Y.; Han, S.-L.; Geng, C.; Tian, Y.-P.; Li, X.-D. First Report of Tomato brown rugose fruit virus Infecting Tomato in China. Plant Dis. 2019, 103, 2973. [Google Scholar] [CrossRef]
- Beris, D.; Malandraki, I.; Kektsidou, O.; Theologidis, I.; Vassilakos, N.; Varveri, C. First Report of Tomato Brown Rugose Fruit Virus Infecting Tomato in Greece. Plant Dis. 2020, 104, 2035. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex—32020R1191—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg_impl/2020/1191/oj (accessed on 28 November 2022).
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Pignatta, D.; Bendix, C.; Bruncard, J.O.; Cohn, M.M.; Baker, B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 1790–1795. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Luo, Y.; Ru, R.; Lau, N.; Lai, E.C.; Li, W.-X.; Ding, S.-W. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. Sci. USA 2010, 107, 1606–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreuze, J.F.; Perez, A.; Untiveros, M.; Quispe, D.; Fuentes, S.; Barker, I.; Simon, R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 2009, 388, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Al Rwahnih, M.; Daubert, S.; Golino, D.; Rowhani, A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 2009, 387, 395–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coetzee, B.; Freeborough, M.-J.; Maree, H.J.; Celton, J.-M.; Rees, D.J.G.; Burger, J.T. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology 2010, 400, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, P.M.V.; Gaspar, C.G.; Buss, D.S.; Ventura, J.A.; Ferreira, P.C.G.; Fernandes, P.M.B. Carica papaya MicroRNAs Are Responsive to Papaya meleira virus Infection. PLoS ONE 2014, 9, e103401. [Google Scholar] [CrossRef]
- Eichmeier, A.; Kiss, T.; Kocanova, M.; Hakalova, E.; Spetik, M.; Cechova, J.; Tichy, B. Conserved MicroRNAs in Human Nasopharynx Tissue Samples from Swabs Are Differentially Expressed in Response to SARS-CoV-2. Genes 2022, 13, 348. [Google Scholar] [CrossRef]
- Eichmeier, A.; Kiss, T.; Penazova, E.; Pecenka, J.; Berraf-Tebbal, A.; Baranek, M.; Pokluda, R.; Cechova, J.; Gramaje, D.; Grzebelus, D. MicroRNAs in Vitis vinifera cv. Chardonnay Are Differentially Expressed in Response to Diaporthe Species. Genes 2019, 10, 905. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Huang, J.; Sun, Q.; Wang, J.; Huang, L.; Fu, S.; Qin, S.; Xie, X.; Ge, S.; Li, X.; et al. microRNAs: Key Players in Plant Response to Metal Toxicity. Int. J. Mol. Sci. 2022, 23, 8642. [Google Scholar] [CrossRef]
- International Seed Federation. Available online: https://worldseed.org/ (accessed on 28 November 2022).
- Menzel, W.; Jelkmann, W.; Maiss, E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 2002, 99, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Leichtfried, T.; Reisenzein, H.; Steinkellner, S.; Gottsberger, R.A. Improvement in the sensitivity of viroid detection by adapting the reverse transcription step in one-step RT-qPCR assays. J. Virol. Methods 2021, 292, 114123. [Google Scholar] [CrossRef] [PubMed]
- Cullen, D.W.; Toth, I.K.; Pitkin, Y.; Boonham, N.; Walsh, K.; Barker, I.; Lees, A.K.; Van der Heyden, H.; Bilodeau, G.J.; Carisse, O.; et al. Use of Quantitative Molecular Diagnostic Assays to Investigate Fusarium Dry Rot in Potato Stocks and Soil. Phytopathology 2005, 95, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Botermans, M.; de Koning, P.P.; Oplaat, C.; Fowkes, A.; McGreig, S.; Skelton, A.; Adams, I.; Fox, A.; De Jonghe, K.; Demers, J.; et al. Tomato brown rugose fruit virus Nextstrain build version 3: Rise of a novel clade. PhytoFrontiers 2022. ISSN 2690-5442. [Google Scholar] [CrossRef]
- Gaafar, Y.Z.A.; Ziebell, H. Novel targets for engineering Physostegia chlorotic mottle and tomato brown rugose fruit virus-resistant tomatoes: In silico prediction of tomato microRNA targets. Peerj 2020, 8, e10096. [Google Scholar] [CrossRef]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef]
- Chen, L.; Meng, J.; Zhai, J.; Xu, P.; Luan, Y. MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid. Plant Sci. 2017, 265, 177–187. [Google Scholar] [CrossRef]
- Liu, M.; Yu, H.; Zhao, G.; Huang, Q.; Lu, Y.; Ouyang, B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genom. 2017, 18, 481. [Google Scholar] [CrossRef] [Green Version]
- Pantaleo, V.; Vitali, M.; Boccacci, P.; Miozzi, L.; Cuozzo, D.; Chitarra, W.; Mannini, F.; Lovisolo, C.; Gambino, G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci. Rep. 2016, 6, 20167. [Google Scholar] [CrossRef]
- Prigigallo, M.I.; Križnik, M.; De Paola, D.; Catalano, D.; Gruden, K.; Finetti-Sialer, M.M.; Cillo, F. Potato Virus Y Infection Alters Small RNA Metabolism and Immune Response in Tomato. Viruses 2019, 11, 1100. [Google Scholar] [CrossRef] [Green Version]
- Adkar-Purushothama, C.R.; Perreault, J. Current overview on viroid–host interactions. Wiley Interdiscip. Rev. RNA 2020, 11, e1570. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.; Kim, T.; Park, J.H.; Yeom, S.I.; Kim, S.; Seo, M.-K.; Shin, C.; Choi, D. Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in Capsicum spp. DNA Res. 2018, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA | RPM | Match Type | Length |
---|---|---|---|
MIR166b | 0.042906631 | Precursor variant | 18 |
MIR167b | 0.042906631 | Precursor variant | 17 |
MIR167b | 0.042906631 | Precursor variant | 17 |
MIR171c | 0.042906631 | Precursor variant | 17 |
MIR172b | 0.171626523 | Precursor | 19 |
MIR396a | 0.471972938 | Precursor | 15 |
MIR396a | 0.085813262 | Precursor variant | 25 |
MIR396b | 0.514879569 | Precursor variant | 17 |
MIR396b | 0.042906631 | Precursor variant | 21 |
MIR482d | 0.128719892 | Precursor variant | 21 |
MIR482e | 0.429066308 | Precursor | 20 |
MIR482e | 0.128719892 | Precursor | 23 |
MIR482e | 0.085813262 | Precursor variant | 20 |
MIR482e | 0.042906631 | Precursor variant | 20 |
MIR482e | 0.042906631 | Precursor variant | 20 |
MIR482e | 0.042906631 | Precursor | 17 |
MIR482e | 0.042906631 | Precursor variant | 20 |
MIR482e | 0.042906631 | Precursor variant | 20 |
MIR5300 | 0.042906631 | Precursor variant | 20 |
MIR5303 | 0.042906631 | Precursor variant | 20 |
MIR5303 | 0.042906631 | Precursor variant | 23 |
MIR6023 | 0.386159677 | Precursor variant | 20 |
MIR6023 | 0.171626523 | Precursor variant | 18 |
MIR6023 | 0.042906631 | Precursor variant | 17 |
MIR6023 | 0.042906631 | Precursor variant | 19 |
MIR7981d | 0.042906631 | Precursor variant | 23 |
MIR9469 | 0.042906631 | Precursor variant | 18 |
miRNA | RPM | Match Type | Length |
---|---|---|---|
MIR10532//MIR7981f//MIR7981d | 0.134660602 | Precursor variant | 20 |
MIR10540 | 0.269321204 | Precursor | 22 |
MIR156a//MIR156b//MIR156c | 0.269321204 | Precursor variant | 25 |
MIR159 | 0.134660602 | Precursor | 15 |
MIR166c | 0.538642408 | Precursor variant | 25 |
MIR168a | 0.269321204 | Precursor | 15 |
MIR168b | 0.269321204 | Precursor | 16 |
MIR396a | 5.386424084 | Precursor | 15 |
MIR396a | 0.942624215 | Precursor variant | 25 |
MIR396a | 0.134660602 | Precursor variant | 25 |
MIR396a | 0.134660602 | Mature 3’ super | 23 |
MIR396b | 0.134660602 | Precursor | 15 |
MIR396b | 0.134660602 | Precursor variant | 25 |
MIR6023 | 71.23545851 | Precursor | 16 |
MIR6023 | 0.538642408 | Precursor | 15 |
MIR6023 | 0.269321204 | Precursor | 20 |
MIR6023 | 0.134660602 | Precursor | 21 |
MIR6023 | 0.134660602 | Precursor | 25 |
MIR6023 | 0.134660602 | Precursor | 15 |
MIR6027 | 0.134660602 | Mature 5’ sub | 19 |
MIR6027 | 0.134660602 | Mature 5’ sub | 20 |
MIR7981c | 0.134660602 | Precursor variant | 21 |
MIR7981d | 0.538642408 | Precursor | 17 |
MIR7981d | 0.269321204 | Precursor | 16 |
MIR7981e//MIR10532 | 1.211945419 | Precursor | 18 |
MIR7981e//MIR10532 | 0.67330301 | Precursor variant | 23 |
MIR7981e//MIR10532 | 0.134660602 | Precursor variant | 20 |
MIR7981e//MIR10532 | 0.134660602 | Precursor | 16 |
MIR7981e//MIR10532 | 0.134660602 | Precursor variant | 18 |
MIR7981e//MIR10532//MIR7981c//MIR7981d | 0.134660602 | Precursor variant | 18 |
MIR7981e//MIR10532//MIR7981d | 0.134660602 | Precursor variant | 18 |
MIR7981e//MIR10532//MIR7981f | 2.423890838 | Precursor | 18 |
MIR7981e//MIR10532//MIR7981f | 1.346606021 | Precursor | 15 |
MIR7981e//MIR10532//MIR7981f | 0.942624215 | Precursor | 16 |
MIR7981e//MIR10532//MIR7981f | 0.807963613 | Precursor | 17 |
MIR7981e//MIR10532//MIR7981f | 0.538642408 | Precursor variant | 17 |
MIR7981e//MIR10532//MIR7981f | 0.134660602 | Precursor variant | 18 |
MIR7981f | 0.134660602 | Precursor | 16 |
MIR7981f | 0.134660602 | Precursor | 15 |
MIR7981f | 0.134660602 | Precursor variant | 22 |
MIR7981f//MIR7981b | 0.134660602 | Precursor variant | 22 |
MIR9471a | 0.134660602 | Precursor variant | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichmeier, A.; Hejlova, M.; Orsagova, H.; Frejlichova, L.; Hakalova, E.; Tomankova, K.; Linhartova, S.; Kulich, P.; Cermak, V.; Cechova, J. Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic. Diversity 2023, 15, 301. https://doi.org/10.3390/d15020301
Eichmeier A, Hejlova M, Orsagova H, Frejlichova L, Hakalova E, Tomankova K, Linhartova S, Kulich P, Cermak V, Cechova J. Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic. Diversity. 2023; 15(2):301. https://doi.org/10.3390/d15020301
Chicago/Turabian StyleEichmeier, Ales, Miroslava Hejlova, Hana Orsagova, Lucie Frejlichova, Eliska Hakalova, Katerina Tomankova, Sarka Linhartova, Pavel Kulich, Vaclav Cermak, and Jana Cechova. 2023. "Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic" Diversity 15, no. 2: 301. https://doi.org/10.3390/d15020301
APA StyleEichmeier, A., Hejlova, M., Orsagova, H., Frejlichova, L., Hakalova, E., Tomankova, K., Linhartova, S., Kulich, P., Cermak, V., & Cechova, J. (2023). Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic. Diversity, 15(2), 301. https://doi.org/10.3390/d15020301