The Disappearance of Small Mammal Carcasses in Human-Dominated Habitats: A Field Experiment in Northeastern Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experiments
2.3. Camera Trap
2.4. Statistical Analysis
3. Results
3.1. Field Experiment
3.2. Firth’s Bias-Reduced Logistic Regression
3.3. Camera Trap
4. Discussion
4.1. Scavenging by Invertebrates
4.2. Scavenging by Vertebrates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, M.L. Urbanization, Biodiversity, and Conservation. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of Urbanization on Species Richness: A Review of Plants and Animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Faeth, S.H.; Warren, P.S.; Shochat, E.; Marussich, W.A. Trophic Dynamics in Urban Communities. BioScience 2005, 55, 399–407. [Google Scholar] [CrossRef]
- Dolan, R.W.; Moore, M.E.; Stephens, J.D. Documenting Effects of Urbanization on Flora Using Herbarium Records. J. Ecol. 2011, 99, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Knop, E. Biotic Homogenization of Three Insect Groups Due to Urbanization. Global Change Biology 2016, 22, 228–236. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural Intensification and Ecosystem Properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batáry, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Adv. Ecol. Res. 2016, 55, 43–97. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Koh, L.P.; Wilcove, D.S. Is Oil Palm Agriculture Really Destroying Tropical Biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Ueda, A.; Dwibadra, D.; Noerdjito, W.A.; Sugiarto; Kon, M.; Ochi, T.; Takahashi, M.; Fukuyama, K. Effect of Habitat Transformation from Grassland to Acacia mangium Plantation on Dung Beetle Assemblage in East Kalimantan, Indonesia. J. Insect Conserv. 2015, 19, 765–780. [Google Scholar] [CrossRef]
- Medan, D.; Torretta, J.P.; Hodara, K.; de la Fuente, E.B.; Montaldo, N.H. Effects of Agriculture Expansion and Intensification on the Vertebrate and Invertebrate Diversity in the Pampas of Argentina. Biodivers. Conserv. 2011, 20, 3077–3100. [Google Scholar] [CrossRef]
- Aikawa, E.; Saito, M.U. Effects of Intensive Agricultural Landscapes on Farmland Use by Medium and Large Mammals in Japan. Écoscience 2022, in press. [Google Scholar] [CrossRef]
- Tratalos, J.; Fuller, R.A.; Warren, P.H.; Davies, R.G.; Gaston, K.J. Urban Form, Biodiversity Potential and Ecosystem Services. Landsc. Urban Plan. 2007, 83, 308–317. [Google Scholar] [CrossRef]
- Burton, M.L.; Samuelson, L.J.; Mackenzie, M.D. Riparian Woody Plant Traits across an Urban–Rural Land Use Gradient and Implications for Watershed Function with Urbanization. Landsc. Urban Plan. 2009, 90, 42–55. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial Light at Night as a New Threat to Pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- DeVault, T.L.; Rhodes, O.E., Jr.; Shivik, J.A. Scavenging by Vertebrates: Behavioral, Ecological, and Evolutionary Perspectives on an Important Energy Transfer Pathway in Terrestrial Ecosystems. OIKOS 2003, 102, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Barton, P.S.; Cunningham, S.A.; Macdonald, B.C.T.; McIntyre, S.; Lindenmayer, D.B.; Manning, A.D. Species Traits Predict Assemblage Dynamics at Ephemeral Resource Patches Created by Carrion. PLoS ONE 2013, 8, e53961. [Google Scholar] [CrossRef] [Green Version]
- Barton, P.S.; Evans, M.J.; Foster, C.N.; Pechal, J.L.; Bump, J.K.; Quaggiotto, M.-M.; Benbow, M.E. Towards Quantifying Carrion Biomass in Ecosystems. Trends Eol. Evol. 2019, 34, 950–961. [Google Scholar] [CrossRef]
- DeVault, T.L.; Brisbin, I.L., Jr.; Rhodes, O.E., Jr. Factors Influencing the Acquisition of Rodent Carrion by Vertebrate Scavengers and Decomposers. Can. J. Zool. 2004, 82, 502–509. [Google Scholar] [CrossRef]
- Martín-Vega, D.; Baz, A. Sarcosaprophagous Diptera Assemblages in Natural Habitats in Central Spain: Spatial and Seasonal Changes in Composition. Med. Vet. Entomol. 2013, 27, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Pastula, E.C.; Merritt, R.W. Insect Arrival Pattern and Succession on Buried Carrion in Michigan. J. Med. Entomol. 2013, 50, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, R.M.; Tomberlin, J.K. Environmental Factors Affecting Early Carcass Attendance by Four Species of Blow Flies (Diptera: Calliphoridae) in Texas. J. Med. Entomol. 2014, 51, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Márquez-Grant, N.; Stillman, R.; Smith, M.J.; Korstjens, A.H. An Investigation of Red Fox (Vulpes vulpes) and Eurasian Badger (Meles meles) Scavenging, Scattering, and Removal of Deer Remains: Forensic Implications and Applications. J. Forensic Sci. 2015, 60, S39–S55. [Google Scholar] [CrossRef] [Green Version]
- Inger, R.; Cox, D.T.C.; Per, E.; Norton, B.A.; Gaston, K.J. Ecological Role of Vertebrate Scavengers in Urban Ecosystems in the UK. Ecol. Evol. 2016, 6, 7015–7023. [Google Scholar] [CrossRef] [Green Version]
- Barton, P.S.; Evans, M.J. Insect Biodiversity Meets Ecosystem Function: Differential Effects of Habitat and Insects on Carrion Decomposition. Ecol. Entomol. 2017, 42, 364–374. [Google Scholar] [CrossRef]
- Sugiura, S.; Hayashi, M. Functional Compensation by Insular Scavengers: The Relative Contributions of Vertebrates and Invertebrates Vary among Islands. Ecography 2018, 41, 1173–1183. [Google Scholar] [CrossRef]
- Inagaki, A.; Allen, M.L.; Maruyama, T.; Yamazaki, K.; Tochigi, K.; Naganuma, T.; Koike, S. Vertebrate Scavenger Guild Composition and Utilization of Carrion in an East Asian Temperate Forest. Ecol. Evol. 2020, 10, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Moleón, M.; Sánchez-Zapata, J.A.; Selva, N.; Donázar, J.A.; Owen-Smith, N. Inter-Specific Interactions Linking Predation and Scavenging in Terrestrial Vertebrate Assemblages. Biol. Rev. 2014, 89, 1042–1054. [Google Scholar] [CrossRef]
- Moleón, M.; Selva, N.; Sánchez-Zapata, J.A. The Components and Spatiotemporal Dimension of Carrion Biomass Quantification. Trends Ecol. Evol. 2020, 35, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Tomás, P.; Olea, P.P.; Moleón, M.; Vicente, J.; Botella, F.; Selva, N.; Viñuela, J.; Sánchez-Zapata, J.A. From Regional to Global Patterns in Vertebrate Scavenger Communities Subsidized by Big Game Hunting. Divers. Distrib. 2015, 21, 913–924. [Google Scholar] [CrossRef]
- Sebastián-González, E.; Moleón, M.; Gibert, J.P.; Botella, F.; Mateo-Tomás, P.; Olea, P.P.; Guimarães, P.R., Jr.; Sánchez-Zapata, J.A. Nested Species-Rich Networks of Scavenging Vertebrates Support High Levels of Interspecific Competition. Ecology 2016, 97, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastián-González, E.; Morales-Reyes, Z.; Botella, F.; Naves-Alegre, L.; Pérez-García, J.M.; Mateo-Tomás, P.; Olea, P.P.; Moleón, M.; Barbosa, J.M.; Hiraldo, F.; et al. Functional Traits Driving Species Role in the Structure of Terrestrial Vertebrate Scavenger Networks. Ecology 2021, 102, e03519. [Google Scholar] [CrossRef] [PubMed]
- Probst, C.; Gethmann, J.; Amler, S.; Globig, A.; Knoll, B.; Conraths, F.J. The Potential Role of Scavengers in Spreading African Swine Fever among Wild Boar. Sci. Rep. 2019, 9, 11450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baz, A.; Botías, C.; Martín-Vega, D.; Cifrián, B.; Díaz-Aranda, L.M. Preliminary Data on Carrion Insects in Urban (Indoor and Outdoor) and Periurban Environments in Central Spain. Forensic Sci. Int. 2015, 248, 41–47. [Google Scholar] [CrossRef]
- Sugiura, S.; Tanaka, R.; Taki, H.; Kanzaki, N. Differential Responses of Scavenging Arthropods and Vertebrates to Forest Loss Maintain Ecosystem Function in a Heterogeneous Landscape. Biol. Conserv. 2013, 159, 206–213. [Google Scholar] [CrossRef]
- Henrich, M.; Tietze, D.T.; Wink, M. Scavenging of Small Bird Carrion in Southwestern Germany by Beetles, Birds and Mammals. J. Ornithol. 2017, 158, 287–295. [Google Scholar] [CrossRef]
- Muñoz-Lozano, C.; Martín-Vega, D.; Martínez-Carrasco, C.; Sánchez-Zapata, J.A.; Morales-Reyes, Z.; Gonzálvez, M.; Moleón, M. Avoidance of Carnivore Carcasses by Vertebrate Scavengers Enables Colonization by a Diverse Community of Carrion Insects. PLoS ONE 2019, 14, e0221890. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, S.J.; Eubanks, M.D.; Beasley, J.C.; Barton, B.T.; Puckett, R.T.; Tomeček, J.M.; Tomberlin, J.K. Vertebrate and Invertebrate Competition for Carrion in Human-Impacted Environments Depends on Abiotic Factors. Ecosphere 2022, 13, e4151. [Google Scholar] [CrossRef]
- Dekeirsschieter, J.; Verheggen, F.J.; Haubruge, E.; Brostaux, Y. Carrion Beetles Visiting Pig Carcasses during Early Spring in Urban, Forest and Agricultural Biotopes of Western Europe. J. Insect Sci. 2011, 11, 73. [Google Scholar] [CrossRef]
- Charabidze, D.; Vincent, B.; Pasquerault, T.; Hedouin, V. The Biology and Ecology of Necrodes littoralis, a Species of Forensic Interest in Europe. Int. J. Legal Med. 2016, 130, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Koike, F. Distribution of Wild Mammal Assemblages along an Urban–Rural–Forest Landscape Gradient in Warm-Temperate East Asia. PLoS ONE 2013, 8, e65464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.U.; Koike, F. Trait-Dependent Changes in Assemblages of Mid-Sized and Large Mammals along an Asian Urban Gradient. Acta Oecol. 2015, 67, 34–39. [Google Scholar] [CrossRef]
- Fusco, N.A.; Zhao, A.; Munshi-South, J. Urban Forests Sustain Diverse Carrion Beetle Assemblages in the New York City Metropolitan Area. PeerJ 2017, 5, e3088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welti, N.; Scherler, P.; Grüebler, M.U. Carcass Predictability but Not Domestic Pet Introduction Affects Functional Response of Scavenger Assemblage in Urbanized Habitats. Funct. Ecol. 2020, 34, 265–275. [Google Scholar] [CrossRef]
- Shizukuda, K.; Saito, M.U. Effects of Human-Dominated Landscape on the Community Structure of Silphid and Dung Beetles Collected by Carrion Pitfall Traps. Entomol. Sci. 2021, 24, 157–168. [Google Scholar] [CrossRef]
- Barko, V.A.; Feldhamer, G.A.; Nicholson, M.C.; Davie, D.K. Urban Habitat: A Determinant of White-Footed Mouse (Peromyscus leucopus) Abundance in Southern Illinois. Southeast. Nat. 2003, 2, 369–376. [Google Scholar] [CrossRef]
- Silva, M.; Hartling, L.; Opps, S.B. Small Mammals in Agricultural Landscapes of Prince Edward Island (Canada): Effects of Habitat Characteristics at Three Different Spatial Scales. Biol. Conserv. 2005, 126, 556–568. [Google Scholar] [CrossRef]
- Heroldová, M.; Bryja, J.; Zejda, J.; Tkadlec, E. Structure and Diversity of Small Mammal Communities in Agriculture Landscape. Agric. Ecosyst. Environ. 2007, 120, 206–210. [Google Scholar] [CrossRef]
- Japan Meteorological Agency Normal Value 2020. Available online: http://www.data.jma.go.jp/obd/stats/etrn/view/nml_amd_ym.php?prec_no=35&block_no=0263&year=&month=&day=&view=a (accessed on 1 December 2020).
- Takenaka, A. CanopOn 2. Available online: http://takenaka-akio.org/etc/canopon2/ (accessed on 20 February 2023).
- Wolf, J.M.; Gibbs, J.P. Silphids in Urban Forests: Diversity and Function. Urban Ecosyst. 2004, 7, 371–384. [Google Scholar] [CrossRef]
- Ito, M. Study of Community Assembly Patterns and Interspecific Interactions Involved in Insect Succession on Rat Carcasses. Entomol. Sci. 2020, 23, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Trumbo, S.T.; Bloch, P.L. Habitat Fragmentation and Burying Beetle Abundance and Success. J. Insect Conserv. 2000, 4, 245–252. [Google Scholar] [CrossRef]
- Lindgren, N.K.; Bucheli, S.R.; Archambeault, A.D.; Bytheway, J.A. Exclusion of Forensically Important Flies Due to Burying Behavior by the Red Imported Fire Ant (Solenopsis invicta) in Southeast Texas. Forensic Sci. Int. 2011, 204, e1–e3. [Google Scholar] [CrossRef]
- Eubanks, M.D.; Lin, C.; Tarone, A.M. The Role of Ants in Vertebrate Carrion Decomposition. Food Webs 2019, 18, e00109. [Google Scholar] [CrossRef]
- Firth, D. Bias Reduction of Maximum Likelihood Estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Albert, A.; Anderson, J.A. On the Existence of Maximum Likelihood Estimates in Logistic Regression Models. Biometrika 1984, 71, 1–10. [Google Scholar] [CrossRef]
- Heinze, G.; Schemper, M. A Solution to the Problem of Monotone Likelihood in Cox Regression. Biometrics 2001, 57, 114–119. [Google Scholar] [CrossRef]
- Heinze, G.; Schemper, M. A Solution to the Problem of Separation in Logistic Regression. Stat. Med. 2002, 21, 2409–2419. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Růžička, J. Seasonal Activity and Habitat Associations of Silphidae and Leiodidae: Cholevinae (Coleoptera) in Central Bohemia. Acta. Soc. Zool. Bohem. 1994, 58, 67–78. [Google Scholar]
- Lingafelter, S.W. Diversity, Habitat Preferences, and Seasonality of Kansas Carrion Beetles (Coleoptera: Silphidae). J. Kansas Entomol. Soc. 1995, 68, 214–223. [Google Scholar]
- Nagano, M.; Suzuki, S. Phenology and Habitat Use among Nicrophorine Beetles of the Genus Nicrophorus and Ptomascopus (Coleoptera: Silphidae). Edaphologia 2003, 73, 1–9. [Google Scholar] [CrossRef]
- Suwabe, M.; Ohnishi, H.; Kikuchi, T.; Kawara, K.; Tsuji, K. Difference in Seasonal Activity Pattern between Non-Native and Native Ants in Subtropical Forest of Okinawa Island, Japan. Ecol. Res. 2009, 24, 637–643. [Google Scholar] [CrossRef]
- Zabala, J.; Díaz, B.; Saloña-Bordas, M.I. Seasonal Blowfly Distribution and Abundance in Fragmented Landscapes. Is It Useful in Forensic Inference about Where a Corpse Has Been Decaying? PLoS ONE 2014, 9, e99668. [Google Scholar] [CrossRef]
- Ueda, A. Response of assemblages of carrion beetles (Carrion Silphid and Scarabaeoid dung beetles) in a forest consisting of small, different-aged stands. J. Jpn. For. Soc. 2016, 98, 207–213, (In Japanese with English summary). [Google Scholar] [CrossRef] [Green Version]
- Satou, A.; Nisimura, T.; Numata, H. Reproductive Competition between the Burying Beetle Nicrophorus quadripunctatus without Phoretic Mites and the Blow Fly Chrysomya pinguis. Entomol. Sci. 2000, 3, 265–268. [Google Scholar]
- Suzuki, S.; Nagano, M. Resource Guarding by Ptomascopus morio: Simple Parental Care in the Nicrophorinae (Coleoptera: Silphidae). Eur. J. Entomol. 2006, 103, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.L.W.; Williams, H.F.; Chadwick, E.; Thomas, R.J.; Perkins, S.E. Roadkill Scavenging Behaviour in an Urban Environment. J. Urban Ecol. 2018, 4, juy006. [Google Scholar] [CrossRef]
- De Carvalho Moretti, T.; Solis, D.R.; Godoy, W.A.C. Ants (Hymenoptera: Formicidae) Collected with Carrion-Baited Traps in Southeast Brazil. Open Forensic Sci. J. 2013, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, T.; Di, L.; Eguchi, K.; Numata, S. Ant Assemblages on Littered Food Waste and Food Removal Rates in Urban–Suburban Parks of Tokyo. Basic. Appl. Ecol. 2019, 37, 1–9. [Google Scholar] [CrossRef]
- Gatesire, T.; Nsabimana, D.; Nyiramana, A.; Seburanga, J.L.; Mirville, M.O. Bird Diversity and Distribution in Relation to Urban Landscape Types in Northern Rwanda. Sci. World J. 2014, 2014, 157824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruxton, G.D.; Houston, D.C. Obligate Vertebrate Scavengers Must Be Large Soaring Fliers. J. Theor. Biol. 2004, 228, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Azuma, A.; Tokita, K.; Takeuchi, K.; Tsunekawa, A. Land condition of Gray-faced Buzzard, Butastur indicus habitats in watershed of Tega Marsh, Chiba Prefecture. J. Rural Plan. Assoc. 1999, 18, 253–258, (In Japanese with English summary). [Google Scholar] [CrossRef]
- Momose, H.; Ueta, M.; Fujiwara, N.; Uchiyama, T.; Ishizaka, T.; Morisaki, K.; Matsue, M. Factors affecting the number of breeding grey-faced buzzard-eagles Butastur indicus. J. Jpn. Inst. Landsc. Archit. 2005, 68, 555–558, (In Japanese with English summary). [Google Scholar] [CrossRef]
- Kadoya, T.; Washitani, I. The Satoyama Index: A Biodiversity Indicator for Agricultural Landscapes. Agric. Ecosyst. Environ. 2011, 140, 20–26. [Google Scholar] [CrossRef]
- Shiu, H.-J.; Tokita, K.; Morishita, E.; Hiraoka, E.; Wu, Y.; Nakamura, H.; Higuchi, H. Route and Site Fidelity of Two Migratory Raptors: Grey-Faced Buzzards Butastur indicus and Honey-Buzzards Pernis apivorus. Ornithol. Sci. 2006, 5, 151–156. [Google Scholar] [CrossRef]
- Enari, H.; Enari, H.S. Not Avian but Mammalian Scavengers Efficiently Consume Carcasses under Heavy Snowfall Conditions: A Case from Northern Japan. Mamm. Biol. 2021, 101, 419–428. [Google Scholar] [CrossRef]
Variable | After Three Days in Summer | After Three Days in Autumn | After Six Days in Autumn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | SE | 95% CI | p-Value | Coefficient | SE | 95% CI | p-Value | Coefficient | SE | 95% CI | p-Value | ||||
Lower | Upper | Lower | Upper | Lower | Upper | ||||||||||
Vertebrates or not | |||||||||||||||
Intercept | −2.71 | 0.61 | −3.97 | −1.58 | <0.01 | −1.70 | 2.32 | −6.72 | 2.71 | n.s. | −1.20 | 4.98 | −19.40 | 7.95 | n.s. |
Survey site | |||||||||||||||
Forest-closed | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Forest-open | 0.32 | 0.57 | −0.79 | 1.45 | n.s. | −2.58 | 0.66 | −3.97 | −1.38 | <0.01 | 1.46 | 1.08 | −0.49 | 3.92 | n.s. |
Agricultural area-open | 1.65 | 0.54 | 0.64 | 2.74 | <0.01 | 1.38 | 1.17 | −0.83 | 3.98 | n.s. | 1.03 | 2.22 | −5.12 | 6.52 | n.s. |
Urban-closed | −1.72 | 0.82 | −3.52 | −0.24 | <0.05 | 0.46 | 1.08 | −1.64 | 2.67 | n.s. | −1.22 | 1.96 | −7.17 | 2.59 | n.s. |
Urban-open | 2.53 | 0.57 | 1.48 | 3.69 | <0.01 | −0.06 | 1.04 | −2.12 | 2.03 | n.s. | 1.02 | 2.28 | −5.12 | 6.61 | n.s. |
Installation time | −0.31 | 0.38 | −1.05 | 0.43 | n.s. | 0.02 | 0.68 | −1.33 | 1.41 | n.s. | −2.47 | 1.59 | −7.58 | 1.48 | n.s. |
Number of times installed | 0.50 | 0.13 | 0.25 | 0.78 | <0.01 | 0.41 | 0.36 | −0.26 | 1.19 | n.s. | 0.81 | 0.77 | −0.49 | 3.72 | n.s. |
Nicrophorus or not | |||||||||||||||
Intercept | 1.99 | 0.92 | 0.12 | 4.11 | <0.05 | −5.20 | 5.46 | −27.62 | 18.05 | n.s. | −5.20 | 5.46 | −27.62 | 18.05 | n.s. |
Survey site | |||||||||||||||
Forest-closed | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Forest-open | −2.92 | 0.59 | −4.17 | −1.84 | <0.01 | −2.23 | 1.56 | −7.18 | 0.27 | n.s. | −2.23 | 1.56 | −7.18 | 0.27 | n.s. |
Agricultural area-open | −5.41 | 1.41 | −10.28 | −3.30 | <0.01 | −2.75 | 2.26 | −9.83 | 4.87 | n.s. | −2.75 | 2.26 | −9.83 | 4.87 | n.s. |
Urban-closed | −5.30 | 1.43 | −10.17 | −3.21 | <0.01 | −2.99 | 2.72 | −15.97 | 4.83 | n.s. | −2.99 | 2.72 | −15.97 | 4.83 | n.s. |
Urban-open | −5.38 | 1.43 | −10.25 | −3.29 | <0.01 | −2.99 | 2.72 | −15.97 | 4.83 | n.s. | −2.99 | 2.72 | −15.97 | 4.83 | n.s. |
Installation time | −0.70 | 0.60 | −2.01 | 0.53 | n.s. | 3.06 | 1.75 | −2.23 | 8.81 | n.s. | 3.06 | 1.75 | −2.23 | 8.81 | n.s. |
Number of times installed | −0.23 | 0.25 | −0.81 | 0.31 | n.s. | 0.26 | 0.82 | −3.39 | 3.61 | n.s. | 0.26 | 0.82 | −3.39 | 3.61 | n.s. |
Flies or not | |||||||||||||||
Intercept | −3.10 | 0.79 | −4.87 | −1.70 | <0.01 | −0.57 | 4.83 | −9.98 | 15.76 | n.s. | −0.57 | 4.83 | −9.98 | 15.76 | n.s. |
Survey site | |||||||||||||||
Forest-closed | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Forest-open | 3.34 | 0.74 | 2.06 | 5.03 | <0.01 | 0.00 | 2.01 | −5.26 | 5.25 | n.s. | 0.00 | 2.01 | −5.26 | 5.25 | n.s. |
Agricultural area-open | 1.42 | 0.77 | 0.03 | 3.15 | <0.05 | 1.54 | 2.49 | −4.23 | 7.86 | n.s. | 1.54 | 2.49 | −4.23 | 7.86 | n.s. |
Urban-closed | 4.05 | 0.77 | 2.71 | 5.79 | <0.01 | 3.74 | 2.26 | −0.46 | 9.88 | n.s. | 3.74 | 2.26 | −0.46 | 9.88 | n.s. |
Urban-open | 0.22 | 0.87 | −1.48 | 2.07 | n.s. | 1.56 | 2.54 | −4.31 | 7.89 | n.s. | 1.56 | 2.54 | −4.31 | 7.89 | n.s. |
Installation time | 0.50 | 0.38 | −0.25 | 1.26 | n.s. | 1.33 | 1.45 | −2.23 | 6.41 | n.s. | 1.33 | 1.45 | −2.23 | 6.41 | n.s. |
Number of times installed | 0.04 | 0.13 | −0.21 | 0.31 | n.s. | −0.77 | 0.73 | −3.39 | 0.50 | n.s. | −0.77 | 0.73 | −3.39 | 0.50 | n.s. |
Ants or not | |||||||||||||||
Intercept | −1.22 | 1.03 | −3.66 | 0.67 | n.s. | - | - | - | - | - | −5.60 | 5.38 | −28.80 | 18.05 | n.s. |
Survey site | |||||||||||||||
Forest-closed | - | - | - | - | - | - | - | - | - | - | |||||
Forest-open | −1.14 | 1.65 | −6.14 | 1.84 | n.s. | - | - | - | - | - | −0.01 | 1.19 | −2.61 | 2.60 | n.s. |
Agricultural area-open | 2.24 | 1.00 | 0.47 | 4.62 | <0.05 | - | - | - | - | - | −1.65 | 2.30 | −9.00 | 6.15 | n.s. |
Urban-closed | 0.73 | 1.08 | −1.38 | 3.18 | n.s. | - | - | - | - | - | −1.86 | 2.72 | −15.18 | 6.08 | n.s. |
Urban-open | 2.27 | 0.95 | 0.64 | 4.58 | <0.01 | - | - | - | - | - | −1.86 | 2.72 | −15.18 | 6.08 | n.s. |
Installation time | −0.31 | 0.60 | −1.56 | 0.90 | n.s. | - | - | - | - | - | 2.46 | 1.67 | −2.84 | 8.20 | n.s. |
Number of times installed | −0.90 | 0.23 | −1.43 | −0.46 | <0.01 | - | - | - | - | - | 0.24 | 0.80 | −3.49 | 3.69 | n.s. |
Remain or not | |||||||||||||||
Intercept | - | - | - | - | - | 0.53 | 2.60 | −4.62 | 6.15 | n.s. | - | - | - | - | - |
Survey site | |||||||||||||||
Forest-closed | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Forest-open | - | - | - | - | - | 3.03 | 0.68 | 1.79 | 4.46 | <0.01 | - | - | - | - | - |
Agricultural area-open | - | - | - | - | - | −1.17 | 1.24 | −3.89 | 1.22 | n.s. | - | - | - | - | - |
Urban-closed | - | - | - | - | - | −2.24 | 1.73 | −7.36 | 0.70 | n.s. | - | - | - | - | - |
Urban-open | - | - | - | - | - | 0.29 | 1.16 | −2.12 | 2.60 | n.s. | - | - | - | - | - |
Installation time | - | - | - | - | - | −0.73 | 0.78 | −2.39 | 0.83 | n.s. | - | - | - | - | - |
Number of times installed | - | - | - | - | - | −0.26 | 0.40 | −1.13 | 0.52 | n.s. | - | - | - | - | - |
Group | Species | Common Name | Study Site in Summer | Study Site in Autumn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forest-Closed | Forest-Open | Agricultural Area-Open | Urban-Closed | Urban-Open | Forest-Closed | Forest-Open | Agricultural Area-Open | Urban-Closed | Urban-Open | |||
Mammal | Ursus thibetanus | Asiatic black bear | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Vulpes vulpes | Red fox | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | |
Nyctereutes procyonoides | Raccoon dog | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | |
Paguma larvata | Maskec palm civet | 1 | 1 | 0 | 1 | 1 | 3 | 0 | 0 | 2 | 0 | |
Felis catus | Cat | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | |
Muridae spp. | Rodents | 1 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 1 | |
Bird | Accipitriformes spp. | Raptors | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 1 | 0 | 0 |
Corvus spp. | Crows | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 9 | 10 | |
Total | 2 | 2 | 6 | 1 | 16 | 11 | 0 | 13 | 12 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shizukuda, K.; Saito, M.U. The Disappearance of Small Mammal Carcasses in Human-Dominated Habitats: A Field Experiment in Northeastern Japan. Diversity 2023, 15, 339. https://doi.org/10.3390/d15030339
Shizukuda K, Saito MU. The Disappearance of Small Mammal Carcasses in Human-Dominated Habitats: A Field Experiment in Northeastern Japan. Diversity. 2023; 15(3):339. https://doi.org/10.3390/d15030339
Chicago/Turabian StyleShizukuda, Kyosuke, and Masayuki U. Saito. 2023. "The Disappearance of Small Mammal Carcasses in Human-Dominated Habitats: A Field Experiment in Northeastern Japan" Diversity 15, no. 3: 339. https://doi.org/10.3390/d15030339
APA StyleShizukuda, K., & Saito, M. U. (2023). The Disappearance of Small Mammal Carcasses in Human-Dominated Habitats: A Field Experiment in Northeastern Japan. Diversity, 15(3), 339. https://doi.org/10.3390/d15030339