Small but Mighty: The Round Goby (Neogobius melanostomus) as a Model Species of Biological Invasions
Abstract
:1. The Round Goby as a Model Species
1.1. Origin and Invasion Prerequisites
1.2. Invaded Regions
1.3. Traits Facilitating Invasion
Invaded Regions | Laurentian Great Lakes (Invaded) | Baltic Sea (Invaded) | Pontic Range (Native) | Rivers of Central and Western Europe | Caspian Range (Native) | References |
---|---|---|---|---|---|---|
Relevant invasion corridors | Northern and Southern corridors | Central and Western corridors | ||||
Native origin | Southern Dnieper River | Black Sea | Lower Danube | |||
Size, Morphology and Age | ||||||
Maximal recorded body size | 177 mm TL | 235 mm TL | 260 mm TL | 260 mm TL | 153 mm TL | [36,86,87,88] |
Allometric coefficient of the ventral fin width | 1.21 ± 0.10 | 1.43 ± 0.16 | 1.60 ± 0.19 | 1.49 ± 0.28 | [36,81,89] | |
Maximal recorded age * | 7+ years | 6+ years | 5+ years | 4+ years | 4+ years | [83,84,85,90,91] |
Reproduction ** | ||||||
Relative fecundity | 9 to 143 eggs/g | 225 to 3569 eggs/g | [92] | |||
Absolute fecundity | 81 to 1818 eggs | 457 to 3203 eggs | 1008 to 3803 eggs | 419 to 3568 eggs | 1665 to 5221 eggs | [24,87] |
Egg batches per season | at least 3 | up to 4 | up to 9 | up to 4 | [80,87,92] | |
Size at maturity | 42.5 mm SL (f) | 37 mm TL (f) 45 mm TL (m) | 50 mm SL (f) | 49 mm TL (f) | 50 mm SL (f) | [80,93] |
Spawing period | May to August | March to September | April to September | March to July | April to September | [16,80,94] |
Feeding ecology | ||||||
Length when pharyngeal teeth are developed | 80 mm TL | [84] | ||||
Minimal age when mollusc feeding occurs | 50 mm TL | <50 mm TL | 30 mm TL | 65 mm SL | 30 mm TL | [87,95,96] |
Evidence of winter feeding | December to February | [97] |
1.4. After Establishment
2. Large Body of Hypothesis-Driven Research
Year | Theory | Category | Relevance for Round Goby Research | Reference Comments | |
---|---|---|---|---|---|
2018 | Disease facilitation | a,c | D | [109] | IAS alter parasite transmission, caused by habitat alteration or physical transfer. This hypothesis extends parasite spillback assumption. |
2018 | Suppressive spillover | a,c | P | [109] | Native parasites limit the expansion of an introduced species (and hence hamper its invasion success). |
2017 | Individual trait utility | a | D | [78] | Recognition of the importance of single individuals carrying traits accountable for invasion success, such as high lipid content in round goby as observed in the Danube. |
2017 | Originality (phylogenetic, functional, or ecological) | a,c | P | [110] | The presence of IAS drives resident species to rapidly evolve traits to better tolerate or exploit invaders. |
2014 | Evolutionary imbalance | a | P | [111] | Evolution in an increasingly interconnected world suggests that invasive species continue to displace native species resulting in functional shifts in the recipient ecosystem. |
2013 | Bigger is better | a,d | D | [35] | Invasion success seems to be largely determined by somatic investment instead of reproductive investment. Gobies at invasion fronts at the upper Danube River [35,36] were larger than individuals from established populations. |
2013 | Invasive queens | a,d | P | [112] | Combining enemy release hypothesis & red queen hypotheses: Species with ability to reproduce both sexually and asexually shift towards asexual reproduction in an exotic range. |
2011 | Genetic admixture | a,b,d | P | [113] | Admixure / interbreeding of genetically separated populations in non-native regions, see [112]. This effect may also contribute to inbreeding depression and needs further examination. |
2011 | Spatial sorting | a,c,d | D | [114] | Traits are accumulated in populations according to the local requirements: dispersal abilities at the invasion edge, competitive abilities at longer established sites (e.g., [35]). |
2011 | Universal trade off | a | N | [115] | After interchange between formerly isolated realms, macroevolutionary patterns of differentiation and speciation constitute the movement of traits on a common tradeoff surface. |
2009 | Propagule pressure (Introduction effort) | a | D | [116,117] | Propagule pressure is the combination of introduction events and number of individuals (propagules) introduced. It strongly affects invasion success. |
2008 | Mutualism disruption | a | N | [118] | IAS (particularly plants and fungi) may counter mutualism in non-native regions. |
2007 | Genetic bottlenecks | a | P | [119] | Genetic bottlenecks, i.e., genetic diversity loss as a result of small/reduced population size, are well documented in IAS and in round goby (e.g., [120]), however, they do not seem to have an effect on invasion success. |
2007 | Homogenization of flora and fauna, McDonaldization | a,b | P | [121,122] | Invasions lead to an increasing similarity of species assemblages, across localities, also called taxonomic homogenization. |
2006 | Phenotypic plasticity | a | D | [123] | Is thought to be essential in invasive species success by accelerating evolutionary adaptation processes, e.g., to different habitats (e.g., [43]). |
2006 | Novel ecosystems | a,b,c,d,e | D | [124] | IAS may generate new environmental conditions by eliminating and/or adding new ecosystem services. |
2006 | Inbreeding | a,c | N | [123] | Inbreeding may be high, when population size is low and may result in inbreeding depression or purging, e.g., [125]. |
2005 | Driver of environmental change | a,c | D | [124] | Model illustrates native species diversity changes after invasions by claiming resources, as e.g., nesting sites in round goby (e.g., [126]). |
2005 | Empty niche | a,c,e | D | [127] | IAS occupy vacant niches in invaded ecosystems, e.g., Janáč et al. [128]. |
2005 | Boom-and-bust | a | N | [129] | Reasoning for population abundance increase and subsequent breakdown patterns. |
2004 | Ecosystem engineers | a,c | D | [127] | The theory denominates those IAS which actively change and modify habitat quality in the invaded ecosystem, e.g., [130]. |
2004 | Latency period after introduction (Ecological silence) | a,c | D | [131] | Explains population growth stagnancy after introduction and before (exponential) increase, also called lag-phase (e.g., [132]). |
2004 | New associations | a,c | P | [133] | Interactions of non-native and native species may be crucial for invasion success. |
2004 | Increased susceptibilityrelated to Biotic resistance | a,c,e | P | [133] | Lacking local adaptation in non-native species (e.g., temperature, pathogens) increases their enemy susceptibility in invaded communities, e.g., [134]. |
2004 | Invasive engineers | a,c,e | P | [127] | IAS may engineer and transform environments. |
2004 | Shifting defense | a,c | N | [135] | Quick evolution of alternative defense mechanism, documented predominantly in plants. |
2002 | Enemy release | a,c | D | [133,136] | Non-native populations lose up to 80% of native parasitic species when translocated. A “spillover” effect introduces new parasites to a invaded ecosystems, whereas a “spillback” effect reduces native parasites to invaders, as Pomphorhynchus laevis and round goby [137]. |
2001 | Lag phase | a,c | D | [40] | see: latency period |
2001 | K-strategy (Secondary invasions) | a,d | P | [40] | Invasive k-strategists are thought to replace opportunistic r-strategists over the course of time. However, Cerwenka et al. [19] did not find evidence for this hypothesis in round goby. |
2000 | Genetic paradox | a | N | [138] | Reduced genetic diversity in non-native populations does not seem to hamper invasion success. |
2000 | Phylogenetic relatedness | a,c | N | [139] | Phylogenetic relatedness of an non-native species could facilitate invasion. |
2000 | Environmental heterogeneity | a,c | D | [140] | Habitat heterogeneity limits non-native species establishment, as exemplified in the upper St. Lawrence River and invasive round goby [141]. |
2000 | Novel weapons | a | N | [142] | Could be seen as part of the biotic resistance hypothesis, where traits are present but not used in native populations. |
1999 | Invasional meltdown | a | N | [143] | Simultaneous invasions may promote non-native species success, as e.g., observed in the Danube [29] and Rhine [144]. |
1999 | Enhanced mutualism | a | N | [145] | IAS (particularly plants and fungi) may benefit from higher mutualism rates in non-native regions. |
1997 | Habitat disturbance | a,d | D | [146] | (Anthropogenic) habitat disturbance facilitates invasions, as indicated for round goby in Slovakia [147,148]. |
1996 | R-strategy (Primary invasions) | a,d | D | [149] | Species with opportunistic and generalistic traits (r-strategists) are more successful at the beginning of an invasion, when pioneering at new sites; proposed for round goby by [150]. |
1996 | Competition relatedness Darwin’s naturalization | a | P | [149] | Competitive ability/strength increases with increased phylogenetic relatedness of competitors. |
1996 | Tens rule | a,d | P | [151] | One out of ten species succeeds in the predefined steps introduction, establishment and spread. |
1996 | Integrated conceptual model | a | N | [140] | In aquatic systems, biotic resistance is less important in determining the success or failure of an invasion than the integrated environmental resistance. |
1995 | Evolution of increased competitive ability | a,c | P | [108] | Engineered as an explanation for the “lag-phase”, where adaptive processes may take place (e.g., novel enemies and pathogens) and a species gets invasive (e.g., [132]). |
1993 | Community assembly | a,c,e | P | [152] | The environment influences community structure and invasion ability. Species-rich communities are thought to offer some resistance against invasion, but see [140]. |
1992 | Hybridization | a | N | [153] | Interspecific mixing between native and invasive species. |
1992 | Environmental filtering | a,c | N | [154] | The environment acts as a filter removing all species lacking specified combinations of traits. |
1983 | Limiting similarity | a | N | [143] | IAS are more likely to establish when no native species with similar requirements are present. |
1963 | Purge of homozygotus deleterious genes | a | N | [155] | Deleterious alleles or mutations may be eliminated in IAS through stochastic effects of small inoculation population size. |
1958 | Biotic resistance = Elton’s resistance = Diversity instability | a,c,e | N | [148,156] | Non-native species establishment is thought to be more difficult in species-rich communities than in species-poor ones. |
1938 | Allee effect | a,e | N | [156] | It is thought to decrease the speed of invasion due to decreased genetic diversity at invasion front sites (lower effective population size, population density, higher inbreeding probability). Dispersal capacity may reduce the effect. |
3. Research Gaps and Future Directions
3.1. Research Gaps in Round Goby Invasion Biology
3.2. Continuous Monitoring and Meta-Studies
3.3. Management and Mitigation
- Prevention of invasion in the first place;
- Eradication if applicable;
- Prevention of further dispersal if applicable;
- Mitigation.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marshall, V.M.; Lewis, M.M.; Ostendorf, B. Buffel Grass (Cenchrus ciliaris) as an Invader and Threat to Biodiversity in Arid Environments: A Review. J. Arid Environ. 2012, 78, 1–12. [Google Scholar] [CrossRef]
- Galil, B.S.; Danovaro, R.; Rothman, S.B.S.; Gevili, R.; Goren, M. Invasive Biota in the Deep-Sea Mediterranean: An Emerging Issue in Marine Conservation and Management. Biol. Invasions 2019, 21, 281–288. [Google Scholar] [CrossRef] [Green Version]
- McNeely, J.A.; Schutyser, F. Invasive Species: A Global Concern Bubbling to the Surface. In Proceedings of the International Conference on the Impact of Global Environmental Problems on Continental and Coastal Marine Waters, Geneva, Switzerland, 16–18 July 2003. [Google Scholar]
- Blackburn, T.M.; Essl, F.; Evans, T.; Hulme, P.E.; Jeschke, J.M.; Kühn, I.; Kumschick, S.; Marková, Z.; Mrugała, A.; Nentwig, W.; et al. A Unified Classification of Alien Species Based on the Magnitude of Their Environmental Impacts. PLoS Biol. 2014, 12, e1001850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, R.P.; Geist, J.; Jeschke, J.M.; Kühn, I. Invasive Species in Europe: Ecology, Status, and Policy. Environ. Sci. Eur. 2011, 23, 23. [Google Scholar] [CrossRef] [Green Version]
- Moorhouse, T.P.; Macdonald, D.W. Are Invasives Worse in Freshwater than Terrestrial Ecosystems? WIREs Water 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Havel, J.E.; Kovalenko, K.E.; Thomaz, S.M.; Amalfitano, S.; Kats, L.B. Aquatic Invasive Species: Challenges for the Future. Hydrobiologia 2015, 750, 147–170. [Google Scholar] [CrossRef]
- Bobeldyk, A.M.; Rüegg, J.; Lamberti, G.A. Freshwater Hotspots of Biological Invasion Are a Function of Species-Pathway Interactions. Hydrobiologia 2014, 746, 363–373. [Google Scholar] [CrossRef]
- Adrian-Kalchhauser, I.; Blomberg, A.; Larsson, T.; Musilova, Z.; Peart, C.R.; Pippel, M.; Solbakken, M.H.; Suurväli, J.; Walser, J.C.; Wilson, J.Y.; et al. The Round Goby Genome Provides Insights into Mechanisms That May Facilitate Biological Invasions. BMC Biol. 2020, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Jude, D.J.; Reider, R.H.; Smith, G.R. Establishment of Gobiidae in the Great Lakes Basin. Can. J. Fish. Aquat. Sci. 1992, 49, 416–421. [Google Scholar] [CrossRef]
- Skora, K.E.; Rzeznik, J. Observations on Diet Composition of Neogobius melanostomus Pallas 1811 (Gobiidae, Pisces) in the Gulf of Gdansk (Baltic Sea). J. Great Lakes Res. 2001, 27, 290–299. [Google Scholar] [CrossRef]
- Simonovic, P.; Paunović, M.; Popović, S. Morphology, Feeding, and Reproduction of the Round Goby, Neogobius melanostomus (Pallas), in the Danube River Basin, Yugoslavia. J. Great Lakes Res. 2001, 27, 281–289. [Google Scholar] [CrossRef]
- Paintner, S.; Seifert, K. First Record of the Round Goby, Neogobius melanostomus (Gobiidae), in the German Danube. Lauterbornia 2006, 58, 101–107. [Google Scholar]
- Roche, K.F.; Janač, M.; Jurajda, P. A Review of Gobiid Expansion along the Danube-Rhine Corridor—Geopolitical Change as a Driver for Invasion. Knowl. Manag. Aquat. Ecosyst. 2013, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Slynko, Y.V.; Dgebuadze, Y.Y.; Novitskiy, R.A.; Kchristov, O.A. Invasions of Alien Fishes in the Basins of the Largest Rivers of the Ponto-Caspian Basin: Composition, Vectors, Invasion Routes, and Rates. Russ. J. Biol. Invasions 2011, 2, 49–59. [Google Scholar] [CrossRef]
- Kornis, M.S.; Mercado-Silva, N.; vander Zanden, M.J. Twenty Years of Invasion: A Review of Round Goby Neogobius melanostomus Biology, Spread and Ecological Implications. J. Fish Biol. 2012, 80, 235–285. [Google Scholar] [CrossRef]
- Hirsch, P.E.; N’Guyen, A.; Adrian-Kalchhauser, I.; Burkhardt-Holm, P. What Do We Really Know about the Impacts of One of the 100 Worst Invaders in Europe? A Reality Check. Ambio 2016, 45, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Morisette, O.; Charette, C.; Windle, M.; Drouin, A.; Derry, A.M. Environmental Determinants of Invasion Hotspots and Refugia at a River Scale: Implications for Conservation of Native Biodiversity. bioRxiv 2022. [Google Scholar] [CrossRef]
- Cerwenka, A.F.; Brandner, J.; Schliewen, U.; Geist, J. Population Trends of Invasive Alien Gobies in the Upper Danube River: 10 Years after First Detection of the Globally Invasive Round Goby (Neogobius melanostomus). Aquat. Invasions 2018, 13, 525–535. [Google Scholar] [CrossRef]
- Ricciardi, A.; Cohen, J. The Invasiveness of an Introduced Species Does Not Predict Its Impact. Biol. Invasions 2007, 9, 309–315. [Google Scholar] [CrossRef]
- Puntila-Dodd, R.; Bekkevold, D.; Behrens, J.W. Estimating Salinity Stress via Hsp70 Expression in the Invasive Round Goby (Neogobius melanostomus): Implications for Further Range Expansion. Hydrobiologia 2021, 848, 421–429. [Google Scholar] [CrossRef]
- Kudrenko, S.; Kvach, Y. Diet Composition of Two Gobiid Species in the Khadzhibey Estuary (North-Western Black Sea, Ukraine). Acta Univ. Nicolai Copernici 2005, 24, 61–68. [Google Scholar]
- Demchenko, V.O.; Tkachenko, M.Y. Biological Characteristics of the Round Goby, Neogobius melanostomus (Pallas, 1814), from Different Water Bodies. Arch. Pol. Fish. 2017, 25, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Corkum, L.D.; MacInnis, A.J.; Wickett, R.G. Reproductive Habits of Round Gobies. Great Lakes Res. Rev. 1998, 3, 13–20. [Google Scholar]
- Ricciardi, A.; MacIsaac, H.J. Recent Mass Invasion of the North American Great Lakes by Ponto-Caspian Species. Trends Ecol. Evol. 2000, 15, 62–65. [Google Scholar] [CrossRef]
- Bij de Vaate, A.; Jazdzewski, K.; Ketelaars, H.A.; Gollasch, S.; Van der Velde, G. Geographical Patterns in Range Extension of Ponto-Caspian Macroinvertebrate Species in Europe. Can. J. Fish. Aquat. Sci. 2002, 59, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Leppäkoski, E.; Olenin, S. Non-Native Species and Rates of Spread:Lessons from the Brackish Baltic Sea. Biol. Invasions 2000, 2, 151–163. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Nalepa, T.F.; Jude, D.J.; Mills, E.L.; Holeck, K.T.; Liebig, J.R.; Grigorovich, I.A.; Ojaveer, H. Dispersal and Emerging Ecological Impacts of Ponto-Caspian Species in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 2002, 59, 1209–1228. [Google Scholar] [CrossRef] [Green Version]
- Beggel, S.; Brandner, J.; Cerwenka, A.F.; Geist, J. Synergistic Impacts by an Invasive Amphipod and an Invasive Fish Explain Native Gammarid Extinction. BMC Ecol. 2016, 16, 32. [Google Scholar] [CrossRef] [Green Version]
- Stepien, C.A.; Neilson, M.E. What’s in a Name? Taxonomy and Nomenclature of Invasive Gobies in the Great Lakes and Beyond. J. Great Lakes Res. 2013, 39, 555–559. [Google Scholar] [CrossRef]
- Adrian-Kalchhauser, I.; Svensson, O.; Kutschera, V.E.; Alm Rosenblad, M.; Pippel, M.; Winkler, S.; Schloissnig, S.; Blomberg, A.; Burkhardt-Holm, P. The Mitochondrial Genome Sequences of the Round Goby and the Sand Goby Reveal Patterns of Recent Evolution in Gobiid Fish. BMC Genom. 2017, 18, 12–14. [Google Scholar] [CrossRef] [Green Version]
- Jůza, T.; Blabolil, P.; Baran, R.; Bartoň, D.; Čech, M.; Draštík, V.; Frouzová, J.; Holubová, M.; Ketelaars, H.A.M.; Kočvara, L.; et al. Collapse of the Native Ruffe (Gymnocephalus cernua) Population in the Biesbosch Lakes (the Netherlands) Owing to Round Goby (Neogobius melanostomus) Invasion. Biol. Invasions 2018, 20, 1523–1535. [Google Scholar] [CrossRef]
- Rybczyk, A.; Czerniejewski, P.; Keszka, S.; Janowicz, M.; Brysiewicz, A.; Wawrzyniak, W. First Data of Age, Condition, Growth Rate and Diet of Invasive Neogobius melanostomus (Pallas, 1814) in the Pomeranian Bay, Poland. J. Water Land Dev. 2020, 47, 142–149. [Google Scholar] [CrossRef]
- Florin, A.B.; Hüssy, K.; Blass, M.; Oesterwind, D.; Puntila, R.; Ustups, D.; Albrecht, C.; Heimbrand, Y.; Knospina, E.; Koszarowski, K.; et al. How Old Are You—Evaluation of Age Reading Methods for the Invasive Round Goby (Neogobius melanostomus, Pallas 1814). J. Appl. Ichthyol. 2018, 34, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Brandner, J.; Cerwenka, A.F.; Schliewen, U.K.; Geist, J. Bigger Is Better: Characteristics of Round Gobies Forming an Invasion Front in the Danube River. PLoS ONE 2013, 8, e73036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandner, J.; Cerwenka, A.F.; Schliewen, U.K.; Geist, J. Invasion Strategies in Round Goby (Neogobius melanostomus): Is Bigger Really Better? PLoS ONE 2018, 13, e0190777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlebois, P.M.; Marsden, E.J.; Goettel, R.G.; Wolfe, K.R.; Jude, D.J. The Round Goby, Neogobius melanostomus (Pallas), A Review of European and North American Literature; Illinois Natural History Survey Special Publication No. 20; University of Illinois Urbana-Champaign: Champaign, IL, USA, 1997; pp. 1–76. [Google Scholar]
- Karsiotis, S.I.; Pierce, L.R.; Brown, J.E.; Stepien, C.A. Salinity Tolerance of the Invasive Round Goby: Experimental Implications for Seawater Ballast Exchange and Spread to North American Estuaries. J. Great Lakes Res. 2012, 38, 121–128. [Google Scholar] [CrossRef]
- Behrens, J.W.; Van Deurs, M.; Christensen, E.A.F. Evaluating Dispersal Potential of an Invasive Fish by the Use of Aerobic Scope and Osmoregulation Capacity. PLoS ONE 2017, 12, e0176038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, L.; Niemax, J.; Herrmann, J.P.; Temming, A.; Behrens, J.W.; Havenhand, J.N.; Leder, E.; Kvarnemo, C. Sperm Performance Limits the Reproduction of an Invasive Fish in Novel Salinities. Divers. Distrib. 2021, 27, 1091–1105. [Google Scholar] [CrossRef]
- Hempel, M.; Thiel, R. Effects of Salinity on Survival, Daily Food Intake and Growth of Juvenile Round Goby Neogobius melanostomus (Pallas, 1814) from a Brackish Water System. J. Appl. Ichthyol. 2015, 31, 370–374. [Google Scholar] [CrossRef]
- Green, L.; Havenhand, J.N.; Kvarnemo, C. Evidence of Rapid Adaptive Trait Change to Local Salinity in the Sperm of an Invasive Fish. Evol. Appl. 2020, 13, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorlacius, M.; Brodin, T. Investigating Large-Scale Invasion Patterns Using-Small Scale Invasion Successions—Phenotypic Differentiation of the Invasive Round Goby (Neogobius melanostomus) at Invasion Fronts. Limnol. Oceanogr. 2018, 63, 702–713. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, M.; Molofsky, J.; With, K.A.; Cabin, R.J.; Cohen, J.E.; Norman, C.; Mccauley, D.E.; et al. The Population Biology of Invasive Species. Annu. Rev. Ecol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Chabrerie, O.; Massol, F.; Facon, B.; Thevenoux, R.; Hess, M.; Ulmer, R.; Braschi, J.; Amsellem, L.; Tasiemski, A.; Grandjean, F.; et al. Biological Invasion Theories: Merging Perspectives from Population, Community and Ecosystem Scales. Preprints 2019, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Crooks, J. Invasive Species and Biodiversity Management; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Cerwenka, A.F.; Alibert, P.; Brandner, J.; Geist, J.; Schliewen, U.K. Phenotypic Differentiation of Ponto-Caspian Gobies during a Contemporary Invasion of the Upper Danube River. Hydrobiologia 2014, 721, 269–284. [Google Scholar] [CrossRef]
- Thomaz, S.M. Propagule Pressure and Environmental Filters Related to Non-Native Species Success in River-Floodplain Ecosystems. Hydrobiologia 2021, 849, 3679–3704. [Google Scholar] [CrossRef]
- Strayer, D.L.; D’Antonio, C.M.; Essl, F.; Fowler, M.S.; Geist, J.; Hilt, S.; Jarić, I.; Jöhnk, K.; Jones, C.G.; Lambin, X.; et al. Boom-Bust Dynamics in Biological Invasions: Towards an Improved Application of the Concept. Ecol. Lett. 2017, 20, 1337–1350. [Google Scholar] [CrossRef]
- Brandner, J.; Auerswald, K.; Cerwenka, A.F.; Schliewen, U.K.; Geist, J. Comparative Feeding Ecology of Invasive Ponto-Caspian Gobies. Hydrobiologia 2013, 703, 113–131. [Google Scholar] [CrossRef]
- Cooper, M.J.; Ruetz, C.R.; Uzarski, D.G.; Shafer, B.M. Habitat Use and Diet of the Round Goby (Neogobius melanostomus) in Coastal Areas of Lake Michigan and Lake Huron. J. Freshw. Ecol. 2009, 24, 477–488. [Google Scholar] [CrossRef]
- Meunier, B.; Yavno, S.; Ahmed, S.; Corkum, L.D. First Documentation of Spawning and Nest Guarding in the Laboratory by the Invasive Fish, the Round Goby (Neogobius melanostomus). J. Great Lakes Res. 2009, 35, 608–612. [Google Scholar] [CrossRef]
- Ramler, D.; Keckeis, H. Effects of Hydraulic Engineering Restoration Measures on Invasive Gobies in a Large River (Danube, Austria). Biol. Invasions 2020, 22, 437–453. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, C.R.; Doll, J.C.; Höök, T.O. Nearshore Fish Assemblage Dynamics in Southern Lake Michigan: 1984–2016. J. Great Lakes Res. 2022, 48, 1067–1078. [Google Scholar] [CrossRef]
- Brandner, J.; Auerswald, K.; Schäufele, R.; Cerwenka, A.F.; Geist, J. Isotope Evidence for Preferential Dispersal of Fast-Spreading Invasive Gobies along Man-Made River Bank Structures. Isot. Environ. Health Stud. 2015, 51, 80–92. [Google Scholar] [CrossRef]
- Pennuto, C.M.; Rupprecht, S.M. Upstream Range Expansion by Invasive Round Gobies: Is Functional Morphology Important? Aquat. Ecol. 2016, 50, 45–57. [Google Scholar] [CrossRef]
- Žák, J.; Jůza, T.; Blabolil, P.; Baran, R.; Bartoň, D.; Draštík, V.; Frouzová, J.; Holubová, M.; Ketelaars, H.A.M.; Kočvara, L.; et al. Invasive Round Goby Neogobius Melanostomus Has Sex-Dependent Locomotor Activity and Is under-Represented in Catches from Passive Fishing Gear Compared with Seine Catches. J. Fish Biol. 2018, 93, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.; Stepien, C.A. Invasion Genetics of the Eurasian Round Goby in North America: Tracing Sources and Spread Patterns. Mol. Ecol. 2009, 18, 64–79. [Google Scholar] [CrossRef]
- McAllister, K.; Drake, D.A.R.; Power, M. Round Goby (Neogobius melanostomus) Impacts on Benthic Fish Communities in Two Tributaries of the Great Lakes. Biol. Invasions 2022, 24, 2885–2903. [Google Scholar] [CrossRef] [PubMed]
- Gutowsky, L.F.G.; Fox, M.G. Intra-Population Variability of Life-History Traits and Growth during Range Expansion of the Invasive Round Goby, Neogobius melanostomus. Fish. Manag. Ecol. 2012, 19, 78–88. [Google Scholar] [CrossRef]
- Björklund, M.; Almqvist, G. Is It Possible to Infer the Number of Colonisation Events from Genetic Data Alone? Ecol. Inform. 2010, 5, 173–176. [Google Scholar] [CrossRef]
- Cerwenka, A.F.; Brandner, J.; Geist, J.; Schliewen, U.K. Strong versus Weak Population Genetic Differentiation after a Recent Invasion of Gobiid Fishes (Neogobius melanostomus and Ponticola kessleri) in the Upper Danube. Aquat. Invasions 2014, 9, 71–86. [Google Scholar] [CrossRef]
- Rakauskas, V.; Putys, Ž.; Dainys, J.; Lesutiene, J.; Ložys, L.; Arbačiauskas, K. Increasing Population of the Invader Round Goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and Its Trophic Role in the Curonian Lagoon, SE Baltic Sea. Acta Ichthyol. Piscat. 2013, 43, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Azour, F.; van Deurs, M.; Behrens, J.; Carl, H.; Hüssy, K.; Greisen, K.; Ebert, R.; Møller, P.R. Invasion Rate and Population Characteristics of the Round Goby Neogobius melanostomus: Effects of Density and Invasion History. Aquat. Biol. 2015, 24, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Kotta, J.; Nurkse, K.; Puntila, R.; Ojaveer, H. Shipping and Natural Environmental Conditions Determine the Distribution of the Invasive Non-Indigenous Round Goby Neogobius melanostomus in a Regional Sea. Estuar. Coast. Shelf Sci. 2016, 169, 15–24. [Google Scholar] [CrossRef]
- Buric, M.; Bláha, M.; Kouba, A.; Drozd, B. Upstream Expansion of Round Goby (Neogobius melanostomus)—First Record in the Upper Reaches of the Elbe River. Knowl. Manag. Aquat. Ecosyst. 2015, 416, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, J.; Blonska, D.; Marszal, L.; Przybylski, M. Reproductive Traits of the Established Population of Invasive Western Tubenose Goby, Proterorhinus semilunaris (Actinopterygii: Perciformes: Gobiidae), in the Vistula River. River Res. Appl. 2019, 49, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Borcherding, J.; Dolina, M.; Heermann, L.; Knutzen, P.; Krüger, S.; Matern, S.; van Treeck, R.; Gertzen, S. Feeding and Niche Differentiation in Three Invasive Gobies in the Lower Rhine, Germany. Limnologica 2013, 43, 49–58. [Google Scholar] [CrossRef]
- Janác, M.; Jurajdová, Z.; Roche, K.; Šlapanský, L.; Jurajda, P. An Isolated Round Goby Population in the Upper Elbe: Population Characteristics and Short-Term Impacts on the Native Fish Assemblage. Aquat. Invasions 2019, 14, 738–757. [Google Scholar] [CrossRef]
- Kvach, Y.; Ondračková, M. Checklist of Parasites for Ponto-Caspian Gobies (Actinopterygii: Gobiidae) in Their Native and Non-Native Ranges. J. Appl. Ichthyol. 2020, 36, 472–500. [Google Scholar] [CrossRef]
- Dashinov, D.; Traykov, I.T.; Uzunova, E.; Kenderov, L. New Data on Range Expansion of Round Goby Neogobius melanostomus (Pisces : Gobidae) in the Bulgarian tributaries of Lower Danube River. In Proceedings of the Annual of the Sofia University St. Kliment Ohridski, Sofia, Bulgaria, 8–9 November 2018; Volume 103, pp. 112–117. [Google Scholar]
- Apostolou, A.; Velkov, B.; Green, L. The First Record of the Invasive Round Goby Neogobius melanostomus in the Aegean Basin, Bulgaria. J. Appl. Ichthyol. 2022, 38, 114–117. [Google Scholar] [CrossRef]
- Manné, S.; Poulet, N.; Dembski, S. Colonisation of the Rhine Basin by Non-Native Gobiids: An Update of the Situation in France. Knowl. Manag. Aquat. Ecosyst. 2013, 411, 2. [Google Scholar] [CrossRef] [Green Version]
- Divíšek, J.; Chytrý, M.; Beckage, B.; Gotelli, N.J.; Lososová, Z.; Pyšek, P.; Richardson, D.M.; Molofsky, J. Similarity of Introduced Plant Species to Native Ones Facilitates Naturalization, but Differences Enhance Invasion Success. Nat. Commun. 2018, 9, 4631. [Google Scholar] [CrossRef] [Green Version]
- Mowery, M.A.; Vink, C.; Mason, A.C.; Andrade, M.C.B. Behavioural, Morphological, and Life History Shifts during Invasive Spread. Biol. Invasions 2021, 23, 3497–3511. [Google Scholar] [CrossRef]
- Bleeker, K.; De Jong, K.; Van Kessel, N.; Hinde, C.A.; Nagelkerke, L.A.J. Evidence for Ontogenetically and Morphologically Distinct Alternative Reproductive Tactics in the Invasive Round Goby Neogobius melanostomus. PLoS ONE 2017, 12, e0174828. [Google Scholar] [CrossRef] [Green Version]
- Cerwenka, A.F.; Brandner, J.; Geist, J.; Schliewen, U.K. Cryptic Alternative Male Mating Strategies in Invasive Alien Round Goby (Neogobius melanostomus) of the Upper Danube River. Biol. Invasions 2020, 23, 381–385. [Google Scholar] [CrossRef]
- Cerwenka, A.F.; Pagnotta, A.; Böker, C.; Brandner, J.; Geist, J.; Schliewen, U.K. Little Association of Biological Trait Values with Environmental Variables in Invasive Alien Round Goby (Neogobius melanostomus). Ecol. Evol. 2017, 7, 4076–4085. [Google Scholar] [CrossRef]
- Dashinov, D.; Czerniejewski, P.; Balshine, S.; Synyshyn, C.; Tasheva-Terzieva, E.; Stefanov, T.; Ivanova, P.; Mandrak, N.; Uzunova, E. Variation in External Morphology between the Native and Invasive Populations of the Round Goby, Neogobius melanostomus (Actinopterygii: Gobiidae). Zoomorphology 2020, 139, 361–371. [Google Scholar] [CrossRef]
- Gertzen, S.; Fidler, A.; Kreische, F.; Kwabek, L.; Schwamborn, V.; Borcherding, J. Reproductive Strategies of Three Invasive Gobiidae Co-Occurring in the Lower Rhine (Germany). Limnol.—Ecol. Manag. Inland Waters 2016, 56, 39–48. [Google Scholar] [CrossRef]
- Dashinov, D.D.; Uzunova, E.P. Reproductive Biology of Pioneer Round Gobies (Neogobius melanostomus Pallas, 1814) at the Edge of Their Invasion Front in Three Small Rivers (Lower Danube Basin, Bulgaria). J. Vertebr. Biol. 2021, 70, 21026. [Google Scholar] [CrossRef]
- la Rue, E.A.; Ruetz, C.R.; Stacey, M.B.; Thum, R.A. Population Genetic Structure of the Round Goby in Lake Michigan: Implications for Dispersal of Invasive Species. Hydrobiologia 2011, 663, 71–82. [Google Scholar] [CrossRef]
- Ray, W.J.; Corkum, L.D. Habitat and Site Affinity of the Round Goby. J. Great Lakes Res. 2001, 27, 329–334. [Google Scholar] [CrossRef]
- Andraso, G.; Blank, N.; Shadle, M.J.; DeDionisio, J.L.; Ganger, M.T. Associations between Food Habits and Pharyngeal Morphology in the Round Goby (Neogobius melanostomus). Environ. Biol. Fishes 2017, 100, 1069–1083. [Google Scholar] [CrossRef]
- Fortes Silva, R.; Heubel, K.; Simon, M.-V.; Borcherding, J. Have a Break or Keep Going—Behavioral and Metabolic Overwintering Strategies of Two Invasive Species of the River Rhine, Germany. Environ. Biol. Fishes 2019, 102, 1057–1068. [Google Scholar] [CrossRef]
- Sokołowska, E.; Fey, D.P. Age and Growth of the Round Goby Neogobius melanostomus in the Gulf of Gdańsk Several Years after Invasion. Is the Baltic Sea a New Promised Land? J. Fish Biol. 2011, 78, 1993–2009. [Google Scholar] [CrossRef]
- Smirnov, A.I. Percifomes (Gobioidei), Scorpaeni_formes, Pleuronectiformes, Lophiiformes. Fauna Ukr. 1986, 8, 1–319. (In Russian) [Google Scholar]
- Kasapoğlu, N. Age, Growth and Mortality Rates of Discard Species (Uranoscopus scaber, Neogobius melanostomus and Gobiusniger) in the Black Sea. Ege J. Fish. Aquat. Sci. 2016, 33, 397–403. [Google Scholar]
- Gruľa, D.; Balážová, M.; Copp, G.H.; Kováč, V. Age and Growth of Invasive Round Goby Neogobius melanostomus from Middle Danube. Cent. Eur. J. Biol. 2012, 7, 448–459. [Google Scholar] [CrossRef]
- Nurkse, K.; Kotta, J.; Orav-Kotta, H.; Ojaveer, H. A Successful Non-Native Predator, Round Goby, in the Baltic Sea: Generalist Feeding Strategy, Diverse Diet and High Prey Consumption. Hydrobiologia 2016, 777, 271–281. [Google Scholar] [CrossRef]
- Ghedotti, M.J.; Smihula, J.C.; Smith, G.R. Zebra Mussel Predation by Round Gobies in the Laboratory. J. Great Lakes Res. 1995, 21, 665–669. [Google Scholar] [CrossRef]
- Tomczak, M.T.; Sapota, M.R. The Fecundity and Gonad Development Cycle of the Round Goby (Neogobius melanostomus Pallas 1811) from the Gulf of Gdańsk. Oceanol. Hydrobiol. Stud. 2006, 35, 353–367. [Google Scholar]
- Balážová-L’avrinčíková, M.; Kováč, V. Epigenetic Context in the Life History Traits of the Round Goby, Neogobius melanostomus. Biol. Invaders Inl. Waters Profiles Distrib. Threat. 2007, 275–287. [Google Scholar] [CrossRef]
- Young, J.A.M.; Marentette, J.R.; Gross, C.; McDonald, J.I.; Verma, A.; Marsh-Rollo, S.E.; Macdonald, P.D.M.; Earn, D.J.D.; Balshine, S. Demography and Substrate Affinity of the Round Goby (Neogobius melanostomus) in Hamilton Harbour. J. Great Lakes Res. 2010, 36, 115–122. [Google Scholar] [CrossRef]
- Schaeffer, J.S.; Bowen, A.; Thomas, M.; French, J.R.P.; Curtis, G.L. Invasion History, Proliferation, and Offshore Diet of the Round Goby Neogobius melanostomus in Western Lake Huron, USA. J. Great Lakes Res. 2005, 31, 414–425. [Google Scholar] [CrossRef]
- Skabeikis, A.; Lesutiene, J. Feeding Activity and Diet Composition of Round Goby (Neogobius melanostomus, Pallas 1814) in the Coastal Waters of SE Baltic Sea. Oceanol. Hydrobiol. Stud. 2015, 44, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Dashinov, D.; Uzunova, E. Diet and Feeding Strategies of Round Goby, Neogobius melanostomus (Pallas, 1814) from the Invasion Front in the Danube River Tributaries (Bulgaria): Ontogenetic Shift and Seasonal Variation. Limnologica 2020, 83, 125796. [Google Scholar] [CrossRef]
- Hirsch, P.E.; Adrian-Kalchhauser, I.; Flämig, S.; N’Guyen, A.; Defila, R.; Di Giulio, A.; Burkhardt-Holm, P. A Tough Egg to Crack: Recreational Boats as Vectors for Invasive Goby Eggs and Transdisciplinary Management Approaches. Ecol. Evol. 2016, 6, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Hempel, M.; Neukamm, R.; Thiel, R. Effects of Introduced Round Goby (Neogobius melanostomus) on Diet Composition and Growth of Zander (Sander Lucioperca), a Main Predator in European Brackish Waters. Aquat. Invasions 2016, 11, 167–178. [Google Scholar] [CrossRef]
- Mikl, L.; Adámek, Z.; Roche, K.; Všetičková, L.; Šlapanský, L.; Jurajda, P. Invasive Ponto-Caspian Gobies in the Diet of Piscivorous Fish in a European Lowland River. Fundam. Appl. Limnol. 2017, 190, 157–171. [Google Scholar] [CrossRef]
- Maitner, B.S.; Park, D.S.; Enquist, B.J.; Dlugosch, K.M. Where We’ve Been and Where We’re Going: The Importance of Source Communities in Predicting Establishment Success from Phylogenetic Relationships. Ecography 2021, 1–14, e05406. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Hegerer, T. Invasion Biology: Hypotheses and Evidencve; Hegerer, T., Ed.; CABI Invasives Series 9; CABI: Wallingford, UK, 2018. [Google Scholar]
- Simberloff, D.; Holle, B. Von Positive Interactions of Nonindigenous Species: Invasional Meltdown? Biol. Invasions 1999, 1, 21–32. [Google Scholar] [CrossRef]
- De Mazancourt, C.; Johnson, E.; Barraclough, T.G. Biodiversity Inhibits Species’ Evolutionary Responses to Changing Environments. Ecol. Lett. 2008, 11, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, J.; Gómez Aparicio, L.; Haider, S.; Heger, T.; Lortie, C.; Pyšek, P.; Strayer, D. Support for Major Hypotheses in Invasion Biology Is Uneven and Declining. NeoBiota 2012, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Mooney, H.A.; Cleland, E.E. The Evolutionary Impact of Invasive Species. Proc. Natl. Acad. Sci. USA 2001, 98, 5446–5451. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E.; Bernard-Verdier, M. Comparing Traits of Native and Alien Plants: Can We Do Better? Funct. Ecol. 2018, 32, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Blossey, B.; Nötzold, R. Evolution of Increased Competitive Ability in Invasive Nonindigenous Plants: A Hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Chalkowski, K.; Lepczyk, C.A.; Zohdy, S. Parasite Ecology of Invasive Species: Conceptual Framework and New Hypotheses. Trends Parasitol. 2018, 34, 656–663. [Google Scholar] [CrossRef]
- David, P.; Thébault, E.; Anneville, O.; Duyck, P.F.; Chapuis, E.; Loeuille, N. Impacts of Invasive Species on Food Webs: A Review of Empirical Data. Adv. Ecol. Res. 2017, 56, 1–60. [Google Scholar] [CrossRef]
- Fridley, J.D.; Sax, D.F. The Imbalance of Nature: Revisiting a Darwinian Framework for Invasion Biology. Glob. Ecol. Biogeogr. 2014, 23, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Platt, V.; Jeschke, J.M. Are exotic species red queens? Ethol. Ecol. Evol. 2014, 26, 101–111. [Google Scholar]
- Lawson Handley, L.J.; Estoup, A.; Evans, D.M.; Thomas, C.E.; Lombaert, E.; Facon, B.; Aebi, A.; Roy, H.E. Ecological Genetics of Invasive Alien Species. BioControl 2011, 56, 409–428. [Google Scholar] [CrossRef] [Green Version]
- Shine, R.; Brown, G.P.; Phillips, B.L. An Evolutionary Process That Assembles Phenotypes through Space Rather than through Time. Proc. Natl. Acad. Sci. USA 2011, 108, 5708–5711. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Diversification, Biotic Interchange, and the Universal Trade-off Hypothesis. Am. Nat. 2011, 178, 355–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A Proposed Unified Framework for Biological Invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Simberloff, D. The Role of Propagule Pressure in Biological Invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [Google Scholar] [CrossRef]
- Callaway, R.M.; Maron, J.L. What Have Exotic Plant Invasions Taught Us over the Past 20 Years? Trends Ecol. Evol. 2006, 21, 369–374. [Google Scholar] [CrossRef]
- Sax, D.F.; Stachowicz, J.J.; Brown, J.H.; Bruno, J.F.; Dawson, M.N.; Gaines, S.D.; Grosberg, R.K.; Hastings, A.; Holt, R.D.; Mayfield, M.M.; et al. Ecological and Evolutionary Insights from Species Invasions. Trends Ecol. Evol. 2007, 22, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Hôrková, K.; Kováč, V. Different Life-Histories of Native and Invasive Neogobius melanostomus and the Possible Role of Phenotypic Plasticity in the Species’ Invasion Success. Knowl. Manag. Aquat. Ecosyst. 2014, 412, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moyle, P.B.; Mount, J.F. Homogenous Rivers, Homogenous Faunas. Proc. Natl. Acad. Sci. USA 2007, 104, 5711–5712. [Google Scholar] [CrossRef] [Green Version]
- Beisel, J.-N.; Devin, S. Biomonotony: Definition and Assessment for Macroinvertebrates in European Running Waters. Biol. Invaders Inl. Waters Profiles Distrib. Threat. 2007, 19, 369–379. [Google Scholar] [CrossRef]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of All Trades, Master of Some? On the Role of Phenotypic Plasticity in Plant Invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, J.S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; et al. Novel Ecosystems: Theoretical and Management Aspects of the New Ecological World Order. Glob. Ecol. Biogeogr. 2006, 15, 1–7. [Google Scholar] [CrossRef]
- Wellband, K.W.; Pettitt-Wade, H.; Fisk, A.T.; Heath, D.D. Differential Invasion Success in Aquatic Invasive Species: The Role of within- and among-Population Genetic Diversity. Biol. Invasions 2017, 19, 2609–2621. [Google Scholar] [CrossRef]
- Roche, K.; Šlapanský, L.; Trávník, M.; Janáč, M.; Jurajda, P. The Importance of Rip-Rap for Round Goby Invasion Success—A Field Habitat Manipulation Experiment. J. Vertebr. Biol. 2021, 70, 21052-1. [Google Scholar] [CrossRef]
- Hastings, A.; Cuddington, K.; Davies, K.F.; Dugaw, C.J.; Elmendorf, S.; Freestone, A.; Harrison, S.; Holland, M.; Lambrinos, J.; Malvadkar, U.; et al. The Spatial Spread of Invasions: New Developments in Theory and Evidence. Ecol. Lett. 2005, 8, 91–101. [Google Scholar] [CrossRef]
- Janáč, M.; Valová, Z.; Roche, K.; Jurajda, P. No Effect of Round Goby Neogobius melanostomus Colonisation on Young-of-the-Year Fish Density or Microhabitat Use. Biol. Invasions 2016, 18, 2333–2347. [Google Scholar] [CrossRef]
- Simberloff, D.; Gibbons, L. Now You See Them, Now You Don’t!–Population Crashes of Established Introduced Species. Biol. Invasions 2004, 6, 161–172. [Google Scholar] [CrossRef]
- Brush, J.M.; Fisk, A.T.; Hussey, N.E.; Johnson, T.B. Spatial and Seasonal Variability in the Diet of Round Goby Neogobius melanostomus): Stable Isotopes Indicate That Stomach Contents Overestimate the Importance of Dreissenids. Can. J. Fish. Aquat. Sci. 2012, 69, 573–586. [Google Scholar] [CrossRef]
- Crooks, J.A. Lag Times and Exotic Species: The Ecology and Management of Biological Invasions in Slow-Motion. Ecoscience 2005, 12, 316–329. [Google Scholar] [CrossRef]
- Thorlacius, M.T.; Hellström, G.H.; Brodin, T.B. Behavioral Dependent Dispersal in the Invasive Round Goby Neogobius melanostomus Depends on Population Age. Curr. Zool. 2015, 61, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Colautti, R.I.; Ricciardi, A.; Grigorovich, I.A.; MacIsaac, H.J. Is Invasion Success Explained by the Enemy Release Hypothesis? Ecol. Lett. 2004, 7, 721–733. [Google Scholar] [CrossRef]
- Reid, H.B.; Ricciardi, A. Ecological Responses to Elevated Water Temperatures across Invasive Populations of the Round Goby (Neogobius melanostomus) in the Great Lakes Basin. Can. J. Fish. Aquat. Sci. 2021, 145, 1–48. [Google Scholar] [CrossRef]
- Müller-Schärer, H.; Schaffner, U.; Steinger, T. Evolution in Invasive Plants: Implications for Biological Control. Trends Ecol. Evol. 2004, 19, 417–422. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.J. Exotic Plant Invasions and the Enemy Hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Hohenadler, M.A.A.; Honka, K.I.; Emde, S.; Klimpel, S.; Sures, B. First Evidence for a Possible Invasional Meltdown among Invasive Fish Parasites. Sci. Rep. 2018, 8, 15085. [Google Scholar] [CrossRef] [Green Version]
- Sax, D.F.; Brown, J.H. The Paradox of Invasion. Glob. Ecol. Biogeogr. 2000, 9, 363–371. [Google Scholar] [CrossRef]
- Webb, C.O. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef]
- Moyle, P.B.; Light, T. Biological Invasions of Fresh Water: Empirical Rules and Assembly Theory. Biol. Conserv. 1996, 78, 149–161. [Google Scholar] [CrossRef]
- Astorg, L.; Sanderson, S.; Côté-Gravel, V.; Sorbara, F.; Windle, M.J.S.; Hendry, A.P.; Derry, A.M. Different Refuge Types Dampen Exotic Invasion and Enhance Diversity at the Whole Ecosystem Scale in a Heterogeneous River System. Biol. Invasions 2021, 23, 443–460. [Google Scholar] [CrossRef]
- Callaway, R.M.; Aschehoug, E.T. Invasive Plants versus Their New and Old Neighbors: A Mechanism for Exotic Invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef]
- Abrams, P. The Theory of Limiting Similarity. Annu. Rev. Ecol. Syst. 1983, 14, 359–376. [Google Scholar] [CrossRef]
- Nachev, M.; Hohenadler, M. Role of Invasive Gobies for Transmission of Acanthocephalans of the Genus Pomphorhynchus in the River Rhine. Preprint 2022, 1–15. [Google Scholar] [CrossRef]
- Marler, M.J.; Zabinski, C.A.; Callaway, R.M. Mycorrhizae Indirectly Enhance Competitive Effects of an Invasive Forb on a Native Bunchgrass. Ecology 1999, 80, 1180–1186. [Google Scholar] [CrossRef]
- Lozon, J.D.; MacIsaac, H.J. Biological Invasions: Are They Dependent on Disturbance? Environ. Rev. 1997, 5, 131–144. [Google Scholar] [CrossRef]
- Jakubčinová, K.; Haruštiaková, D.; Števove, B.; Švolíková, K.; Makovinská, J.; Kováč, V. Distribution Patterns and Potential for Further Spread of Three Invasive Fish Species (Neogobius melanostomus, Lepomis gibbosus and Pseudorasbora parva) in Slovakia. Aquat. Invasions 2018, 13, 513–524. [Google Scholar] [CrossRef]
- Levine, J.M.; Adler, P.B.; Yelenik, S.G. A Meta-Analysis of Biotic Resistance to Exotic Plant Invasions. Ecol. Lett. 2004, 7, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Rejmanek, M.; Richardson, D.M. What Attributes Make Some Plant Species More Invasive? Ecology 1996, 77, 1655–1661. [Google Scholar] [CrossRef]
- Kováč, V.; Copp, G.H.; Sousa, R.P. Life-History Traits of Invasive Bighead Goby Neogobius kessleri (Günther, 1861) from the Middle Danube River, with a Reflection on Which Goby Species May Win the Competition. J. Appl. Ichthyol. 2009, 25, 33–37. [Google Scholar] [CrossRef]
- Williamson, H.; Fitter, A. The Characters of Successful Invaders. Biol. Conserv. 1996, 3207, 163–170. [Google Scholar] [CrossRef]
- David, M. Lodge Biological Invasions: Lessons for Ecology. Trends Ecol. Evol. 1993, 8, 133–137. [Google Scholar]
- Abbott, R.J. Plant Invasions, Interspecific Hybridization and the Evolution of New Plant Taxa. Trends Ecol. Evol. 1992, 7, 401–405. [Google Scholar] [CrossRef]
- Keddy, P.A. Assembly and Response Rules: Two Goals for Predictive Community Ecology. J. Veg. Sci. 1992, 3, 157–164. [Google Scholar] [CrossRef] [Green Version]
- KIMURA, M.; MARUYAMA, T.; CROW, J.F. The Mutation Load in Small Populations. Genetics 1963, 48, 1303–1312. [Google Scholar] [CrossRef]
- Elton, C.S. The Ecology of Invasions by Animals and Plants. In The Ecology of Invasions by Animals and Plants; Springer: Boston, MA, USA, 1958; pp. 143–153. [Google Scholar]
- McCallum, E.S.; Charney, R.E.; Marentette, J.R.; Young, J.A.M.; Koops, M.A.; Earn, D.J.D.; Bolker, B.M.; Balshine, S. Erratum to: Persistence of an Invasive Fish (Neogobius melanostomus) in a Contaminated Ecosystem. Biol. Invasions 2014, 16, 2463. [Google Scholar] [CrossRef] [Green Version]
- Brandner, J.; Pander, J.; Mueller, M.; Cerwenka, A.F.; Geist, J. Effects of Sampling Techniques on Population Assessment of Invasive Round Goby Neogobius melanostomus. J. Fish Biol. 2013, 82, 2063–2079. [Google Scholar] [CrossRef]
- Stoeckle, B.C.; Beggel, S.; Cerwenka, A.F.; Motivans, E.; Kuehn, R.; Geist, J. A Systematic Approach to Evaluate the Influence of Environmental Conditions on eDNA Detection Success in Aquatic Ecosystems. PLoS ONE 2017, 12, e0189119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polačik, M.; Janáč, M.; Jurajda, P.; Adámek, Z.; Ondračková, M.; Trichkova, T.; Vassilev, M. Invasive Gobies in the Danube: Invasion Success Facilitated by Availability and Selection of Superior Food Resources. Ecol. Freshw. Fish 2009, 18, 640–649. [Google Scholar] [CrossRef]
- Geist, J.; Hawkins, S.J. Habitat Recovery and Restoration in Aquatic Ecosystems: Current Progress and Future Challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 942–962. [Google Scholar] [CrossRef]
- Vilizzi, L.; Copp, G.H.; Hill, J.E.; Adamovich, B.; Aislabie, L.; Akin, D.; Al-Faisal, A.J.; Almeida, D.; Azmai, M.N.A.; Bakiu, R.; et al. A Global-Scale Screening of Non-Native Aquatic Organisms to Identify Potentially Invasive Species under Current and Future Climate Conditions. Sci. Total Environ. 2021, 788, 147868. [Google Scholar] [CrossRef]
- Roura-Pascual, N.; Saul, W.-C.; Pérez-Granados, C.; Rutting, L.; Peterson, G.D.; Latombe, G.; Essl, F.; Adriaens, T.; Aldridge, D.C.; Bacher, S.; et al. A Scenario-Guided Strategy for the Future Management of Biological Invasions. bioRxiv 2022. [Google Scholar] [CrossRef]
- Nevers, M.B.; Byappanahalli, M.N.; Morris, C.C.; Shively, D.; Przybyla-Kelly, K.; Spoljaric, A.M.; Dickey, J.; Roseman, E.F. Environmental DNA (eDNA): A Tool for Quantifying the Abundant but Elusive Round Goby (Neogobius melanostomus). PLoS ONE 2018, 13, e0191720. [Google Scholar] [CrossRef]
- Nathan, L.R.; Jerde, C.L.; Budny, M.L.; Mahon, A.R. The Use of Environmental DNA in Invasive Species Surveillance of the Great Lakes Commercial Bait Trade. Conserv. Biol. 2015, 29, 430–439. [Google Scholar] [CrossRef]
- Adrian-Kalchhauser, I.; Burkhardt-Holm, P. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater. PLoS ONE 2016, 11, e0147558. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, B.; Aldridge, D.C. The “Dirty Dozen”: Socio-Economic Factors Amplify the Invasion Potential of 12 High-Risk Aquatic Invasive Species in Great Britain and Ireland. J. Appl. Ecol. 2013, 50, 757–766. [Google Scholar] [CrossRef]
- Forsgren, E.; Hanssen, F. Identifying High-Risk Areas for Introduction of New Alien Species: The Case of the Invasive Round Goby, a Door-Knocker for Norway. Hydrobiologia 2022, 849, 2377–2394. [Google Scholar] [CrossRef]
- Sala, O.E.; Sala, O.E.; Iii, F.S.C.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-sanwald, E.; Huenneke, L.F.; Jackson, R.B.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2011, 287, 1770–1774. [Google Scholar] [CrossRef]
- Leung, B.; Lodge, D.M.; Finnoff, D.; Shogren, J.F.; Lewis, M.A.; Lamberti, G. An Ounce of Prevention or a Pound of Cure: Bioeconomic Risk Analysis of Invasive Species. Proc. R. Soc. B Biol. Sci. 2002, 269, 2407–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulme, P.E. Beyond Control: Wider Implications for the Management of Biological Invasions. J. Appl. Ecol. 2006, 43, 835–847. [Google Scholar] [CrossRef]
- N’Guyen, A.; Hirsch, P.E.; Bozzuto, C.; Adrian-Kalchhauser, I.; Hôrková, K.; Burkhardt-Holm, P. A Dynamical Model for Invasive Round Goby Populations Reveals Efficient and Effective Management Options. J. Appl. Ecol. 2018, 55, 342–352. [Google Scholar] [CrossRef]
- Steingraeber, M.T.; Thiel, P.A. The Round Goby (Neogobius melanostomus): Another Unwelcome Invader in the Mississippi River Basin. In Proceedings of the Transactions of the North American Wildlife and Natural Resources Conference, Rosemont, IL, USA, 24–28 March 2000; pp. 328–344. [Google Scholar]
- Egger, B.; Wiegleb, J.; Seidel, F.; Burkhardt-Holm, P.; Emanuel Hirsch, P. Comparative Swimming Performance and Behaviour of Three Benthic Fish Species: The Invasive Round Goby (Neogobius melanostomus), the Native Bullhead (Cottus gobio), and the Native Gudgeon (Gobio gobio). Ecol. Freshw. Fish 2021, 30, 391–405. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerwenka, A.F.; Brandner, J.; Dashinov, D.; Geist, J. Small but Mighty: The Round Goby (Neogobius melanostomus) as a Model Species of Biological Invasions. Diversity 2023, 15, 528. https://doi.org/10.3390/d15040528
Cerwenka AF, Brandner J, Dashinov D, Geist J. Small but Mighty: The Round Goby (Neogobius melanostomus) as a Model Species of Biological Invasions. Diversity. 2023; 15(4):528. https://doi.org/10.3390/d15040528
Chicago/Turabian StyleCerwenka, Alexander F., Joerg Brandner, Dimitriy Dashinov, and Juergen Geist. 2023. "Small but Mighty: The Round Goby (Neogobius melanostomus) as a Model Species of Biological Invasions" Diversity 15, no. 4: 528. https://doi.org/10.3390/d15040528
APA StyleCerwenka, A. F., Brandner, J., Dashinov, D., & Geist, J. (2023). Small but Mighty: The Round Goby (Neogobius melanostomus) as a Model Species of Biological Invasions. Diversity, 15(4), 528. https://doi.org/10.3390/d15040528