The Impact of Management Practices on the Stability of Meadow Communities on a Mountain Slope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Conditions
2.2. Experimental Design and Details
2.3. Analysis of Species Composition
3. Results
3.1. Floristic Composition of the Meadows and Its Variation
3.2. Distribution of Sward Species in the Meadow
3.3. Grouping of Swards According to Growth Duration and Families
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; p. 1148. [Google Scholar]
- Bohovin, A.V.; Sliusar, I.T.; Tsarenko, M.K. Herbaceous Biogeocenoses, Their Improvement and Rational Use; Agrarian Science: Kyiv, Ukraine, 2005. [Google Scholar]
- Parente, G.; Bovolenta, S. The role of grassland in rural tourism and recreation in Europe. In Grassland—A European Resource? Proceedings of the 24th EFG General Meeting of the European Grassland Federation, Lublin, Poland, 3–7 June 2012; CABI: Jura, Switzerland, 2012; pp. 733–743. [Google Scholar]
- Lepš, J. Nutrient status, disturbance and competition: An experimental test of relationships in a wet meadow. J. Veg. Sci. 1999, 10, 219–230. [Google Scholar] [CrossRef]
- Díaz, M.; Concepción, E.D. Enhancing the Effectiveness of CAP Greening as a Conservation Tool: A Plea for Regional Targeting Considering Landscape Constraints. Curr. Landsc. Ecol. Rep. 2016, 1, 168–177. [Google Scholar] [CrossRef]
- Wehn, S.; Burton, R.; Riley, M.; Johansen, L.; Hovstad, K.A.; Rønningen, K. Adaptive biodiversity management of semi-natural hay meadows: The case of West-Norway. Land Use Policy 2018, 72, 259–269. [Google Scholar] [CrossRef]
- Bohovin, A.V. Types of categories of biodiversity in the conditions of anthropogenic transformation of the ecological systems. Ecol. Noospherolog 2011, 22, 73–83. [Google Scholar]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019; p. 572. [Google Scholar]
- Pierik, M.E.; Gusmeroli, F.; Marianna, G.D.; Tamburini, A.; Bocchi, S. Meadows species composition, biodiversity and forage value in an Alpine district: Relationships with environmental and dairy farm management variables. Agric. Ecosyst. Environ. 2017, 244, 14–21. [Google Scholar] [CrossRef]
- Bugryn, L.; Kotyash, U.; Smetana, S.; Bugryn, O.; Pukalo, D. Productive potential of meadow phytocenoses as a source of grass forages for cattle farming in the Carpathian region. Foothill Mt. Agric. Stock. 2020, 67, 9–24. [Google Scholar] [CrossRef]
- Demydas, G.I.; Prorochenko, S.S. Botanical structure and features of forming lucerne-cereal herbage depending on fertilizing in environments of Right-Bank Forest-Steppe. Myronivskyi Her. 2018, 7, 123–134. [Google Scholar] [CrossRef]
- Kovtun, K.P.; Veklenko, Y.U.A.; Yashchuk, V.A. Formation of phytocenosis and productivity of sainfoin-cereal grass mixtures depending on the methods of sowing and spatial distribution of species in the conditions of the right-bank Forest-Steppe. Feed. Feed. Prod. 2020, 89, 112–120. [Google Scholar] [CrossRef]
- Kotyash, U.; Bugryn, L.; Panakhyd, H.; Pukalo, D. Features formation of different age meadowy swards depending on surface improvement. Foothill Mt. Agric. Stock. 2019, 66, 117–129. [Google Scholar]
- Petrychenko, V.F.; Kornijchuk, O.V.; Veklenko, J.U.A. Development of grassland forage production in conditions of climate change. Bull. Agric. Sci. 2018, 96, 25–32. [Google Scholar] [CrossRef]
- DSTU. Natural Forage Lands. In Method of Botanical Survey of Grasses; Derzhspozhyvstandart Ukrainy: Kyiv, Ukraine, 2007; Volume 12. [Google Scholar]
- Babich, A.O. (Ed.) Methods of Conducting Experiments on Feed Production; Institute of Fodder of the National Academy of Science: Vinnytsia, Ukraine, 1994; 96p. [Google Scholar]
- Dobrochaeva, D.N.; Kotov, M.I.; Prokudin, Y.U.H. Determinant of Higher Plants of Ukraine; Naukova dumka: Kyiv, Ukraine, 1987. [Google Scholar]
- Dahlström, A.; Iuga, A.; Lennartsson, T. Managing biodiversity rich hay meadows in the EU: A comparison of Swedish and Romanian grasslands. Environ. Conserv. 2013, 40, 194–205. [Google Scholar] [CrossRef]
- Boob, M.; Elsaesser, M.; Thumm, U.; Hartung, J.; Lewandowski, I. Different management practices influence growth of small plants in species-rich hay meadows through shading. Appl. Veg. Sci. 2021, 24, e12625. [Google Scholar] [CrossRef]
- Yan, R.; Xin, X.; Yan, Y.; Wang, X.; Zhang, B.; Yang, G.; Liu, S.; Deng, Y.; Li, L. Impacts of Differing Grazing Rates on Canopy Structure and Species Composition in Hulunber Meadow Steppe. Rangel. Ecol. Manag. 2015, 68, 54–64. [Google Scholar] [CrossRef]
- Bohovin, A.V. Improving the efficiency of the use of meadows for global warming. Collect. Sci. Work. Natl. Sci. Cent. 2008, 5i, 33–41. [Google Scholar]
- Critchley, C.N.R.; Fowbert, J.A.; Wright, B. Dynamics of species-rich upland hay meadows over 15 years and their relation with agricultural management practices. Appl. Veg. Sci. 2007, 10, 307–314. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Schmitzberger, I.; Steurer, B.; Peterseil, J.; Wrbka, T. The influence of land-use practices and economics on plant species richness in meadows. Biol. Conserv. 2003, 114, 165–177. [Google Scholar] [CrossRef]
- Clark, C.M.; Cleland, E.E.; Collins, S.L.; Fargione, J.E.; Gough, L.; Gross, K.L.; Grace, J.B. Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol. Lett. 2007, 10, 596–607. [Google Scholar] [CrossRef] [PubMed]
- DeMalach, N.; Kadmon, R. Light competition explains diversity decline better than niche dimensionality. Funct. Ecol. 2017, 31, 1834–1838. [Google Scholar] [CrossRef]
- Doležal, J.; Lanta, V.; Mudrák, O.; Lepš, J. Seasonality promotes grassland diversity: Interactions with mowing, fertilization and removal of dominant species. J. Ecol. 2019, 107, 203–215. [Google Scholar] [CrossRef]
- Hautier, Y.; Niklaus, P.A.; Hector, A. Competition for light causes plantbiodiversity loss after eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Roscher, C.; Kutsch, W.L.; Kolle, O.; Ziegler, W.; Schulze, E. Adjustmentto the light environment in small-statured forbs as a strategy for com-plementary resource use in mixtures of grassland species. Ann. Bot. 2011, 107, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The evolutionary ecology of seed size. In Seeds—The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CAB International: Wallingford, UK, 2000; pp. 31–57. [Google Scholar]
- Jacquemyn, H.; Brys, R.; Hermy, M. Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol. Conserv. 2003, 111, 137–147. [Google Scholar] [CrossRef]
- Kurhak, V.H.; Panasyuk, S.M.; Asanishvili, N.M.; Slyusar, I.T.; Shtakal, M.I.; Ptashnik, M.M.; Oksymets, O.L.; Tsymbal, Y.A.S.; Kushchuk, M.O.; Gavrysh, Y.A.V.; et al. Influence of perennial legumes on the productivity of meadow phytocenoses. Ukr. J. Ecol. 2020, 10, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, W.; Xue, K.; Wang, S.; Zhang, L.; Hu, R.; Zeng, H.; Xu, X.; Li, Y.; Jiang, L.; et al. Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Enviorn. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- Karbivska, U.; Kurgak, V.; Gamayunova, V.; Butenko, A.; Malynka, L.; Kovalenko, I.; Onychko, V.; Masyk, I.; Chyrva, A.; Zakharchenko, E.; et al. Productivity and quality of diverse ripe cereal grass fodder depends on the methods of soil cultivation. Acta Agrobot. 2020, 73, 3. [Google Scholar] [CrossRef]
- Schofield, E.J.; Rowntree, J.K.; Paterson, E.; Brooker, R.W. Temporal dynamism of resource capture: A missing factor in ecology? Trends Ecol. Evol. 2018, 33, 277–286. [Google Scholar] [CrossRef] [PubMed]
Management Practices | |
---|---|
Haymaking use (1) | Multipurpose use (2) |
Without fertilizers | Without fertilizers |
P30K60 | P30K60 |
N60P30K60 | P30K60 + Trifolium repens |
N60P30K60 + Poaceae mixture * | N60P30K60 |
Manure 15 t∙ha−1 | Manure 15 t∙ha−1 |
Management Practices | Poaceae | Fabaceae | Forbs | ||||
---|---|---|---|---|---|---|---|
Total | Including | Reseeded | Total | Including T. repens | |||
P. pratense | F. pratensis | ||||||
Haymaking use | |||||||
Without fertilization | 67 | 5 | 3 | 62 | 5 | - | 28 |
P30K60 | 66 | 8 | 3 | 55 | 7 | - | 27 |
N60P30K60 | 75 | 9 | 4 | 62 | 2 | - | 23 |
N60P30K60 + Poaceae | 80 | 22 | 24 | 34 | 1 | - | 19 |
Manure 15 t∙ha−1 | 74 | 9 | 4 | 61 | 3 | - | 23 |
HIP05, % | 5 | 2 | 2 | 4 | 1 | 3 | |
Multipurpose use | |||||||
Without fertilization | 67 | 5 | 3 | 59 | 7 | 2 | 26 |
P30K60 | 66 | 5 | 3 | 58 | 8 | 2 | 26 |
P30K60 + T. repens | 41 | 4 | 6 | 31 | 39 | 34 | 20 |
N60P30K60 | 72 | 6 | 4 | 62 | 2 | - | 26 |
Manure 15 t∙ha−1 | 72 | 6 | 4 | 62 | 3 | - | 25 |
LSD05 % | 5 | 1 | 1 | 4 | 2 | 2 | 3 |
Types | Haymaking Use | Multipurpose Use | ||||||
---|---|---|---|---|---|---|---|---|
Without Fertilization | P30 K60 | N60 P30 K60 | N60P30K60 + Poaceae | Without Fertilization | P30 K60 | P30K60 + T. repens | N60 P30 K60 | |
Poaceae | ||||||||
Nardus stricta L. | 25 | 24 | 28 | 9 | 18 | 17 | 10 | 15 |
Cynosurus cristatus L. | + | + | - | - | 2 | 2 | + | + |
Dactylis glomerata L. | 5 | 5 | 8 | 8 | 3 | 3 | + | 10 |
Festuca pratensis Huds. | 3 | 3 | 4 | 20 | 3 | 3 | 6 | 4 |
Festuca ovina L. | - | - | - | - | 2 | 2 | - | - |
Festuca rubra L. s. str. | 12 | 11 | 13 | 3 | 22 | 21 | 12 | 22 |
Calamagrostis arundinaceae (L.) Roth | 3 | 3 | 5 | 3 | + | + | - | - |
Agrostis gigantea Roth | 3 | 3 | 6 | 5 | + | + | - | - |
Agrostis tenuis Sibth. | + | + | - | - | 6 | 6 | 4 | 6 |
Elytrigia repens (L.) Nevski | 5 | 6 | 2 | 3 | 2 | 2 | + | 3 |
Arrhenatherum elatius (L.) P. Beauv. ex J. Presl et C. Presl | 6 | 5 | - | 1 | + | + | + | 3 |
Phleum pratense L. | 8 | 7 | 9 | 28 | 5 | 4 | 4 | 6 |
Poa pratensis L. | - | - | - | - | 2 | 2 | - | - |
Poa annua L. | + | + | - | - | 5 | 5 | 2 | 3 |
Briza media L. | - | - | - | - | + | + | - | - |
Total types, % | 70 | 67 | 75 | 80 | 70 | 67 | 38 | 72 |
Total types, pcs. | 12 | 12 | 9 | 9 | 15 | 15 | 10 | 10 |
Fabaceae | ||||||||
Trifolium montanum L. | 3 | 4 | 1 | - | - | 1 | 2 | - |
Trifolium pratense L. | 1 | 2 | + | - | - | - | - | - |
Trifolium repens L. | - | - | - | - | 2 | 2 | 35 | - |
Medicago lupulina L. | - | - | - | - | 3 | 3 | 3 | 1 |
Lotus corniculatus L. | - | 2 | - | - | 2 | 2 | 2 | - |
Total types, % | 5 | 8 | 1 | - | 7 | 8 | 42 | 1 |
Total types, pcs. | 2 | 3 | 1 | - | 3 | 4 | 4 | 1 |
Forbss ** | ||||||||
Blechnum spicant (L.) Roth | + | - | - | - | - | - | - | - |
Heracleum sphondylium L. | - | - | - | - | + | + | - | + |
Capsella bursa-pastoris (L.) Medik. | 3 | 3 | 2 | 2 | 5 | 5 | 4 | 5 |
Achillea submillefolium Klokk. Et Krytzka | + | + | + | + | + | + | - | - |
Rhinanthus alpinus Baumg. | 2 | 2 | 2 | 1 | + | + | - | - |
Rhinanthus minor L. | - | - | - | - | + | + | + | + |
Campanula carpatica Jacq. | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 3 |
Stellaria media (L.) Vill. | - | - | - | - | 1 | 1 | 1 | 1 |
Erigeron Canadensis L. | 1 | 1 | 1 | 2 | + | + | + | + |
Carum carvi L. | + | + | - | + | - | - | - | - |
Leucanthemum vulgare Lam. | 6 | 6 | 6 | 5 | 5 | 5 | 4 | 5 |
Taraxacum officinale Weber ex Wigg. | + | + | - | - | 3 | 3 | 3 | 3 |
Daucus carota L. | 2 | 2 | 2 | 2 | + | + | + | + |
Hieracium viscidulum Tausch ex W.D.J.Koch | + | + | - | - | - | - | - | |
Pteridium aquilinum L. Kuhn | + | + | + | - | + | + | - | + |
Cirsium arvense (L.) Scop. | - | - | - | - | + | + | + | + |
Clinopodium vulgare L. | 7 | 7 | 7 | 6 | 4 | 4 | 3 | 4 |
Potentilla aurea L. | + | + | + | + | + | + | + | |
Potentilla argentea L. | + | + | 1 | + | 3 | 3 | 2 | 3 |
Galium rubioides L. | + | + | + | - | + | + | + | + |
Galium aparine L. | 2 | 2 | 2 | 1 | 2 | 2 | + | 2 |
Plantago lanceolata L. | - | - | - | - | + | + | - | - |
Equisetum sylvaticum L. | + | + | + | - | 1 | 1 | - | + |
Vaccinium myrtillus L. | + | + | - | - | + | + | - | - |
Total types, % | 25 | 25 | 24 | 20 | 23 | 25 | 20 | 27 |
Total types, pcs. | 18 | 17 | 14 | 11 | 23 | 23 | 15 | 17 |
Cyperacea ** | ||||||||
Carex montana L. | - | - | - | - | + | + | + | + |
Total types, pcs. | 32 | 32 | 24 | 20 | 41 | 41 | 29 | 28 |
Management Practices | Number of Types, pcs. | Total Sward Weight, % | |||||
---|---|---|---|---|---|---|---|
Annuals | Biennials | Perennials | Total | Annuals | Biennials | Perennials | |
Haymaking use | |||||||
Without fertilizers | 3 | 3 | 26 | 32 | 3 | 3 | 94 |
P30K60 | 3 | 3 | 26 | 32 | 3 | 3 | 94 |
N60P30K60 | 2 | 2 | 20 | 24 | 2 | 3 | 95 |
N60P30K60 + Poaceae | 1 | 3 | 16 | 20 | 2 | 4 | 94 |
Multipurpose use | |||||||
Without fertilizers | 5 | 3 | 33 | 41 | 3 | 3 | 94 |
P30K60 | 5 | 3 | 33 | 41 | 3 | 3 | 94 |
P30K60 + T. repens | 5 | 2 | 22 | 29 | 2 | 3 | 95 |
N60P30K60 | 5 | 3 | 20 | 28 | 2 | 4 | 94 |
Families | Haymaking Use | Multipurpose Use | Total Types | ||||||
---|---|---|---|---|---|---|---|---|---|
Without Fertilization | P30 K60 | N60 P30 K60 | N60P30K60 + Poaceae | Without Fertilization | P30 K60 | P30K60 + T. repens | N60 P30 K60 | ||
Asteraceae | 5 | 5 | 3 | 3 | 5 | 5 | 4 | 4 | 6 |
Araliaceae | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 |
Blechnaceae | 1 | - | - | - | - | - | - | - | 1 |
Fabaceae | 2 | 3 | 2 | - | 3 | 4 | 4 | 1 | 5 |
Vacciniaceae | 1 | 1 | - | - | 1 | 1 | - | - | 1 |
Caryophyllaceae | - | - | - | - | 1 | 1 | 1 | 1 | 1 |
Lamiaceae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Campanulaceae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Poaceae | 12 | 12 | 9 | 9 | 15 | 15 | 10 | 10 | 15 |
Apiaceae | 1 | 1 | - | - | - | - | - | - | 1 |
Rubiaceae | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 |
Hypolepidaceae | 1 | 1 | 1 | - | 1 | 1 | - | 1 | 1 |
Cyperaceae | - | - | - | - | 1 | 1 | 1 | 1 | 1 |
Plantaginaceae | - | - | - | - | 1 | 1 | - | - | 1 |
Scrophulariaceae | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 |
Rosaceae | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Equisetaceae | 1 | 1 | 1 | - | 1 | 1 | - | 1 | 1 |
Brassicaceae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Total families | 15 | 14 | 12 | 9 | 16 | 16 | 12 | 23 | 18 |
Total types | 33 | 33 | 25 | 20 | 40 | 41 | 29 | 27 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurhak, V.; Šarūnaitė, L.; Arlauskienė, A.; Karbivska, U.; Tkachenko, A. The Impact of Management Practices on the Stability of Meadow Communities on a Mountain Slope. Diversity 2023, 15, 605. https://doi.org/10.3390/d15050605
Kurhak V, Šarūnaitė L, Arlauskienė A, Karbivska U, Tkachenko A. The Impact of Management Practices on the Stability of Meadow Communities on a Mountain Slope. Diversity. 2023; 15(5):605. https://doi.org/10.3390/d15050605
Chicago/Turabian StyleKurhak, Volodymyr, Lina Šarūnaitė, Aušra Arlauskienė, Uliana Karbivska, and Anton Tkachenko. 2023. "The Impact of Management Practices on the Stability of Meadow Communities on a Mountain Slope" Diversity 15, no. 5: 605. https://doi.org/10.3390/d15050605
APA StyleKurhak, V., Šarūnaitė, L., Arlauskienė, A., Karbivska, U., & Tkachenko, A. (2023). The Impact of Management Practices on the Stability of Meadow Communities on a Mountain Slope. Diversity, 15(5), 605. https://doi.org/10.3390/d15050605