Plant Compartments Shape the Assembly and Network of Vallisneria natans-Associated Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Surface Sterilization
2.2. Microbial Genomic DNA Extraction, PCR, and Sequencing
2.3. Bioinformatics Analysis Process
2.4. Statistical Analysis
3. Results and Discussion
3.1. OTUs Distribution and Diversity
3.2. Taxonomic Composition Analysis at Different Levels
3.3. Specific and Shared Bacterial Assemblages
3.4. Co-Occurrence Network of Bacterial Communities in Different Plant Compartments
3.5. Functional Prediction of Bacterial Communities in Different Plant Compartments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plett, J.M.; Martin, F.M. Know your enemy, embrace your friend: Using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J. 2018, 93, 729–746. [Google Scholar] [CrossRef]
- Gao, T.; Shi, X.Y. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Arch. Microbiol. 2018, 200, 869–876. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Chandra, H.; Kalra, S.J.S.; Mishra, P.; Khan, H.; Yadav, P. Plant–microbe interaction in aquatic system and their role in the management of water quality: A review. Appl. Water Sci. 2016, 7, 1079–1090. [Google Scholar] [CrossRef]
- Lyu, Y.; Huang, R.; Zeng, J.; Wu, Q. Aquatic Macrophytes and Local Factors Drive Bacterial Community Distribution and Interactions in a Riparian Zone of Lake Taihu. Water 2020, 12, 432. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, M.; Tang, F.; Hu, Y.; Peng, X.; Shen, S. The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities. Appl. Microbiol. Biotechnol. 2020, 104, 3627–3641. [Google Scholar] [CrossRef]
- Muller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef]
- Edwards, J.; Johnson, C.; Santos-Medellin, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef]
- Hu, S.; He, R.; Wang, W.; Zhao, D.; Zeng, J.; Huang, R.; Duan, M.; Yu, Z. Composition and co-occurrence patterns of Phragmites australis rhizosphere bacterial community. Aquat. Ecol. 2021, 55, 695–710. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, X.; Zhang, H.; Yu, X.; Lian, Y.; Yang, X.; Yu, H.; Hu, R.; He, Z.; Xiao, F.; et al. Metagenomic insights into the effects of submerged plants on functional potential of microbial communities in wetland sediments. Mar. Life Sci. Technol. 2021, 3, 405–415. [Google Scholar] [CrossRef]
- Singh, A.; Vyas, D.; Malaviya, P. Two-stage phyto-microremediation of tannery effluent by Spirodela polyrrhiza (L.) Schleid. and chromium resistant bacteria. Bioresour. Technol. 2016, 216, 883–893. [Google Scholar] [CrossRef]
- Emilson, E.J.S.; Carson, M.A.; Yakimovich, K.M.; Osterholz, H.; Dittmar, T.; Gunn, J.M.; Mykytczuk, N.C.S.; Basiliko, N.; Tanentzap, A.J. Climate-driven shifts in sediment chemistry enhance methane production in northern lakes. Nat. Commun. 2018, 9, 1801. [Google Scholar] [CrossRef] [PubMed]
- Cregger, M.A.; Veach, A.M.; Yang, Z.K.; Crouch, M.J.; Vilgalys, R.; Tuskan, G.A.; Schadt, C.W. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 2018, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Mangeot-Peter, L.; Tschaplinski, T.J.; Engle, N.L.; Veneault-Fourrey, C.; Martin, F.; Deveau, A. Impacts of Soil Microbiome Variations on Root Colonization by Fungi and Bacteria and on the Metabolome of Populus tremula × alba. Phytobiomes J. 2020, 4, 142–155. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, W.; Zong, L.; Yang, J.; Jiao, S.; Lin, Y.; Wang, E.; Wei, G. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol. Ecol. 2017, 26, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, H.; Strong, P.J.; Li, Z.; Jiang, P. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration. Earth-Sci. Rev. 2012, 115, 319–331. [Google Scholar] [CrossRef]
- Andrade, G.V.S.; Rodrigues, F.A.; Nadal, M.C.; Dambroz, C.M.S.; Martins, A.D.; Rodrigues, V.A.; Ferreira, G.M.R.; Pasqual, M.; Buttros, V.H.; D’oria, J. Plant-endophytic bacteria interactions associated with root and leaf microbiomes of Cattleya walkeriana and their effect on plant growth. Sci. Hortic. 2023, 309, 111656. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Santoyo, G. Plant-microbial endophytes interactions: Scrutinizing their beneficial mechanisms from genomic explorations. Curr. Plant Biol. 2021, 25, 100189. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Compant, S.; Duffy, B.; Nowak, J.; Cle´ment, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef]
- Peng, H.; Ge, D.; Yuan, G.; Zou, D.; Fu, H.; Jeppesen, E. Effect of clonal fragmentation on the growth of Vallisneria natans (Lour.) Hara at contrasting nutrient and light conditions. Hydrobiologia 2021, 848, 903–912. [Google Scholar] [CrossRef]
- Huang, S.; Song, Q.; Li, Q.; Zhang, H.; Luo, X.; Zheng, Z. Damage of heavy metals to Vallisneria natans (V. natans) and characterization of microbial community in biofilm. Aquat. Toxicol. 2020, 225, 105515. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, L.; Wu, Z. Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare. Environ. Sci. Pollut. Res. Int. 2021, 28, 62549–62561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, S.; Huang, R.; Zeng, J.; Huang, F.; Yu, Z. Diversity and composition of bacterial community in the rhizosphere sediments of submerged macrophytes revealed by 454 pyrosequencing. Ann. Microbiol. 2017, 67, 313–319. [Google Scholar] [CrossRef]
- Yan, H.; Yan, Z.; Wang, L.; Hao, Z.; Huang, J. Toward understanding submersed macrophyte Vallisneria natans-microbe partnerships to improve remediation potential for PAH-contaminated sediment. J. Hazard. Mater. 2022, 425, 127767. [Google Scholar] [CrossRef]
- Zhang, X.; He, R.; Su, R.; Zeng, J.; Zhou, Q.; Huang, R.; Zhao, D.; Guo, L.; He, F.; Yu, Z. Composition and co-occurrence network of the rhizosphere bacterial community of two emergent macrophytes and implications for phytoremediation. Mar. Freshw. Res. 2021, 72, 1053–1064. [Google Scholar] [CrossRef]
- He, R.; Zeng, J.; Zhao, D.; Huang, R.; Yu, Z.; Wu, Q. Contrasting Patterns in Diversity and Community Assembly of Phragmites australis Root-Associated Bacterial Communities from Different Seasons. Appl. Environ. Microbiol. 2020, 86, e00379-20. [Google Scholar] [CrossRef]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Chen, W.M.; Tang, Y.Q.; Mori, K.; Wu, X.L. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat. Biol. 2012, 15, 99–110. [Google Scholar] [CrossRef]
- Feng, J.; Cui, B.; Yuan, B.; Zhang, L.; Zhang, J.; Zhang, A.; Han, X.; Pan, L. Purification Mechanism of Low-Pollution Water in Three Submerged Plants and Analysis of Bacterial Community Structure in Plant Rhizospheres. Environ. Eng. Sci. 2020, 37, 560–571. [Google Scholar] [CrossRef]
- Shi, L.; Xia, P.; Lin, T.; Li, G.; Wang, T.; Du, X. Temporal Succession of Bacterial Community Structure, Co-occurrence Patterns, and Community Assembly Process in Epiphytic Biofilms of Submerged Plants in a Plateau Lake. Microb. Ecol. 2023, 85, 87–99. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Putten, W.H.V.D. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wu, M.; Che, Y.; Kong, Y.; Wang, Q.; Sha, W.; Gong, Z.; Zhou, J. Effects of shining pondweed (Potamogeton lucens) on bacterial communities in water and rhizosphere sediments in Nansi Lake, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 51665–51673. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, S.; Zhang, Y.; Liu, B.; Zeng, L.; He, F.; Zhou, Q.; Wu, Z. Effects of Planted Versus Naturally Growing Vallisneria natans on the Sediment Microbial Community in West Lake, China. Microb. Ecol. 2017, 74, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hao, B.; Cai, Y.; Liu, G.; Xing, W. Effects of submerged vegetation on sediment nitrogen-cycling bacterial communities in Honghu Lake (China). Sci. Total Environ. 2021, 755, 142541. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, K.; Li, K.; Jin, Y.; He, X. Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. Sci. Total Environ. 2022, 838, 156334. [Google Scholar] [CrossRef]
- Chang, W.; Sun, J.; Pang, Y.; Zhang, S.; Gong, L.; Lu, J.; Feng, B.; Xu, R. Effects of different habitats on the bacterial community composition in the water and sediments of Lake Taihu, China. Environ. Sci. Pollut. Res. Int. 2020, 27, 44983–44994. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, H.; Ngo, H.H.; Guo, W.; Zhang, J.; Liu, C.; Liang, S.; Hu, Z.; Yang, Z.; Zhao, C. Microbial abundance and community in subsurface flow constructed wetland microcosms: Role of plant presence. Environ. Sci. Pollut. Res. Int. 2016, 23, 4036–4045. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Zhang, Y.; Liu, B.; He, F.; Zhou, Q.; Wu, Z. Bacterial Communities and Their Predicted Functions Explain the Sediment Nitrogen Changes Along with Submerged Macrophyte Restoration. Microb. Ecol. 2018, 76, 625–636. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, Y.; Kong, L.; Bai, G.; Liu, Z.; Wang, C.; Ding, Z.; He, F.; Wu, Z.; Zhang, Y. Effects of bentonite on the growth process of submerged macrophytes and sediment microenvironment. J. Environ. Manag. 2021, 287, 112308. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, H.; Yang, J.R.; Liu, M.; Huang, B.; Yang, J. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 2018, 12, 2263–2277. [Google Scholar] [CrossRef]
- Jiao, C.; Zhao, D.; Zeng, J.; Guo, L.; Yu, Z. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. Sci. Total Environ. 2020, 740, 140010. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Wang, C.; Wang, Z.; Huang, X.; Zhou, F.; Yan, S.; Liu, X. Differences between the effects of plant species and compartments on microbiome composition in two halophyte Suaeda species. Bioengineered 2022, 13, 12475–12488. [Google Scholar] [CrossRef] [PubMed]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 2017, 25, 217–228. [Google Scholar] [CrossRef]
- Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 2016, 19, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Ma, G.; Chen, S.; Zhao, X. Microbial Network and Soil Properties Are Changed in Bacterial Wilt-Susceptible Soil. Appl. Environ. Microbiol. 2019, 85, e00162-19. [Google Scholar] [CrossRef]
- Wan, X.; Gao, Q.; Zhao, J.; Feng, J.; Nostrand, J.D.V.; Yang, Y.; Zhou, J. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol. Biochem. 2020, 142, 107696. [Google Scholar] [CrossRef]
- Zheng, W.; Wen, X. How exogenous influent communities and environmental conditions affect activated sludge communities in the membrane bioreactor of a wastewater treatment plant. Sci. Total Environ. 2019, 692, 622–630. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Z.; Zhang, P.; Du, J.; Gao, P.; Zhang, Z. Diversity and Structure of Vegetation Rhizosphere Bacterial Community in Various Habitats of Liaohekou Coastal Wetlands. Sustainability 2022, 14, 16396. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y.; Feng, K.; Li, S.; Wang, S.; Jin, D.; Zhang, Y.; Chen, H.; Yin, H.; Xu, M.; et al. The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci. Total Environ. 2018, 628–629, 969–978. [Google Scholar] [CrossRef]
- Gorke, B.; Stulke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008, 6, 613–624. [Google Scholar] [CrossRef]
- Lucchetti, R.; Onotri, L.; Clarizia, L.; Natale, F.D.; Somma, I.D.; Andreozzi, R.; Marotta, R. Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over “in situ” prepared zero-valent nano copper/P25. Appl. Catal. B Environ. 2017, 202, 539–549. [Google Scholar] [CrossRef]
- Linz, A.M.; He, S.; Stevens, S.L.R.; Anantharaman, K.; Rohwer, R.R.; Malmstrom, R.R.; Bertilsson, S.; McMahon, K.D. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 2018, 6, e6075. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Z.; Jiang, M.Z.; Zhou, N.; Jiang, C.Y.; Liu, S.J. Submerged macrophytes recruit unique microbial communities and drive functional zonation in an aquatic system. Appl. Microbiol. Biotechnol. 2021, 105, 7517–7528. [Google Scholar] [CrossRef] [PubMed]
Compartment | OTUs Number | Coverage | Chao1 | Shannon |
---|---|---|---|---|
Sediment | 774 | 0.998 | 755.950 ± 7.417 | 5.455 ± 0.028 |
Rhizosphere | 730 | 0.994 | 722.446 ± 28.159 | 3.882 ± 0.121 |
Rhizoplane | 747 | 0.994 | 709.794 ± 54.305 | 3.969 ± 0.124 |
Root endosphere | 535 | 0.996 | 515.799 ± 44.392 | 4.050 ± 0.350 |
Leaf endosphere | 325 | 0.997 | 311.312 ± 51.223 | 2.546 ± 0.444 |
Niche | Nodes | Edges | Average Degree | Modularity a | Average Clustering Coefficient b | Average Path Distance c |
---|---|---|---|---|---|---|
Sediment | 516 | 3437 | 13.322 | 0.903 | 0.773 | 10.901 |
Rhizosphere | 197 | 3012 | 30.579 | 0.669 | 0.806 | 4.673 |
Rhizoplane | 185 | 2958 | 33.059 | 0.643 | 0.795 | 3.443 |
Root endosphere | 154 | 2883 | 37.442 | 0.551 | 0.804 | 2.628 |
Leaf endosphere | 86 | 781 | 18.163 | 0.570 | 0.768 | 2.773 |
Phylum/Class | Sediment | Rhizosphere | Rhizoplane | Root Endosphere | Leaf Endosphere |
---|---|---|---|---|---|
Alphaproteobacteria | 10.40% | 13.08% | 26.05% | 46.98% | 26.70% |
Gammaproteobacteria | 22.74% | 56.14% | 43.95% | 42.19% | 22.88% |
Bacteroidetes | 1.50% | 17.91% | 15.90% | 8.12% | 46.66% |
Actinobacteria | 24.93% | 3.26% | 3.63% | 1.23% | 0.79% |
Firmicutes | 6.99% | 8.01% | 9.36% | 0.60% | 2.97% |
Desulfobacterota | 9.75% | 0.61% | 0.09% | 0 | 0 |
Chloroflexi | 6.95% | 0.40% | 0.61% | 0.32% | 0 |
Others | 16.73% | 0.59% | 0.41% | 0.56% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Zhang, S.; Zhou, Z.; Chen, S. Plant Compartments Shape the Assembly and Network of Vallisneria natans-Associated Microorganisms. Diversity 2023, 15, 676. https://doi.org/10.3390/d15050676
Wan L, Zhang S, Zhou Z, Chen S. Plant Compartments Shape the Assembly and Network of Vallisneria natans-Associated Microorganisms. Diversity. 2023; 15(5):676. https://doi.org/10.3390/d15050676
Chicago/Turabian StyleWan, Linqiang, Siyong Zhang, Zhongze Zhou, and Shuyi Chen. 2023. "Plant Compartments Shape the Assembly and Network of Vallisneria natans-Associated Microorganisms" Diversity 15, no. 5: 676. https://doi.org/10.3390/d15050676
APA StyleWan, L., Zhang, S., Zhou, Z., & Chen, S. (2023). Plant Compartments Shape the Assembly and Network of Vallisneria natans-Associated Microorganisms. Diversity, 15(5), 676. https://doi.org/10.3390/d15050676