Responses of Bird Communities to Habitat Structure along an Aridity Gradient in the Steppes North of the Sahara
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methods
2.3. Data Analyses
Spring | Winter | |||||
---|---|---|---|---|---|---|
Species | Status | Diet | ni | pi | ni | pi |
Cursorius cursor | N | I | 3 | 0.00 | 0 | 0.00 |
Pterocles orientalis | R | G | 6 | 0.01 | 0 | 0.00 |
Alaemon alaudipes | N | I | 3 | 0.00 | 12 | 0.01 |
Chersophilus duponti | R | I | 2 | 0.00 | 1 | 0.00 |
Ammomanes cinctura | R | G | 36 | 0.05 | 68 | 0.05 |
Ammomanes deserti | R | M | 1 | 0.00 | 0 | 0.00 |
Ramphocoris clotbey | N | G | 14 | 0.02 | 57 | 0.04 |
Melanocorhypha calandra | R | G | 108 | 0.16 | 181 | 0.14 |
Calandrella brachydactyla | S | M | 106 | 0.16 | 0 | 0.00 |
Calandrella rufescens | R | M | 135 | 0.20 | 185 | 0.14 |
Eremophila bilopha | R | G | 107 | 0.16 | 258 | 0.20 |
Galerida cristata | R | M | 35 | 0.05 | 57 | 0.04 |
Galerida theklae | R | M | 13 | 0.02 | 39 | 0.03 |
Alauda arvensis | R | M | 12 | 0.02 | 27 | 0.02 |
Anthus pratensis | W | I | 0 | 0.00 | 3 | 0.00 |
Motacilla alba | S | I | 2 | 0.00 | 0 | 0.00 |
Oenenthe deserti | S | I | 5 | 0.01 | 0 | 0.00 |
Oenanthe hispanica | S | I | 3 | 0.00 | 0 | 0.00 |
Oenanthe leucura | R | I | 1 | 0.00 | 0 | 0.00 |
Oenanthe moesta | R | I | 18 | 0.03 | 8 | 0.01 |
Oenanthe oenanthe | S | I | 2 | 0.00 | 0 | 0.00 |
Saxicola rubetra | W | I | 2 | 0.00 | 0 | 0.00 |
Lanius excubitor | W | I | 0 | 0.00 | 1 | 0.00 |
Lanius senator | S | I | 1 | 0.00 | 0 | 0.00 |
Passer domesticus | W | G | 0 | 0.00 | 5 | 0.00 |
Passer hispaniolensis | R | M | 40 | 0.06 | 0 | 0.00 |
Bucanetes githagineus | N | G | 2 | 0.00 | 410 | 0.31 |
Emberiza calandra | R | G | 2 | 0.00 | 2 | 0.00 |
N° birds | 659 | 1314 | ||||
N° transects | 83 | 84 | ||||
Mean density/transect ± s.d. | 7.67 ± 11.3 | 31.28 ± 46.4 | ||||
Richness (S) | 25 | 16 | ||||
Mean richness/transect ± s.d. | 1.92 ± 1.61 | 1.78 ± 1.45 | ||||
Shannon’s diversity (H’) | 1.00 | 0.85 | ||||
Simpson’s diversity (D1) | 0.86 | 0.81 | ||||
Simpson’s dominance (D2) | 7.53 | 5.47 | ||||
Simpson’s evenness (E) | 7.49 | 6.39 | ||||
Simpson-based dissimilarity (βSIM) | 0.19 |
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiens, J.A. The Ecology of Bird Communities; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Wiens, J.A. Habitat heterogeneity and avian community structure in North American Grasslands. Am. Midl. Nat. 1974, 91, 195–213. [Google Scholar] [CrossRef]
- Rotenberry, J.T. Components of avian diversity along a multifactorial climatic gradient. Ecology 1978, 59, 693–699. [Google Scholar] [CrossRef]
- Naranjo, L.G.; Raitt, R.J. Breeding bird distribution in Chihuahuan desert habitats. Southwest. Nat. 1993, 38, 43–51. [Google Scholar] [CrossRef]
- Kaboli, M.; Guillaumet, A.; Prodon, R. Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate and topography. J. Biogeogr. 2006, 33, 133–144. [Google Scholar] [CrossRef]
- Cody, M.L. Mulga bird communities. I. Species composition and predictability across Australia. Aust. J. Ecol. 1974, 19, 206–219. [Google Scholar] [CrossRef]
- Tomoff, C.S. Avian species diversity in desert scrub. Ecology 1974, 55, 396–403. [Google Scholar] [CrossRef]
- Rotenberry, J.T. The role of habitat in avian community composition: Physiognomy or floristics? Oecologia 1985, 67, 213–217. [Google Scholar] [CrossRef]
- Recher, H.F.; Davis, W.E., Jr. Foraging ecology of a mulga bird community. Wildl. Res. 1997, 24, 27–43. [Google Scholar] [CrossRef]
- Pavel, C.R.; Nano, C.E.M. Bird assemblages of arid Australia: Vegetation patterns have a greater effect than disturbance and resource pulses. J. Arid. Environ. 2009, 73, 634–642. [Google Scholar] [CrossRef]
- Le Houérou, H.N.; Bingham, R.L.; Skerbek, W. Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J. Arid. Environ. 1988, 15, 1–18. [Google Scholar] [CrossRef]
- Dean, W.R.J.; Hockey, P.A.R. An ecological perspective of lark (Alaudidae) distribution and diversity in the southwest-arid zone of Africa. Ostrich 1989, 60, 27–34. [Google Scholar] [CrossRef]
- Dean, W.R.J. Nomadic Desert Birds; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Tellería, J.L.; Santos, T.; Suárez, F. Bird communities of the Iberian shrubsteppes: Seasonality and structure along a climatic gradient. Holartic Ecol. 1988, 11, 171–177. [Google Scholar]
- Lorenzón, R.E.; Beltzer, A.H.; Olguin, P.F.; Ronchi-Virgolini, A.L. Habitat heterogeneity drives bird species richness, nestedness and habitat selection by individual species in fluvial wetlands of the Paraná River, Argentina. Austral Ecol. 2016, 41, 829–841. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proc. Natl. Acad. Sci. USA 2010, 4, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Salazar, C.; Martínez-Meyer, E.; López-Santiago, G. A hierarchical classification of trophic guilds for North American birds and mammals. Rev. Mex. Biodivers. 2014, 85, 931–941. [Google Scholar] [CrossRef]
- García, J.T.; Suárez, F.; Garza, V.; Calero-Riestra, M.; Hernández, J.; Pérez-Tris, J. Genetic and phenotypic variation among geographically isolated populations of the globally threatened Dupont’s lark Chersophilus duponti. Mol. Phylogenet. Evol. 2008, 46, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Guillaumet, A.; Crochet, P.A.; Godelle, B. Phenotipic variation in Galerida larks in Morrocco: The role of history and natural selection. Mol. Ecol. 2004, 14, 3809–3821. [Google Scholar] [CrossRef]
- Guillaumet, A.; Pons, J.M.; Godelle, B.; Crochet, P.A. History of the Crested Lark in the Mediterranean region as reveales by mtDNA sequences and morphology. Mol. Phylogenet. Evol. 2006, 39, 645–656. [Google Scholar] [CrossRef]
- Meiri, S.; Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 2003, 30, 331–351. [Google Scholar] [CrossRef]
- Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 2005, 8, 224–239. [Google Scholar] [CrossRef]
- De Martonne, E. Une nouvelle fonction climatologique: L’ indice d’aridité. Météorologie 1926, 2, 449–458. [Google Scholar]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2002, 9, 409. [Google Scholar] [CrossRef]
- Bechchari, A.; El Aich, A.; Mahyou, H.; Baghdad, B.; Bendaou, M. Analyse de l’évolution du système pastoral du Maroc oriental. Rev. Élev. Méd. Vét. Pays Trop. 2015, 67, 151–162. [Google Scholar] [CrossRef] [Green Version]
- El Harradji, A. Aménagement, érosion et désertification sur les Hauts-Plateaux du Maroc oriental. Méditerranée 1997, 86, 15–23. [Google Scholar] [CrossRef]
- Ben El Mostafa, S.; Haloui, B.; Berrichi, A. Contribution à l’étude de la végétation steppique du Maroc oriental: Transect Jerrada—Figuig. Acta Bot. Malacit. 2001, 6, 295–301. [Google Scholar] [CrossRef]
- INRA-ONUDI. Etude sur la Situation de Référence au Niveau des Hauts Plateaux du Maroc Oriental. Rapport Final. Projet de Lutte Participative Contre la Désertification et de Réduction de la Pauvreté dans les Écosystèmes Arides et Semi Arides des Hauts Plateaux du Maroc Oriental; Centre Régional de La Recherche Agronomique d’Oujda: Oujda, Morocco, 2012. [Google Scholar]
- Bibby, C.J.; Burgess, N.D.; Hill, D. A. Bird Census Techniques; Academic Press: London, UK, 1992. [Google Scholar]
- Weathers, W.W.; Mayhew, W.W. Time of day and desert bird censuses. West. Birds 1981, 12, 157–172. [Google Scholar]
- Prodon, R.; Lebreton, J.D. Breeding avifauna of a Mediterranean succession: The holm oak and cork oak series in eastern Pyrenees. 1. Analysis and modelling of the structure gradient. Oikos 1981, 37, 21–38. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C. A mathematical theory of communication. Bell Syst. Technol. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. Let. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Lennon, J.J.; Koleff, P.; Greenwood, J.J.D.; Gaston, K.J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 2001, 70, 966–979. [Google Scholar] [CrossRef] [Green Version]
- De Juana, E.; Suárez, F.; Ryan, P. Family Alaudidae (Larks). In Handbook of the Birds of the World, Cotingas to Pipits and Wagtails; Del Hoyo, J., Elliott, A., Christie, D., Eds.; Lynx Edicions: Barcelona, Spain, 2005; Volume 9, pp. 496–601. [Google Scholar]
- Crawley, M.J. The R Book; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 8.0. 2007. Available online: www.statsoft.com (accessed on 25 May 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 25 May 2023).
- Thévenot, M.; Vernon, R.; Bergier, P. The Birds of Morocco; BOU Checklist nº 20; British Ornithologist’ Union-British Ornithologists’ Club: Tring, UK, 2003. [Google Scholar]
- Heezik, Y.V.; Seddon, P.J. Effects of season and habitat on bird abundance and diversity in a steppe desert, northern Saudi Arabia. J. Arid. Environ. 1999, 43, 310–317. [Google Scholar] [CrossRef]
- Santos, T.; Tellería, J.L. Patrones generales de la distribución invernal de passeriformes en la Península Ibérica. Ardeola 1985, 32, 17–30. [Google Scholar]
- Heatwole, H.; Muir, R. Population densities, biomass and trophic relations of birds in the pre Saharan steppe of Tunisia. J. Arid. Environ. 1982, 5, 145–167. [Google Scholar] [CrossRef]
- Blondel, J. Donnés écologiques sur l’avifaune des Monts des Ksours (Sahara septentrional). Terre Vie 1962, 16, 209–251. [Google Scholar]
- Suárez, F. Introducción al estudio de las comunidades de aves reproductoras de los espartales norteafricanos. Bol. Estac. Cent. Ecol. 1985, 28, 29–34. [Google Scholar]
- Mahyou, H.; Tychon, B.; Balaghi, R.; Louhaichi, M.; Mimouni, J. A knowledge-based approach for mapping land degradation in the arid rangelands of North Africa. Land Degrad. Dev. 2016, 27, 1574–1585. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Classification écoclimatique des zones arides (s.l.) de l’Afrique du Nord. Ecol. Mediterr. 1989, 15, 95–146. [Google Scholar] [CrossRef]
- Jenkins, M.F.; White, E.P.; Hurlbert, A.H. The proportion of core species in a community varies with spatial scale and environmental heterogeneity. PeerJ 2018, 6, e6019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegen, J.C.; Freestone, A.L.; Crist, T.O.; Anderson, M.J.; Chase, J.M.; Comita, L.S. Vellend M. Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob. Ecol. Biogeogr. 2013, 22, 202–212. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, R.G.; Orme, C.; David, L.; Olson, V.A.; Thomas, G.H.; Ding, T.S.; Rasmussen, P.C.; Lennon, J.J.; Bennett, P.M.; et al. Spatial turnover in the global avifauna. Proc. R. Soc. B 2007, 274, 1567–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantrud, H.A.; Kologiski, R.L. Avian associations of the northern Great plains grasslands. J. Biogeogr. 1983, 10, 331–350. [Google Scholar] [CrossRef]
- Van der Haegen, W.M.; Dobler, F.C.; Price, D.J. Shrubsteppe bird reponse to habitat and landscape variables in Eastern Washington, USA. Conserv. Biol. 2000, 14, 1145–1160. [Google Scholar] [CrossRef] [Green Version]
- Rotenberry, J.T.; Wiens, J.A. Habitat structure, patchiness, and avian communities in North American steppe vegetation: A multivariate analysis. Ecology 1980, 61, 1228–1250. [Google Scholar] [CrossRef]
- Wiens, J.A.; Rotenberry, J.T. Habitat associations and community structure of birds in shrubsteppe environments. Ecol. Monogr. 1981, 51, 21–41. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Biogeography of the arid steppeland north of the Sahara. J. Arid. Environ. 2001, 48, 103–128. [Google Scholar] [CrossRef]
- Suárez, F.; Fernández, A.; de Lope, M.J. Note sur les effects de l’aridité sur la structure et la composition des communautes de Passeriformes des hauts-plateaux a alpha (Stipa tennacissima) au Maroc. Bull. Inst. Sci. Rabat 1986, 10, 185–192. [Google Scholar]
- Bechchari, A.; El Aich, A.; Mahyou, H.; Baghdad, B.; Bendaou, M. Study of the degradation of steppic rangelands in Béni Mathar and Maâtarka communes (northeastern of Morocco). J. Mater. Environ. Sci. 2014, 5, 2572–2583. [Google Scholar]
- García, J.T.; Suárez, F.; Garza, V.; Justribó, J.H.; Oñate, J.J.; Hervás, I.; Calero, M.; García de la Morena, E.L. Assessing the Distribution, Habitat, and Population Size of the Threatened Dupont’s Lark Chersophilus Duponti in Morocco: Lessons for Conservation. Oryx 2008, 42, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Brosset, A. L’évolution récente de l’avifaune du nord-est marocain: Perte et gains depuis 35 ans. Rev. Écol. 1990, 45, 237–245. [Google Scholar] [CrossRef]
Variable | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Latitude | 0.13 | 0.78 | −0.01 | −0.11 | −0.26 |
Elevation | 0.05 | −0.66 | 0.11 | −0.02 | 0.24 |
Slope | 0.12 | 0.00 | 0.15 | 0.15 | 0.67 |
Rocks cover | −0.10 | −0.06 | 0.00 | 0.04 | 0.79 |
Pebble cover | −0.07 | −0.30 | 0.10 | −0.21 | 0.65 |
Sand cover | −0.05 | −0.77 | 0.08 | −0.14 | −0.30 |
Silty loam cover | −0.08 | 0.80 | −0.03 | 0.00 | −0.20 |
Herb cover1 | −0.17 | 0.19 | 0.00 | 0.71 | 0.18 |
Herb cover20 | 0.01 | 0.04 | 0.03 | 0.94 | −0.03 |
Herb cover40 | 0.05 | −0.05 | −0.01 | 0.90 | −0.07 |
Shrub cover0 | −0.04 | 0.10 | −0.92 | −0.06 | −0.04 |
Shrub cover20 | 0.00 | 0.08 | −0.94 | −0.05 | −0.10 |
Shrub cover40 | 0.01 | −0.03 | −0.74 | 0.05 | −0.08 |
Alfa cover0 | 0.93 | −0.01 | 0.14 | −0.12 | 0.09 |
Alfa cover 20 | 0.95 | 0.03 | 0.12 | −0.12 | 0.07 |
Alfa cover 40 | 0.92 | 0.16 | 0.11 | −0.10 | 0.04 |
Vegetation heightmax | 0.80 | −0.21 | −0.24 | 0.14 | −0.11 |
Vegetation heightmode | 0.87 | −0.08 | −0.15 | 0.08 | −0.17 |
Crops cover | −0.19 | 0.66 | 0.12 | 0.38 | 0.17 |
Eigenvalue | 4.22 | 3.26 | 2.71 | 2.21 | 1.57 |
Total variance (%) | 22.20 | 17.17 | 14.25 | 11.64 | 8.26 |
Cumulative variance | 22.20 | 39.37 | 53.62 | 65.25 | 73.52 |
Component | Effects | df | MS | F | p-Value |
---|---|---|---|---|---|
PC1 | Season | 1 | 0.0003 | 0.000 | 0.98 |
Survey (Season) | 2 | 0.6813 | 0.674 | 0.51 | |
Standard error | 163 | 1.0100 | |||
PC2 | Season | 1 | 1.5078 | 1.517 | 0.21 |
Survey (Season) | 2 | 1.2878 | 1.295 | 0.27 | |
Standard error | 163 | 0.9939 | |||
PC3 | Season | 1 | 0.1474 | 0.146 | 0.70 |
Survey (Season) | 2 | 0.7412 | 0.734 | 0.48 | |
Standard error | 163 | 1.0086 | |||
PC4 | Season | 1 | 5.0300 | 5.176 | 0.02 |
Survey (Season) | 2 | 1.3615 | 1.401 | 0.25 | |
Standard error | 163 | 0.9716 | |||
PC5 | Season | 1 | 5.7674 | 7.323 | 0.007 |
Survey (Season) | 2 | 16.147 | 20.50 | <0.001 | |
Standard error | 163 | 0.7874 |
Spring | Winter | |||||||
---|---|---|---|---|---|---|---|---|
Group | Estimate | SE | Z-Value | Estimate | SE | Z-Value | ||
Granivores | ||||||||
Intercept | −0.207 | 0.180 | −1.15 | 0.146 | 0.153 | 0.95 | ||
Survey | −0.385 | 0.323 | −1.19 | −0.284 | 0.240 | −1.18 | ||
PC1 | −0.234 | 0.220 | 1.06 | −0.289 | 0.171 | −1.68 | ^ | |
PC2 | −0.038 | 0.131 | −0.29 | −0.175 | 0.120 | −1.46 | ||
PC3 | 0.001 | 0.177 | 0.00 | −0.045 | 0.093 | −0.48 | ||
PC4 | 0.183 | 0.072 | 2.53 | * | 0.342 | 0.187 | 1.83 | ^ |
PC5 | 0.075 | 0.140 | 0.54 | 0.194 | 0.103 | 1.89 | ^ | |
Mixed diet | ||||||||
Intercept | −0.117 | 0.177 | −0.66 | −1.036 | 0.282 | −3.66 | *** | |
Survey | −0.703 | 0.337 | −2.08 | * | 0.302 | 0.314 | 0.96 | |
PC1 | −0.127 | 0.177 | −0.71 | 0.168 | 0.096 | 1.74 | ^ | |
PC2 | 0.510 | 0.133 | 3.82 | *** | 0.693 | 0.188 | 3.68 | *** |
PC3 | −0.237 | 0.154 | −1.54 | −0.167 | 0.088 | −1.89 | ^ | |
PC4 | 0.254 | 0.071 | 3.59 | *** | 0.497 | 0.204 | 2.44 | * |
PC5 | 0.049 | 0.155 | 0.32 | 0.213 | 0.151 | 1.40 | ||
Insectivores | ||||||||
Intercept | −1.022 | 0.270 | −3.78 | *** | −1.634 | 0.388 | −4.21 | *** |
Survey | 0.009 | 0.451 | 0.02 | −0.037 | 0.463 | −0.08 | ||
PC1 | −0.251 | 0.318 | −0.78 | −0.033 | 0.211 | −0.15 | ||
PC2 | 0.109 | 0.178 | 0.61 | 0.136 | 0.228 | 0.59 | ||
PC3 | −0.325 | 0.207 | −1.56 | −0.008 | 0.185 | −0.04 | ||
PC4 | 0.173 | 0.094 | 1.83 | ^ | −0.476 | 0.655 | −0.72 | |
PC5 | −0.316 | 0.244 | −1.29 | −0.320 | 0.359 | −0.89 | ||
Total richness | ||||||||
Intercept | 0.775 | 0.111 | 6.97 | *** | 0.676 | 0.115 | 5.86 | *** |
Survey | −0.444 | 0.205 | −2.16 | * | −0.143 | 0.171 | −0.83 | |
PC1 | −0.196 | 0.127 | −1.53 | −0.021 | 0.076 | −0.27 | ||
PC2 | 0.212 | 0.080 | 2.63 | ** | 0.118 | 0.086 | 1.37 | |
PC3 | −0.158 | 0.101 | −1.57 | −0.075 | 0.059 | −1.26 | ||
PC4 | 0.209 | 0.044 | 4.76 | *** | 0.313 | 0.133 | 2.35 | * |
PC5 | −0.012 | 0.095 | −0.13 | 0.154 | 0.084 | 1.84 | ^ |
Spring | Winter | |||||||
---|---|---|---|---|---|---|---|---|
Group | Estimate | SE | Z-Value | Estimate | SE | Z-Value | ||
Granivores | ||||||||
Intercept | 1.996 | 0.207 | 9.64 | *** | 3.094 | 0.285 | 10.85 | *** |
Survey | −0.823 | 0.379 | −2.17 | * | 0.082 | 0.398 | 0.20 | |
PC1 | −0.342 | 0.278 | −1.22 | −0.079 | 0.223 | −0.35 | ||
PC2 | 0.285 | 0.154 | 1.84 | ^ | −0.448 | 0.210 | −2.13 | * |
PC3 | 0.027 | 0.224 | 0.12 | 0.338 | 0.280 | 1.20 | ||
PC4 | 0.309 | 0.078 | 3.95 | *** | 0.625 | 0.271 | 2.30 | * |
PC5 | 0.352 | 0.143 | 2.46 | * | 0.217 | 0.159 | 1.36 | |
Mixed diet | ||||||||
Intercept | 2.114 | 0.265 | 7.96 | *** | 1.439 | 0.395 | 3.64 | *** |
Survey | −1.479 | 0.536 | −2.76 | ** | 0.140 | 0.418 | 0.33 | |
PC1 | −0.363 | 0.340 | −1.06 | 0.262 | 0.136 | 1.91 | ^ | |
PC2 | 0.837 | 0.196 | 4.26 | *** | 0.752 | 0.260 | 2.89 | ** |
PC3 | −0.396 | 0.206 | −1.91 | ^ | −0.244 | 0.113 | −2.15 | * |
PC4 | 0.364 | 0.100 | 3.62 | *** | 0.760 | 0.280 | 2.71 | ** |
PC5 | −0.101 | 0.269 | −0.37 | −0.345 | 0.361 | −0.95 | ||
Insectivores | ||||||||
Intercept | −0.267 | 0.283 | −0.94 | −0.585 | 0.368 | −1.58 | ||
Survey | 0.314 | 0.437 | 0.72 | −0.150 | 0.475 | −0.31 | ||
PC1 | −0.351 | 0.353 | −0.99 | −0.049 | 0.218 | −0.22 | ||
PC2 | 0.094 | 0.177 | 0.53 | 0.114 | 0.234 | 0.49 | ||
PC3 | −0.374 | 0.211 | −1.77 | ^ | −0.105 | 0.157 | −0.66 | |
PC4 | 0.183 | 0.089 | 2.05 | * | −0.397 | 0.618 | −0.64 | |
PC5 | −0.427 | 0.248 | −1.72 | ^ | −0.102 | 0.319 | −0.32 | |
Total density | ||||||||
Intercept | 2.923 | 0.159 | 18.33 | *** | 3.523 | 0.222 | 15.83 | *** |
Survey | −1.101 | 0.318 | −3.46 | *** | −0.029 | 0.333 | −0.09 | |
PC1 | −0.388 | 0.229 | −1.69 | ^ | 0.042 | 0.148 | 0.28 | |
PC2 | 0.545 | 0.122 | 4.43 | *** | −0.138 | 0.168 | −0.82 | |
PC3 | −0.234 | 0.151 | −1.55 | 0.035 | 0.148 | 0.24 | ||
PC4 | 0.324 | 0.064 | 5.06 | *** | 0.582 | 0.228 | 2.55 | * |
PC5 | 0.142 | 0.138 | 1.02 | 0.146 | 0.156 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oñate, J.J.; Suárez, F.; Calero-Riestra, M.; Justribó, J.H.; Hervás, I.; de la Morena, E.L.G.; Ramírez, Á.; Viñuela, J.; García, J.T. Responses of Bird Communities to Habitat Structure along an Aridity Gradient in the Steppes North of the Sahara. Diversity 2023, 15, 737. https://doi.org/10.3390/d15060737
Oñate JJ, Suárez F, Calero-Riestra M, Justribó JH, Hervás I, de la Morena ELG, Ramírez Á, Viñuela J, García JT. Responses of Bird Communities to Habitat Structure along an Aridity Gradient in the Steppes North of the Sahara. Diversity. 2023; 15(6):737. https://doi.org/10.3390/d15060737
Chicago/Turabian StyleOñate, Juan J., Francisco Suárez, María Calero-Riestra, Jorge H. Justribó, Israel Hervás, Eladio L. García de la Morena, Álvaro Ramírez, Javier Viñuela, and Jesús T. García. 2023. "Responses of Bird Communities to Habitat Structure along an Aridity Gradient in the Steppes North of the Sahara" Diversity 15, no. 6: 737. https://doi.org/10.3390/d15060737
APA StyleOñate, J. J., Suárez, F., Calero-Riestra, M., Justribó, J. H., Hervás, I., de la Morena, E. L. G., Ramírez, Á., Viñuela, J., & García, J. T. (2023). Responses of Bird Communities to Habitat Structure along an Aridity Gradient in the Steppes North of the Sahara. Diversity, 15(6), 737. https://doi.org/10.3390/d15060737