Evolution of Expending Extra Effort in Making a Dung Mass before Making a Brood Ball in the Nesting Behavior of the Female Dung Beetle Copris acutidens (Coleoptera; Scarabaeoidea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beetle Breeding Experiments
2.1.1. Using Cow Dung
2.1.2. Using Horse Dung
2.2. Dissection
2.3. Microbial Community
2.3.1. Bacteria
2.3.2. Fungi
Culture-Independent Method
Culture-Dependent Method
2.4. Measuring the Carbon: Nitrogen Ratio
2.5. Statistical Analysis
2.5.1. Linear-Mixed Effect Models
2.5.2. Principal Coordinate Analysis
3. Results
3.1. C/N Ratio
3.2. Bacterial Community
3.3. Fungal Community
4. Discussion
4.1. Diet Quality for Larva
4.2. Diet Quality Changes with Microbial Communities
4.3. Parental Care
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, A.K.; Pers, D.; Russell, J.A. Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In Advances in Insect Physiology; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 58, pp. 161–205. ISBN 9780081029879. [Google Scholar]
- Mattoson, W.J.J. Herbivory in relation to plant nitrogen content. Ann. Rev. Eco. Syst. 1980, 11, 119–161. [Google Scholar] [CrossRef]
- Martin, M.M. The Evolution of cellulose digestion in insects. Philos. Trans. R. Soc. Lond. B 1991, 333, 281–288. [Google Scholar] [CrossRef]
- Douglas, A.E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009, 23, 38–47. [Google Scholar] [CrossRef]
- Watanabe, H.; Tokuda, G. Cellulolytic systems in insects. Annu. Rev. Entomol. 2010, 55, 609–632. [Google Scholar] [CrossRef]
- Holter, P. Herbivore Dung as food for dung beetles: Elementary coprology for entomologists. Ecol. Entomol. 2016, 41, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Frank, K.; Brückner, A.; Hilpert, A.; Heethoff, M.; Blüthgen, N. Nutrient quality of vertebrate dung as a diet for dung beetles. Sci. Rep. 2017, 7, 12141. [Google Scholar] [CrossRef] [Green Version]
- Holter, P.; Scholtz, C.H.; Wardhaugh, K.G. Dung Feeding in Adult Scarabaeines (Tunnellers and Endocoprids): Even large dung beetles eat small particles. Ecol. Entomol. 2002, 27, 169–176. [Google Scholar] [CrossRef]
- Holter, P. Dung feeding in hydrophilid, geotrupid and scarabaeid beetles: Examples of parallel evolution. Eur. J. Entomol. 2004, 101, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Holter, P. What do dung beetles eat? Ecol. Entomol. 2007, 32, 690–697. [Google Scholar] [CrossRef]
- Holter, P.; Scholtz, C.H. Are ball-rolling (Scarabaeini, Gymnopleurini, Sisyphini) and tunnelling Scarabaeine dung beetles equally choosy about the size of ingested dung particles? Ecol. Entomol. 2005, 30, 700–705. [Google Scholar] [CrossRef]
- Miller, A. The mouth parts and digestive tract of adult dung beetles (Coleoptera: Scarabaeidae), with reference to the ingestion of helminth eggs. J. Parasitol. 1961, 47, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Hata, K.; Edmonds, W.D. Structure and function of the mandibles of adult dung beetles (Coleoptera: Scatabaeidae). Int. J. Insect. Morphol. Embryol. 1983, 12, 1–12. [Google Scholar] [CrossRef]
- Halffter, G.; Edmonds, W.D. The Nesting Behavior of Dung Beetles (Scarabaeinae): An Ecological and Evolutive Approach; Institute de Ecologia: Mexico City, Mexico, 1982; 177p. [Google Scholar]
- Halffter, G. Sobsocial behavior in Scarabaeinae beetles. In The Evolution of Social Behavior in Insects and Arachnids; Choe, J.C., Crespi, B.J., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 237–259. [Google Scholar]
- Okumoto, D. Complete Translation of “Souvenirs Entomologiques Edited by J.-H. Fabre (1920–1924), Delagrave, Paris”; SYUEISYA: Tokyo, Japan, 2007; Volume 5. [Google Scholar]
- Rougon, C.; Levieux, J.; Trichet, J. Variations in the amino-acid content in zebu dung in the Sahel during nesting by dung beetles (Coleoptera, Scarabaeidae). Soil Biol. Biochem. 1990, 22, 217–223. [Google Scholar] [CrossRef]
- Byrne, M.J.; Watkins, B.; Bouwer, G. Do Dung Beetle Larvae Need Microbial Symbionts from Their Parents to Feed on Dung? Ecol. Entomol. 2013, 38, 250–257. [Google Scholar] [CrossRef]
- Estes, A.M.; Hearn, D.J.; Snell-Rood, E.C.; Feindler, M.; Feeser, K.; Abebe, T.; Hotopp, J.C.D.; Moczek, A.P. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 2013, 8, e79061. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.P.; Sanders, J.G.; Byrne, M.J.; Pierce, N.E. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol. Ecol. 2016, 49, 6092–6106. [Google Scholar] [CrossRef]
- Imamori, M. Dung Beetle; Secret of Chamber; Heibonsya: Tokyo, Japan, 1985; 44p. (In Japanese) [Google Scholar]
- Akamine, M. Size- and context-dependent nest-staying behaviour of males of the Japanese dung beetle, Copris acutidens (Coleoptera: Scarabaeidae). Eur. J. Entomol. 2016, 113, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Sugita, T.; Nishikawa, A.; Shinoda, T.; Yoshida, K.; Ando, M. A new species, Trichosporon domesticum, isolated from the house of a summer-type hypersensitivity pneumonitis patient in Japan. J. Gen. Appl. Microbiol. 1995, 41, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Sugita, T.; Takashima, M.; Nakase, T.; Ichikawa, T.; Ikeda, R.; Shinoda, T. Two new yeasts, Trichosporon debeurmannianum sp. nov. and Trichosporon dermatis sp. nov., transferred from the Cryptococcus humicola complex. Int. J. Syst. Evol. Microbiol. 2001, 51, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhu, W.; Lu, Y.; Kong, J.; Ma, G. Production, Partial purification and characterization of xylanase from Trichosporon cutaneum SL409. Process Biochem. 1998, 33, 331–336. [Google Scholar] [CrossRef]
- Middelhoven, W.J.; Scorzetti, G.; Fell, J.W. Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scrabaeorum and T. gamsii. Int. J. Syst. Evol. Microbiol. 2004, 54, 975–986. [Google Scholar] [CrossRef]
- Gujjari, P.; Suh, S.O.; Lee, C.F.; Zhou, J.J. Trichosporon xylopini sp. nov., a hemicellulose degrading yeast isolated from the wood-inhabiting beetle Xylopinus saperdioides. Int. J. Syst. Evol. Microbiol. 2011, 61, 2538–2542. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wu, H.; Liu, Q.P.; Li, Y.Y.; Zong, M.H. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J. Agric. Food Chem. 2011, 59, 4606–4613. [Google Scholar] [CrossRef]
- Motaung, T.E.; Albertyn, J.; Kock, J.L.F.; Lee, C.F.; Suh, S.O.; Blackwell, M.; Pohl, C.H. Trichosporon vanderwaltii sp. nov., an asexual basidiomycetous yeast isolated from soil and beetles. Antonie Leeuwenhoek 2013, 103, 313–319. [Google Scholar] [CrossRef]
- Urbina, H.; Schuster, J.; Blackwell, M. The Gut of Guatemalan passalid beetles: A habitat colonized bycellobiose- and xylose-fermenting yeasts. Fungal. Ecol. 2013, 6, 339–355. [Google Scholar] [CrossRef]
- Kunthiphun, S.; Endoh, R.; Takashima, M.; Ohkuma, M.; Tanasupawat, S.; Akaracharanya, A. Trichosporon heliocopridis sp. nov., a urease-negative basidiomycetous yeast associated with dung beetles (Heliocopris bucephalus Fabricius). Int. J. Syst. Evol. Microbiol. 2016, 66, 1180–1186. [Google Scholar] [CrossRef]
- Takashima, M.; Manabe, R.I.; Iwasaki, W.; Ohyama, A.; Ohkuma, M.; Sugita, T. Selection of orthologous genes for construction of a highly resolved phylogenetic tree and clarification of the phylogeny of Trichosporonales species. PLoS ONE 2015, 10, e0131217. [Google Scholar] [CrossRef]
- Nakase, T.; Jindamorakot, S.; Sugita, T.; Am-In, S.; Kawasaki, H.; Potacharoen, W.; Tanticharoen, M. Trichosporon siamense sp. nov. isolated from insect frass in Thailand. Mycoscience 2006, 47, 106–109. [Google Scholar] [CrossRef]
- Alias-Villegas, C.; Jurado, V.; Laiz, L.; Saiz-Jimenez, C. Sphingopyxis italica sp. nov., Isolated from Roman Catacombs. Int. J. Syst. Evol. Microbiol. 2013, 63, 2565–2569. [Google Scholar] [CrossRef]
- Piccini, I.; Arnieri, F.; Caprio, E.; Nervo, B.; Pelissetti, S.; Palestrini, C.; Roslin, T.; Rolando, A. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS ONE 2017, 12, e0178077. [Google Scholar] [CrossRef]
- Tyndale-Biscoe, M. Adaptive significant of brood care of Copris diversus Waterhouse (Coleoptera: Scarabaeidae). Bull. Entomol. Res. 1984, 74, 453–461. [Google Scholar] [CrossRef]
- Halffter, G.; Huerta, C.; Lopez-Portillo, J. Parental care and offspring survival in Copris incertus Say, a sub-social beetle. Anim. Behav. 1996, 52, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.W.Y.; Meunier, J.; Kölliker, M. The Evolution of parental care in insects: The roles of ecology, life history and the social environment. Ecol. Entomol. 2013, 38, 123–137. [Google Scholar] [CrossRef]
- Biedermann, P.H.; Rohlfs, M. Evolutionary feedbacks between insect sociality and microbial management. Curr. Opin. Insect. Sci. 2017, 22, 92–100. [Google Scholar] [CrossRef] [PubMed]
Samples | Assigned Fungal Name | BLAST Identity (%) | Accession Number |
---|---|---|---|
Brood balls | |||
1–2 | Apiotrichum scarabaeorum | 99 | LC763495 |
2–3 | A. siamense | 99 | LC763496 |
2–3 | A. siamense | 99 | LC763497 |
Larval gut | |||
2–1 midgut | A. scarabaeorum | 99 | LC763498 |
2–1 hindgut | A. scarabaeorum | 99 | LC763499 |
2–2 midgut1 | A. scarabaeorum | 99 | LC763500 |
2–2 midgut2 | Trichosporon sp. | 100 | LC763501 |
2–2 hindgut | Trichosporon sp. | 99 | LC763502 |
Female gut | |||
Female1 midgut | A.siamense | 99 | LC763503 |
Female2 hindgut | A.siamense | 99 | LC763504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akamine, M.; Mishima, T. Evolution of Expending Extra Effort in Making a Dung Mass before Making a Brood Ball in the Nesting Behavior of the Female Dung Beetle Copris acutidens (Coleoptera; Scarabaeoidea). Diversity 2023, 15, 767. https://doi.org/10.3390/d15060767
Akamine M, Mishima T. Evolution of Expending Extra Effort in Making a Dung Mass before Making a Brood Ball in the Nesting Behavior of the Female Dung Beetle Copris acutidens (Coleoptera; Scarabaeoidea). Diversity. 2023; 15(6):767. https://doi.org/10.3390/d15060767
Chicago/Turabian StyleAkamine, Mayumi, and Tatsuya Mishima. 2023. "Evolution of Expending Extra Effort in Making a Dung Mass before Making a Brood Ball in the Nesting Behavior of the Female Dung Beetle Copris acutidens (Coleoptera; Scarabaeoidea)" Diversity 15, no. 6: 767. https://doi.org/10.3390/d15060767
APA StyleAkamine, M., & Mishima, T. (2023). Evolution of Expending Extra Effort in Making a Dung Mass before Making a Brood Ball in the Nesting Behavior of the Female Dung Beetle Copris acutidens (Coleoptera; Scarabaeoidea). Diversity, 15(6), 767. https://doi.org/10.3390/d15060767