How Do Moth Clicks Decrease the Capture Success of Horseshoe Bats?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Acoustic Interaction between Bats and Moths
2.3. Sound Analysis of Moth Ultrasonic Clicks and Bat Echolocation Calls
2.4. Timing of Ultrasound Production in Moths
2.5. Moth Palatability
2.6. Statistical Analysis
3. Results
3.1. Acoustic Characteristics of Moth Ultrasonic Clicks and Bat Echolocation Calls
3.2. Timing of Ultrasound Production in Moths
3.3. Moth Palatability
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hassell, M.P.; May, R.M. From individual behaviour to population dynamics. In Behavioural Ecology: Ecological Consequences of Adaptive Behaviour; Sibly, R.M., Smith, R.H., Eds.; Blackwell: Oxford, UK, 1985; pp. 3–32. [Google Scholar]
- Parker, G.A.; Hammerstein, P. Game Theory and Animal Behaviour. In Evolution: Essays in Honour of John Maynard Smith, Harvey, P., Slatkin, M., Greenwood, P., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 73–94. [Google Scholar]
- Ives, A.R.; Dobson, A.P. Antipredator behavior and the population dynamics of simple predator-prey systems. Am. Nat. 1987, 130, 431–447. [Google Scholar] [CrossRef]
- Sih, A.; Christensen, B. Optimal diet theory: When does it work, and when and why does it fail? Anim. Behav. 2001, 61, 379–390. [Google Scholar] [CrossRef]
- Corcoran, A.J.; Barber, J.R.; Conner, W.E. Tiger moth jams bat sonar. Science 2009, 325, 325–327. [Google Scholar] [CrossRef] [Green Version]
- Mark, C.J.; O’Hanlon, J.C.; Holwell, G.I. Camouflage in lichen moths: Field predation experiments and avian vision modelling demonstrate the importance of wing pattern elements and background for survival. J. Anim. Ecol. 2022, 91, 2358–2369. [Google Scholar] [CrossRef]
- Hounslow, J.L.; Jewell, O.J.D.; Fossette, S.; Whiting, S.; Tucker, A.D.; Richardson, A.; Edwards, D.; Gleiss, A.C. Animal-borne video from a sea turtle reveals novel anti-predator behaviors. Ecology 2021, 102, e03251. [Google Scholar] [CrossRef]
- Karakoç, C.; Clark, A.T.; Chatzinotas, A. Diversity and coexistence are influenced by time-dependent species interactions in a predator–prey system. Ecol. Lett. 2020, 23, 983–993. [Google Scholar] [CrossRef] [Green Version]
- Van Nieukerken, E.J. Order Lepidoptera Linnaeus, 1758. Zootaxa 2011, 3148, 212–221. [Google Scholar]
- Miller, L.A.; Surlykke, A. How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience 2001, 51, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Waters, D.A. Bats and moths: What is there left to learn? Physiol. Entomol. 2003, 28, 237–250. [Google Scholar] [CrossRef]
- Conner, W.E.; Corcoran, A.J. Sound strategies: The 65-million-year-old battle between bats and insects. Annu. Rev. Entomol. 2012, 57, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Teeling, E.C. The evolution of echolocation in bats. Trends Ecol. Evol. 2006, 21, 149–156. [Google Scholar] [CrossRef] [PubMed]
- ter Hofstede, H.M.; Ratcliffe, J.M. Evolutionary escalation: The bat–moth arms race. J. Exp. Biol. 2016, 219, 1589–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, J.R.; Plotkin, D.; Rubin, J.J.; Kawahara, A.Y. Anti-bat ultrasound production in moths is globally and phylogenetically widespread. Proc. Natl. Acad. Sci. USA. 2022, 119, e2117485119. [Google Scholar] [CrossRef]
- Fullard, J.H.; Fenton, B.M.; Simmons, J.A. Jamming bat echolocation: The clicks of arctiid moths. Can. J. Zool. 1979, 57, 647–649. [Google Scholar] [CrossRef]
- Fullard, J.H.; Simmons, J.A.; Saillant, P.A. Jamming bat echolocation: The dogbane tiger moth Cycnia tenera times its clicks to the terminal attack calls of the big brown bat Eptesicus fuscus . J. Exp. Biol. 1994, 194, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.J.; Hristov, N.I. Convergent evolution of anti-bat sounds. J. Comp. Physiol. A 2014, 200, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.R.; Kawahara, A.Y. Hawkmoths produce anti-bat ultrasound. Biol. Lett. 2013, 9, 20130161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, J.R.; Chadwell, B.A.; Garrett, N.; Schmidt-French, B.; Conner, W.E. Naive bats discriminate arctiid moth warning sounds but generalize their aposematic meaning. J. Exp. Biol. 2009, 212, 2141–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoran, A.J.; Conner, W.E. Sonar jamming in the field: Effectiveness and behavior of a unique prey defense. J. Exp. Biol. 2012, 215, 4278–4287. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.L.; Fenton, M.B. Aposematism or startle? Predators learn their responses to the defenses of prey. Can. J. Zool. 1990, 68, 49–52. [Google Scholar] [CrossRef]
- Corcoran, A.J.; Barber, J.R.; Hristov, N.I.; Conner, W.E. How do tiger moths jam bat sonar? J. Exp. Biol. 2011, 214, 2416–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, A.Y.; Barber, J.R. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation. Proc. Natl. Acad. Sci. USA. 2015, 112, 6407–6412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunning, D.C. Warning sounds of moths. Z. fÜR Tierpsychol. 1968, 25, 129–138. [Google Scholar] [CrossRef]
- Dunning, D.C.; Acharya, L.; Merriman, C.B.; Ferro, L.D. Interactions between bats and arctiid moths. Can. J. Zool. 1992, 70, 2218–2223. [Google Scholar] [CrossRef]
- Hristov, N.I.; Conner, W.E. Sound strategy: Acoustic aposematism in the bat–tiger moth arms race. Naturwissenschaften 2005, 92, 164–169. [Google Scholar] [CrossRef]
- Corcoran, A.J.; Conner, W.E.; Barber, J.R. Anti-bat tiger moth sounds: Form and function. Curr. Zool. 2010, 56, 358–369. [Google Scholar] [CrossRef]
- Fernández, Y.; Dowdy, N.J.; Conner, W.E. High duty cycle moth sounds jam bat echolocation: Bats counter with compensatory changes in buzz duration. J. Exp. Biol. 2022, 225, jeb244187. [Google Scholar] [CrossRef]
- Barber, J.R.; Conner, W.E. Tiger moth responses to a simulated bat attack: Timing and duty cycle. J. Exp. Biol. 2006, 209, 2637–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdy, N.J.; Conner, W.E. Acoustic aposematism and evasive action in select chemically defended arctiine (Lepidoptera: Erebidae) species: Nonchalant or not? PLoS ONE 2016, 11, e0152981. [Google Scholar] [CrossRef]
- Barber, J.R.; Conner, W.E. Acoustic mimicry in a predator–prey interaction. Proc. Natl. Acad. Sci. USA. 2007, 104, 9331–9334. [Google Scholar] [CrossRef] [Green Version]
- Fenton, M.B.; Faure, P.A.; Ratcliffe, J.M. Evolution of high duty cycle echolocation in bats. J. Exp. Biol. 2012, 215, 2935–2944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitzler, H.-U.; Denzinger, A. Auditory fovea and Doppler shift compensation: Adaptations for flutter detection in echolocating bats using CF-FM signals. J. Comp. Physiol. A 2011, 197, 541–559. [Google Scholar] [CrossRef]
- Schnitzler, H.-U.; Kalko, E.K.V. Echolocation by insect-eating bats. BioScience 2001, 51, 557–569. [Google Scholar] [CrossRef]
- Fernández, Y.; Dowdy, N.J.; Conner, W.E. Extreme duty cycles in the acoustic signals of tiger moths: Sexual and natural selection operating in parallel. Integr. Org. Biol. 2020, 2, obaa046. [Google Scholar] [CrossRef] [PubMed]
- Siemers, B.M.; Schnitzler, H.-U. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 2004, 429, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Surlykke, A.; Moss, C.F. Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J. Acoust. Soc. Am. 2000, 108, 2419–2429. [Google Scholar] [CrossRef] [Green Version]
- Hage, S.R.; Jiang, T.; Berquist, S.W.; Feng, J.; Metzner, W. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc. Natl. Acad. Sci. USA. 2013, 110, 4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hage, S.R.; Jiang, T.; Berquist, S.W.; Feng, J.; Metzner, W. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats. J. Exp. Biol. 2014, 217, 2440–2444. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Goerlitz, H.R.; Brumm, H.; Wiegrebe, L. Linking the sender to the receiver: Vocal adjustments by bats to maintain signal detection in noise. Sci. Rep. 2015, 5, 18556. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Siemers, B.M.; Koselj, K. How anthropogenic noise affects foraging. Glob. Chang. Biol. 2015, 21, 3278–3289. [Google Scholar] [CrossRef]
Species | fdom | fmax | fmin | DC | |||||
---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Anti-bat-click moths | |||||||||
Cechenena minor | 23 | 64.96 | 32.32 | 77.78 | 29.56 | 49.71 | 29.36 | 0.223 | 0.052 |
Creatonotos transiens | 23 | 41.55 | 8.97 | 59.30 | 11.58 | 23.27 | 8.50 | 0.049 | 0.018 |
Bats | |||||||||
Rhinolophus osgoodi | 15 | 85.78 | 0.52 | 86.40 | 0.79 | 83.94 | 0.95 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Li, J.; Zhong, M.; Lin, A. How Do Moth Clicks Decrease the Capture Success of Horseshoe Bats? Diversity 2023, 15, 804. https://doi.org/10.3390/d15070804
Hu Y, Li J, Zhong M, Lin A. How Do Moth Clicks Decrease the Capture Success of Horseshoe Bats? Diversity. 2023; 15(7):804. https://doi.org/10.3390/d15070804
Chicago/Turabian StyleHu, Yinli, Jiqian Li, Maojun Zhong, and Aiqing Lin. 2023. "How Do Moth Clicks Decrease the Capture Success of Horseshoe Bats?" Diversity 15, no. 7: 804. https://doi.org/10.3390/d15070804
APA StyleHu, Y., Li, J., Zhong, M., & Lin, A. (2023). How Do Moth Clicks Decrease the Capture Success of Horseshoe Bats? Diversity, 15(7), 804. https://doi.org/10.3390/d15070804