Strong Population Genetic Structure for the Endangered Micro-Trapdoor Spider Moggridgea rainbowi (Mygalomorphae, Migidae) in Unburnt Habitat after Catastrophic Bushfires
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SNP Data
3.2. Population Genetic Clustering
3.3. Fixed Allelic Difference Analysis
3.4. Phylogenetic Analyses of COI and ITS Sequences
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferretti, N.; Copperi, S.; Schwerdt, L.; Pompozzi, G. Another migid in the wall: Natural history of the endemic and rare spider Calathotarsus simoni (Mygalomorphae: Migidae) from a hill slope in central Argentina. J. Nat. Hist. 2014, 48, 1907–1921. [Google Scholar] [CrossRef]
- Harvey, M.S.; York Main, B.; Rix, M.G.; Cooper, S.J.B. Refugia within refugia: In situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia. Invertebr. Syst. 2015, 29, 511–553. [Google Scholar] [CrossRef]
- Griswold, C.E.; Ledford, J.l. A monograph of the migid trap door spiders of Madagascar: And a review of the world genera (Araneae, Mygalomorphae, Migidae). Occas. Pap. 2001, 151, 1–12. [Google Scholar]
- Ferretti, N.E.; Soresi, D.S.; Gonzalez, A.; Arnedo, M. An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). Syst. Biodivers. 2019, 17, 439–457. [Google Scholar] [CrossRef]
- Vargas, R.M.; Aguilera, M.A. Una nueva especie de araña trampilla del género Goloboffia Griswold y Ledford, 2001 (Araneae: Migidae) para la Región de Coquimbo, Chile. Rev. Chil. Entomol. 2022, 48, 549–558. [Google Scholar] [CrossRef]
- Harvey, M.S. Short-range endemism amongst the Australian fauna: Some examples from non-marine environments. Invertebr. Syst. 2002, 16, 555–570. [Google Scholar] [CrossRef]
- Rix, M.G.; Huey, J.A.; Main, B.Y.; Waldock, J.M.; Harrison, S.E.; Comer, S.; Austin, A.D.; Harvey, M.S. Where have all the spiders gone? Highlighting the decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomol. 2017, 56, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, N.; Pompozzi, G.; Cardoso, P. Species conservation profile of the rare and endemic trapdoor spider Calathotarsus simoni (Araneae, Migidae) from Central Argentina. Biodivers. Data J. 2017, 5, e14790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, J.R.; Glatz, R.V. Assessing the impact of the black summer fires on Kangaroo Island threatened invertebrates: Towards rapid habitat assessments for informing targeted post-fire surveys. Aust. Zool. 2022, 42, 479–501. [Google Scholar] [CrossRef]
- Cooper, S.J.B.; Harvey, M.S.; Saint, K.M.; Main, B.Y. Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: Evidence for long-term refugia within refugia. Mol. Ecol. 2011, 20, 3219–3236. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.E.; Rix, M.G.; Harvey, M.S.; Austin, A.D. An African mygalomorph lineage in temperate Australia: The trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomol. 2016, 55, 208–216. [Google Scholar] [CrossRef]
- Main, B.Y. Occurrence of the trapdoor spider genus Moggridgea in Australia with descriptions of two new species (Araneae: Mygalomorphae: Migidae). J. Nat. Hist. 1991, 25, 383–397. [Google Scholar] [CrossRef]
- Harrison, S.E.; Harvey, M.S.; Cooper, S.J.B.; Austin, A.D.; Rix, M.G. Across the Indian Ocean: A remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS ONE 2017, 12, e0180139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- South Australian Government Department for Environment and Heritage. South Australian National Parks and Reserves. Kangaroo Island Region; Government of South Australia, Department for Environment and Water: Adelaide, Australia, 2008. Available online: https://web.archive.org/web/20080728053133/http://environment.sa.gov.au/parks/visitor/kisland.html (accessed on 10 February 2023).
- National Parks and Wildlife Service. Kangaroo Island Bushfire 2019–2020; Government of South Australia: Department for Environment and Water, Adelaide, Australia, 2021. Available online: https://arcg.is/1HHyHf (accessed on 11 February 2023).
- Turner, P.J.; Scott, J.K.; Spafford, H. The ecological barriers to the recovery of bridal creeper (Asparagus asparagoides (L.) Druce) infested sites: Impacts on vegetation and the potential increase in other exotic species. Austral Ecol. 2008, 33, 713–722. [Google Scholar] [CrossRef]
- Department of Climate Change, Energy, the Environment and Water. Conservation Advice for Moggridgea rainbowi (Kangaroo Island Micro-trapdoor Spider); Australian Federal Government: Canberra, Australia, 2022. Available online: http://www.environment.gov.au/biodiversity/threatened/species/pubs/90906-conservation-advice-22042022.pdf (accessed on 10 February 2023).
- Weeks, A.R.; Sgro, C.M.; Young, A.G.; Frankham, R.; Mitchell, N.J.; Miller, K.A.; Byrne, M.; Coates, D.J.; Eldridge, M.D.; Sunnucks, P.; et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 2011, 4, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Ryder, O.A. Species conservation and systematics—The dilemma of subspecies. Trends Ecol. Evol. 1986, 1, 9–10. [Google Scholar] [CrossRef]
- Waples, R.S.; Gaggiotti, O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 2006, 15, 1419–1439. [Google Scholar] [CrossRef]
- Crandall, K.A.; Bininda-Emonds, O.R.; Mace, G.M.; Wayne, R.K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 2000, 15, 290–295. [Google Scholar] [CrossRef]
- Fraser, D.J.; Bernatchez, L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Mol. Ecol. 2001, 10, 2741–2752. [Google Scholar] [CrossRef]
- Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 1994, 9, 373–375. [Google Scholar] [CrossRef]
- Miller, J.T.; Jolley-Rogers, G.; Mishler, B.D.; Thornhill, A.H. Phylogenetic diversity is a better measure of biodiversity than taxon counting. J. Syst. Evol. 2018, 56, 663–667. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.S.; Holleley, C.E.; Sumner, J.; Melville, J.; Georges, A. Lineage diversity within a widespread endemic Australian skink to better inform conservation in response to regional-scale disturbance. Ecol. Evol. 2022, 12, e8627. [Google Scholar] [CrossRef]
- Agapow, P.M.; Bininda-Emonds, O.R.; Crandall, K.A.; Gittleman, J.L.; Mace, G.M.; Marshall, J.C.; Purvis, A. The impact of species concept on biodiversity studies. Q. Rev. Biol. 2004, 79, 161–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 2010, 143, 1919–1927. [Google Scholar] [CrossRef]
- Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 2002, 51, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.S.; Hanson, J.O.; Carvalho, S.B.; Beger, M.; Henriques, R.; Kershaw, F.; von der Heyden, S. Molecular ecology meets systematic conservation planning. Trends Ecol. Evol. 2023, 38, 143–155. [Google Scholar] [CrossRef]
- Main, B.Y. Persistence of invertebrates in small areas: Case studies of trapdoor spiders in Western Australia. In Nature Conservation: The Role of Remnants of Native Vegetation; Surrey Beatty and Sons Pty Limited in association with CSIRO and CALM: Chipping Norton, UK, 1987; pp. 29–39. [Google Scholar]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Colón, A.G.; Catchen, J. Population genomics analysis with RAD, reprised: Stacks 2. In Marine Genomics: Methods and Protocols; Springer: New York, NY, USA, 2022; pp. 99–149. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. DARTR: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; and Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. Am. Math. Soc. 1986, 17, 57–86. [Google Scholar]
- Leaché, A.D.; Banbury, B.L.; Felsenstein, J.; De Oca, A.N.M.; Stamatakis, A. Short tree, long tree, right tree, wrong tree: New acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 2015, 64, 1032–1047. [Google Scholar] [CrossRef] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol. 1996, 11, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.; Yeates, D.K.; Joseph, L.; Kearney, M.; Bowler, J.; Williams, M.A.J.; Cooper, S.J.B.; Donnellan, S.C.; Keogh, J.S.; Leys, R.; et al. Birth of a biome: Insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 2008, 17, 4398–4417. [Google Scholar] [CrossRef]
- Sniderman, J.K.; Woodhead, J.D.; Hellstrom, J.; Jordan, G.J.; Drysdale, R.N.; Tyler, J.J.; Porch, N. Pliocene reversal of late Neogene aridification. Proc. Natl. Acad. Sci. USA 2016, 113, 1999–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, N.; Belperio, A.; Bourman, R. Late Quaternary sea-levels, climate change, and South Australian coastal geology. In Gondwana to Greenhouse: Australian Environmental Geoscience; Gostin, V., Ed.; Geological Society of Australia Special Publication; Geological Society of Australia: Hornsby, Australia, 2001; pp. 201–213. [Google Scholar]
- Hill, P.J.; De Deckker, P.; Von der Borch, C.; Murray-Wallace, C.V. Ancestral Murray River on the Lacepede Shelf, southern Australia: Late Quaternary migrations of a major river outlet and strandline development. Aust. J. Earth Sci. 2009, 56, 135–157. [Google Scholar] [CrossRef]
- Nicholas, W.A.; Lachlan, T.; Murray-Wallace, C.V.; Price, G.J. Amino acid racemisation and uranium-series dating of a last interglacial raised beach, Kingscote, Kangaroo Island, southern Australia. Trans. R. Soc. S. Aust. 2019, 143, 1–26. [Google Scholar] [CrossRef]
- Twidale, C.; Bourne, J. The land surface. In Natural History of Kangaroo Island, 2nd ed.; Davies, M., Tyler, M.J., Twidale, C.R., Eds.; Royal Society of South Australia: Adelaide, Australia, 2002; Volume 2, pp. 23–35. [Google Scholar]
- Murraywallace, C.V.; Belperio, A.P. The last interglacial shoreline in australia—A review. Quat. Sci. Rev. 1991, 10, 441–461. [Google Scholar] [CrossRef]
- White, M.J.D.; Key, K.H.L.; André, M.; Cheney, J. Cytogenetics of the viatica group of morabine grasshoppers II. Kangaroo Island populations. Aust. J. Zool. 1969, 17, 313–328. [Google Scholar] [CrossRef]
- Kawakami, T.; Butlin, R.K.; Adams, M.; Saint, K.M.; Paull, D.J.; Cooper, S.J.B. Differential gene flow of mitochondrial and nuclear DNA markers among chromosomal races of Australian morabine grasshoppers (Vandiemenella, viatica species group). Mol. Ecol. 2007, 16, 5044–5056. [Google Scholar] [CrossRef]
- Kawakami, T.; Butlin, R.K.; Adams, M.; Paull, D.J.; Cooper, S.J.B. Genetic analysis of a chromosomal hybrid zone in the Australian morabine grasshoppers (Vandiemenella, viatica species group). Evolution 2009, 63, 139–152. [Google Scholar] [CrossRef]
- Lambeck, R.J. Focal species: A multi-species umbrella for nature conservation. Conserv. Biol. 1997, 11, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Braby, M.F.; Williams, M.R. Biosystematics and conservation biology: Critical scientific disciplines for the management of insect biological diversity. Austral Entomol. 2016, 55, 1–17. [Google Scholar] [CrossRef]
- Schlick-Steiner, B.C.; Steiner, F.M.; Seifert, B.; Stauffer, C.; Christian, E.; Crozier, R.H. Integrative aaxonomy: A multisource approach to exploring biodiversity. Annu. Rev. Entomol. 2010, 55, 421–438. [Google Scholar] [CrossRef]
- Austin, A.D.; Yeates, D.K.; Cassis, G.; Fletcher, M.J.; La Salle, J.; Lawrence, J.F.; McQuillan, P.B.; Mound, L.A.; Bickel, D.J.; Gullan, P.J.; et al. Insects ‘down under’–diversity, endemism and evolution of the Australian insect fauna: Examples from select orders. Aust. J. Entomol. 2004, 43, 216–234. [Google Scholar] [CrossRef]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef] [Green Version]
- Hortal, J.; de Bello, F.; Diniz-Filho, J.A.F.; Lewinsohn, T.M.; Lobo, J.M.; Ladle, R.J. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 523–549. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
Sample Name | Location | Latitude/Longitude | Reg Number |
---|---|---|---|
jm0107A | Baudin CP | −35.729869, 137.967542 | SAMA NN31728 |
jm0107B | Baudin CP | −35.729869, 137.967542 | SAMA NN31729 |
jm0107C | Baudin CP | −35.729869, 137.967542 | SAMA NN31730 |
jm0107D | Baudin CP | −35.729869, 137.967542 | SAMA NN31731 |
jm0107E | Baudin CP | −35.729869, 137.967542 | SAMA NN31732 |
jm0107F | Baudin CP | −35.729869, 137.967542 | SAMA NN31733 |
jm0107G | Baudin CP | −35.729869, 137.967542 | SAMA NN31734 |
Mig002 | Baudin CP | −35. 722120, 137.955371 | SAMA NN31735 |
Mig009.1 | Baudin CP | −35.723739, 137.960205 | SAMA NN31736 |
Mig005 | Penneshaw | −35.728177, 137.948990 | SAMA NN31748 |
jm0099 | Penneshaw | −35.728177, 137.94899 | SAMA NN31749 |
jm0151 | Penneshaw | −35.75640, 137.90000 | SAMA NN31750 |
jm0152 | American Beach | −35.75640, 137.89416 | SAMA NN31751 |
Mig004 | Chapman River | −35.790532, 138.044630 | SAMA NN31741 |
Mig006 | Chapman River | −35.790197, 138.044640 | SAMA NN31742 |
Mig006A | Chapman River | −35.790197, 138.044640 | SAMA NN31743 |
Mig007A | Chapman River | −35.790532, 138.044630 | SAMA NN31744 |
Mig007 | Chapman River | −35.790532, 138.044630 | SAMA NN31745 |
Mig003 | American River | −35.766336, 137.789524 | SAMA NN31723 |
Mig003A | American River | −35.766336, 137.789524 | SAMA NN31724 |
Mig008 | American River | −35.762345, 137.795942 | SAMA NN31725 |
SAMA28428 | American River | −35.776944, 137.775833 | SAMA NN28428 |
SAMA28257 | American River | −35.776389, 137.775833 | SAMA NN28257 |
SAMA28345 | American River | −35.776806, 137.775833 | SAMA NN28345 |
SAMA28346.1 | American River | −35.776806, 137.775833 | SAMA NN28346.1 |
SAMA28429 | American River | −35.776806, 137.775833 | SAMA NN28429 |
jrm0153 | American River | −35.77159, 137.783312 | SAMA NN31726 |
jrm0154 | American River | −35.771358, 137.783681 | SAMA NN31727 |
jm0109 | Cape Forbin | −35.710183, 136.780324 | SAMA NN31738 |
jm0110 | Cape Forbin | −35.710265, 136.782339 | SAMA NN31739 |
jm0111 | Cape Forbin | −35.702223, 136.790452 | SAMA NN31740 |
jm0115 | Cape Cassini | −35.599560, 137.285037 | SAMA NN31737 |
jm0108 | Cape Torrens WPA | −35.725597, 136.743711 | SAMA NN31746 |
jm0112 | Cape Torrens WPA | −35.724615, 136.737096 | SAMA NN31747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsh, J.R.; Bradford, T.M.; Cooper, S.J.B. Strong Population Genetic Structure for the Endangered Micro-Trapdoor Spider Moggridgea rainbowi (Mygalomorphae, Migidae) in Unburnt Habitat after Catastrophic Bushfires. Diversity 2023, 15, 827. https://doi.org/10.3390/d15070827
Marsh JR, Bradford TM, Cooper SJB. Strong Population Genetic Structure for the Endangered Micro-Trapdoor Spider Moggridgea rainbowi (Mygalomorphae, Migidae) in Unburnt Habitat after Catastrophic Bushfires. Diversity. 2023; 15(7):827. https://doi.org/10.3390/d15070827
Chicago/Turabian StyleMarsh, Jessica R., Tessa M. Bradford, and Steven J. B. Cooper. 2023. "Strong Population Genetic Structure for the Endangered Micro-Trapdoor Spider Moggridgea rainbowi (Mygalomorphae, Migidae) in Unburnt Habitat after Catastrophic Bushfires" Diversity 15, no. 7: 827. https://doi.org/10.3390/d15070827
APA StyleMarsh, J. R., Bradford, T. M., & Cooper, S. J. B. (2023). Strong Population Genetic Structure for the Endangered Micro-Trapdoor Spider Moggridgea rainbowi (Mygalomorphae, Migidae) in Unburnt Habitat after Catastrophic Bushfires. Diversity, 15(7), 827. https://doi.org/10.3390/d15070827