Marine Bacterial Communities in the Xisha Islands, South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Physico-Chemical Analysis
2.2. DNA Extraction, PCR Amplification, and Sequencing
2.3. Amplicon Sequence Analysis
2.4. Statistical Analysis
3. Results
3.1. Seawater Physicochemical Parameters across the Xisha Islands
3.2. Diversity of Seawater-Associated Bacterial Communities between the Four Areas in the Xisha Islands
3.3. Composition of Seawater-Associated Bacterial Communities between the Four Areas in the Xisha Islands
3.4. Diversity and Composition of Bacterioplankton between the Surface and Bottom Water in the Xisha Islands
3.5. Distinct Distribution Pattern of Bacterial Communities in Xisha Islands
3.6. Functional Prediction of the 16S Genes Based on FAPROTAX
3.7. Correlation Analysis between Nutrient Factors and Bacterial Communities
4. Discussion
4.1. Relationship between Bacterial Community Composition and Physicochemical Parameters between the Four Areas in the Xisha Islands
4.2. Composition of Bacterial Communities between the Surface and Bottom Water in the Xisha Islands
4.3. Functional Characteristics of Bacterial Communities between the Four Areas in the Xisha Islands
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zinger, L.; Amaral-Zettler, L.A.; Fuhrman, J.A.; Horner-Devine, M.C.; Huse, S.M.; Mark Welch, D.B.; Martiny, J.B.H.; Sogin, M.; Boetius, A.; Ramette, A. Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems. PLoS ONE 2011, 6, e24570. [Google Scholar] [CrossRef] [PubMed]
- Strom, S.L. Microbial ecology of ocean biogeochemistry: A community perspective. Science 2008, 320, 1043–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchman, D.L. Growth Rates of Microbes in the Oceans. Ann. Rev. Mar. Sci. 2016, 8, 285. [Google Scholar] [CrossRef] [PubMed]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, X.A.G.; Gasol, J.M.; Pernice, M.C.; Mangot, J.F.; Massana, R.; Lara, E.; Vaqué, D.; Duarte, C.M. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls. Global Chang. Biol. 2017, 23, 3956–3964. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-González, C.; Simó, R.; Sommaruga, R.; Josep, M.G. Away from darkness: A review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front. Microbiol. 2013, 4, 131. [Google Scholar] [CrossRef] [Green Version]
- Richert, I.; Dinasquet, J.; Logares, R.; Riemann, L.; Yager, P.L.; Wendeberg, A.; Bertilsson, S. The influence of light and water mass on bacterial population dynamics in the Amundsen Sea Polynya. Elementa-Sci. Anthrop. 2015, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Glasl, B.; Bourne, D.G.; Frade, P.R.; Thomas, T.; Schaffelke, B.; Webster, N.S. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Martiny, J.B.H.; Bohannan, B.J.M.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Horner-Devine, M.C.; Kane, M.; Krumins, J.A.; Kuske, C.R.; et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. 2006, 4, 102–112. [Google Scholar] [CrossRef]
- Dinsdale, E.A.; Pantos, O.; Smriga, S.; Edwards, R.A.; Angly, F.; Wegley, L.; Hatay, M.; Hall, D.; Brown, E.; Haynes, M.; et al. Microbial Ecology of Four Coral Atolls in the Northern Line Islands. PLoS ONE 2008, 3, e1584. [Google Scholar] [CrossRef] [Green Version]
- Kelly, L.W.; Williams, G.J.; Barott, K.L.; Carlson, C.A.; Dinsdale, E.A.; Edwards, R.A.; Haas, A.F.; Haynes, M.; Lim, Y.W.; McDole, T.; et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl. Acad. Sci. USA 2014, 111, 10227–10232. [Google Scholar] [CrossRef]
- Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 1999, 400, 525–531. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liao, S.L.; Gai, Y.B.; Liu, G.L.; Jin, T.; Liu, H.; Gram, L.; Strube, M.L.; Fan, G.Y.; Sahu, S.K.; et al. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front. Microbiol. 2021, 12, 518865. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Mechanistic Insights into Microbial Community Structure and Function in South China Sea and Union Glacier and Coexistence of Copiotroph and Oligotroph in The Surface Seawater of India Ocean. Ph.D. Thesis, Shandong University, Jinan, China, 2019. [Google Scholar] [CrossRef]
- Qi, Y.; Bingbing, F.; Bingyu, L.; Shi, X.C.; Inagaki, F.; Zhang, X.H. Spatial Variations in Microbial Community Composition in Surface Seawater from the Ultra-Oligotrophic Center to Rim of the South Pacific Gyre. PLoS ONE 2013, 8, e55148. [Google Scholar] [CrossRef] [Green Version]
- West, N.J.; Lepère, C.; Manes, C.O.; Catala, P.; Scanlan, D.J.; Lebaron, P. Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean. Front. Microbiol. 2016, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Liu, X.S.; Hou, R.; Zhao, Y.G.; Gao, H.W. Community structure and influencing factors of bacterioplankton in the southern South China Sea. China Environ. Sci. 2014, 34, 2950–2957. [Google Scholar] [CrossRef]
- Morris, R.M.; Frazar, C.D.; Carlson, C.A. Basin-scale patterns in the abundance of SAR11 subclades, marine Actinobacteria (OM1), members of the Roseobacter clade and OCS116 in the South Atlantic. Environ. Microbiol. 2012, 14, 1133–1144. [Google Scholar] [CrossRef]
- Sisma-Ventura, G.; Rahav, E. DOP Stimulates Heterotrophic Bacterial Production in the Oligotrophic Southeastern Mediterranean Coastal Waters. Front. Microbiol. 2019, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y. Microbial Diversity, Nitrogen Utilization Strategy and Environmental Change Response in the Northwest Pacific Ocean and the Basin of the South China Sea. Ph.D. Thesis, Xiamen University, Xiamen, China, 2018. [Google Scholar]
- Reintjes, G.; Tegetmeyer, H.E.; Burgisser, M.; Orlić, S.; Tews, I.; Zubkov, M.; Voß, D.; Zielinski, O.; Quast, C.; Glöckner, F.O.; et al. On-Site Analysis of Bacterial Communities of the Ultraoligotrophic South Pacific Gyre. Appl. Environ. Microbiol. 2019, 85, e00184-19. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, S.J.; Tripp, H.J.; Givan, S.; Podar, M.; Vergin, K.L.; Baptista, D.; Bibbs, L.; Eads, J.; Richardson, T.H.; Noordewier, M.; et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 2005, 309, 1242–1245. [Google Scholar] [CrossRef] [Green Version]
- Hou, L. Effects of Organic Particles on Microbial Community Structure and Function in the Marine Environment. Ph.D. Thesis, Xiamen University, Xiamen, China, 2019. [Google Scholar] [CrossRef]
- Mc Carren, J.; Becker, J.W.; Repeta, D.J.; Shi, Y.M.; Young, C.R.; Malmstrom, R.R.; Chisholm, S.W.; DeLong, E.F. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc. Natl. Acad. Sci. USA 2010, 107, 16420–16427. [Google Scholar] [CrossRef] [PubMed]
- Zubkov, M.V.; Fuchs, B.M.; Tarran, G.A.; Burkill, P.H.; Amann, R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 2003, 69, 1299–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Fernández, J.M.; de Marsac, N.T.; Diez, J. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol. Mol. Biol. Rev. 2004, 68, 630–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthelot, H.; Duhamel, S.; L’Helguen, S.; Maguer, J.; Wang, S.; Cetinić, I.; Cassar, N. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019, 13, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Howard, E.C.; Sun, S.L.; Reisch, C.R.; del Valle, D.A.; Bürgmann, H.; Kiene, R.P.; Moran, M.A. Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl. Environ. Microbiol. 2011, 77, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Todd, J.D.; Curson, A.R.J.; Nikolaidou-Katsaraidou, N.; Brearley, C.A.; Watmough, N.J.; Chan, Y.; Page, P.C.B.; Sun, L.; Johnston, A.W.B. Molecular dissection of bacterial acrylate catabolism-unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 2010, 12, 327–343. [Google Scholar] [CrossRef]
- Raina, J.B.; Tapiolas, D.M.; Foret, S.; Lutz, A.; Abrego, D.; Ceh, J.; Seneca, F.O.; Clode, P.L.; Bourne, D.G.; Willis, B.L.; et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 2013, 502, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.; Jung, Y.G.; Liu, Y.; Tan, W.H.; Li, W.H.; Li, R.H. Re-evaluation of the diversity and distribution of diazotrophs in the South China Sea by pyrosequencing the nifH gene. Mar. Freshw. Res. 2015, 66, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Fu, F.X.; Sun, J.; Thangaraj, S.; Pujari, L. Nitrogen fixation by Trichodesmium and unicellular diazotrophs in the northern South China Sea and the Kuroshio in summer. Sci. Rep. 2018, 8, 2415. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, T.; Chen, Y.L.L. Different mechanisms controlling interannual Phytoplankton variation in the South China Sea and the western North Pacific subtropical gyre: A satellite study. Adv. Space Res. 2013, 52, 668–676. [Google Scholar] [CrossRef]
- Lesser, M.P.; Michael, C.H.; Gorbunov, M.Y.; Falkowski, P.G. Discovery of symbiotic nitrogen-fixing Cyanobacteria in corals. Science 2004, 305, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Lema, K.A.; Willis, B.L.; Bourne, D.G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 2012, 78, 3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimes, N.E.; Nostrand, J.D.V.; Weil, E.; Zhou, J.Z.; Morris, P.J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef -building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 2010, 12, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Wegley, L.; Edwards, R.A.; Rodriguez-Brito, B.; Liu, H.; Rohwer, F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 2007, 9, 2707–2719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Ling, J.; Yang, Q.S.; Wen, C.Q.; Yan, Q.Y.; Sun, H.Y.; Van Nostrand, J.D.; Shi, Z.; Zhou, J.Z.; Dong, J.D. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci. Rep. 2015, 5, 16191. [Google Scholar] [CrossRef] [Green Version]
- Sharp, K.H.; Sneed, J.M.; Ritchie, K.B.; Mcdaniel, L.; Paul, V.J. Induction of larval settlement in the reef coral Porites astreoides by a Cultivated Marine Roseobacter Strain. Biol. Bull. 2015, 228, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, K.B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 2006, 322, 1–14. [Google Scholar] [CrossRef]
- Rypien, K.L.; Ward, J.R.; Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 2009, 12, 28–39. [Google Scholar] [CrossRef]
- Welsh, R.M.; Zaneveld, J.R.; Rosales, S.M.; Payet, J.P.; Burkepile, D.E.; Thurber, R.V. Bacterial predation in a marine. host-associated microbiome. ISME J. 2015, 10, 1540–1544. [Google Scholar] [CrossRef]
- Frade, P.R.; Glasl, B.; Matthews, S.A.; Mellin, C.; Serrão, E.A.; Wolfe, K.; Mumby, P.J.; Webster, N.S.; Bourne, D.G. Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Commun. Biol. 2020, 3, 442. [Google Scholar] [CrossRef]
- Silva-Lima, A.W.; Froes, A.M.; Garcia, G.D.; Tonon, L.A.C.; Swings, J.; Cosenza, C.A.N.; Medina, M.; Penn, K.; Thompson, J.R.C.; Thompson, C.; et al. Mussismilia braziliensis White Plague Disease Is Characterized by an Affected Coral Immune System and Dysbiosis. Microb. Ecol. 2021, 81, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590-6. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Haber, M.; Rosenberg, D.R.; Lalzar, M.; Burgsdorf, I.; Saurav, K.; Lionheart, R.; Lehahn, Y.; Aharonovich, D.; Gómez-Consarnau, L.; Sher, D.; et al. Spatiotemporal Variation of Microbial Communities in the Ultra-Oligotrophic Eastern Mediterranean Sea. Front. Microbiol. 2022, 13, 867694. [Google Scholar] [CrossRef]
- Cheng, X.R.; Huang, B.Q.; Jian, Z.M.; Zhao, Q.H.; Tian, J.; Li, J.R. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: A present-LGM comparison. Mar. Micropaleontol. 2005, 54, 125–139. [Google Scholar] [CrossRef]
- Wang, G.H.; Su, J.L.; Chu, P.C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 2003, 30, 2121. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.H.; Lu, Z.M.; Zhai, W.D.; Chen, B.S.; Cao, Z.M.; Zhou, K.B.; Cai, W.J.; Chen, C.A. Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnol. Oceanogr. 2009, 54, 735–745. [Google Scholar] [CrossRef]
- Krause, E.; Wichels, A.; Giménez, L.; Lunau, M.; Schilhabel, M.B.; Gerdts, G. Small changes in pH have direct effects on marine bacterial community composition: A microcosm approach. PLoS ONE 2012, 7, e47035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y. Investigation on the Circulation and Coastal Trapped Waves in the Northern South China Sea. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2015. [Google Scholar]
- Suh, S.S.; Park, M.; Hwang, J.; Hwang, J.; Kil, E.J.; Jung, S.W.; Lee, S.; Lee, T.K. Seasonal dynamics of marine microbial community in the South Sea of Korea. PLoS ONE 2015, 10, e0131633. [Google Scholar] [CrossRef] [Green Version]
- Nimnoi, P.; Pongsilp, N. Marine bacterial communities in the upper gulf of Thailand assessed by Illumina next-generation sequencing platform. BMC Biol. 2020, 20, 19. [Google Scholar] [CrossRef] [Green Version]
- Héry, M.; Volant, A.; Garing, C.; Luquot, L.; Elbaz Poulichet, F.; Gouze, P. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion. FEMS Microbiol. Ecol. 2014, 90, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.C.; He, L.; Yin, K.D.; Pan, G.; Paul, J.H. Bacterial distribution and nutrient limitation in relation to different water masses in the coastal and northwestern South China Sea in late summer. Cont. Shelf Res. 2011, 31, 1214–1223. [Google Scholar] [CrossRef]
- Jiang, F.J.; Hu, Z.L.; Hu, C.Q. Correlation between spatial-temporal distribution of bacterioplankton and environmental factors in the Dapeng Bay. J. Trop. Oceanogr. 2011, 1, 96–100. [Google Scholar] [CrossRef]
- Lasternas, S.; Agusti, S.; Duarte, C.M. Phyto-and bacterioplankton abundance and viability and their relationship with phosphorus across the Mediterranean Sea. Aquat. Microb. Ecol. 2010, 60, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Teira, E.; Martinez-Garcia, S.; Lonborg, C.; Alvarez-Salgado, X.A. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environ. Microbiol. 2009, 1, 545–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.Y.; Wang, K.; Chen, X.X.; Zhu, J.L.; Hu, C.J.; Zhang, D.M. Temporal dynamics of bacterioplankton communities in response to excessive nitrate loading in oligotrophic coastal water. Mar. Pollut. Bull. 2017, 114, 656–663. [Google Scholar] [CrossRef]
- Liao, Z.H.; Yu, K.F.; Chen, B.; Huang, X.Y.; Qin, Z.J.; Yu, X.P. Spatial distribution of benthic algae in the South China Sea: Responses to gradually changing environmental factors and ecological impacts on coral communities. Divers. Distrib. 2021, 27, 929–943. [Google Scholar] [CrossRef]
- Zhang, H. Diversity, Spatio-Temporal Dynamics, and Biogeographical Modeling of Diazotrophic Community Structures in the northern South China Sea. Master’s Thesis, Xiamen University, Xiamen, China, 2010. [Google Scholar] [CrossRef]
- Hayedeh, B.; Martin, A.L.; Katsuhiko, M.; Takashi, G. Metagenomic studies of the Red Sea. Gene 2016, 576, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Xu, L. Microbial Communities Structure and in the Northern Slope of South China Sea & Prilimilary Functional Studies of Kangiella Strains. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2017. [Google Scholar] [CrossRef]
- Agogue, H.; Lamy, D.; Neal, P.R.; Sogin, M.; Herndl, G. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 2011, 20, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, S.J.; Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 2005, 437, 343–348. [Google Scholar] [CrossRef]
- DeLong, E.F.; Preston, C.M.; Mincer, T.; Rich, V.; Hallam, S.J.; Frigaard, N.U.; Martinez, A.; Sullivan, M.B.; Edwards, R.; Brito, B.R.; et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 2006, 311, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Marín, M.C.; Gómez-Baena, G.; López-Lozano, A.; Moreno-Cabezuelo, J.A.; Díez, J.; García-Fernández, J.M. Mixotrophy in marine picocyanobacteria: Use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 2020, 14, 1065–1073. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakagawa, Y.; Harayama, S.; Yamamoto, S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: Proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int. J. Syst. Evol. Micr. 2001, 51, 1639–1652. [Google Scholar] [CrossRef]
- Williams, T.J.; Wilkins, D.; Long, E.; Evans, F.; DeMaere, M.Z.; Raftery, M.J.; Cavicchioli, R. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 2013, 15, 1302–1317. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walayat, S.; Malik, A.; Hussain, N.; Lynch, T. Sphingomonas paucimobilis presenting as acute phlebitis: A case report. IDCases 2018, 11, 6–8. [Google Scholar] [CrossRef]
- Menon, R.R.; Kumari, S.; Kumar, P.; Verma, A.; Krishnamurthi, S.; Rameshkumar, N. Sphingomonas pokkalii sp. nov., a novel plant associated rhizobacterium isolated from a saline tolerant pokkali rice and its draft genome analysis. Syst. Appl. Microbiol. 2019, 42, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Carmen Garcia, M.; Trujillo, L.A.; Carmona, J.A.; Munoz, J.; Carmen Alfaro, M. Flow, dynamic viscoelastic and creep properties of a biological polymer produced by Sphingomonas sp. as affected by concentration. Int. J. Biol. Macromol. 2019, 125, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Yu, Z.H.; Li, Y.Y.; Luo, P.; Jiang, X.; Tian, Y.S.; Ding, X.Q. Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture. Aquaculture 2019, 500, 477–484. [Google Scholar] [CrossRef]
- Li, Y.; Jing, H.M.; Xia, X.M.; Cheung, S.Y.; Suzuki, K.; Liu, H.B. Metagenomic insights into the microbial community and nutrient cycling in the Western Subarctic Pacific Ocean. Front. Microbiol. 2018, 9, 623. [Google Scholar] [CrossRef]
- Bala, K.; Sharma, P.; Lal, R. Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int. J. Syst. Evol. Micr. 2010, 60, 429–433. [Google Scholar] [CrossRef]
- Bakunina, I.; Nedashkovskaya, O.; Balabanova, L.; Zvyagintseva, T.; Rasskasov, V.; Mikhailov, V. Comparative analysis of glycoside hydrolases activities from phylogenetically diverse marine bacteria of the genus Arenibacter. Mar. Drugs 2013, 11, 1977–1998. [Google Scholar] [CrossRef] [Green Version]
- Shai, Y.; Rubin-Blum, M.; Angel, D.L.; Sisma-Ventura, G.; Zurel, D.; Astrahan, P.; Rahav, E. Response of oligotrophic coastal microbial populations in the SE Mediterranean Sea to crude oil pollution; lessons from mesocosm studies. Estuar. Coast. Shelf S. 2021, 249, 107102. [Google Scholar] [CrossRef]
- Smith, A.F.; Rihtman, B.; Stirrup, R.; Silvano, E.; Mausz, M.A.; Scanlan, D.J.; Chen, Y. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae. ISME J. 2019, 13, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.J.; Hao, W.J.; Li, Y.X.; Wang, L.; Sun, T.T.; Zhao, J.M.; Dong, Z.J. Bacterial communities associated with four blooming scyphozoan jellyfish: Potential species-specific consequences for marine organisms and humans health. Front. Microbiol. 2021, 12, 647089. [Google Scholar] [CrossRef] [PubMed]
Vs_Group | SS | df | MS | Fs | p-Value |
---|---|---|---|---|---|
R1–R2 | 0.862785 (6.85591) | 1 (41) | 0.862785 (0.167217) | 5.15966 | <0.001 * |
R1–R3 | 1.07174 (8.51258) | 1 (42) | 1.07174 (0.202681) | 5.28785 | <0.001 * |
R1–R4 | 1.00738 (3.29353) | 1 (15) | 1.00738 (0.219569) | 4.58801 | <0.001 * |
R2–R3 | 1.01776 (12.7476) | 1 (69) | 1.01776 (0.184748) | 5.50893 | <0.001 * |
R2–R4 | 1.24078 (7.52857) | 1 (42) | 1.24078 (0.179252) | 6.92198 | <0.001 * |
R3–R4 | 0.757935 (9.18524) | 1 (43) | 0.757935 (0.21361) | 3.54822 | <0.001 * |
R1–R2–R3–R4 | 2.98119 (16.0412) | 3 (84) | 0.993729 (0.190966) | 5.20369 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, L.; Liu, Y.; Su, S.; Hao, W. Marine Bacterial Communities in the Xisha Islands, South China Sea. Diversity 2023, 15, 865. https://doi.org/10.3390/d15070865
Wang Y, Wang L, Liu Y, Su S, Hao W. Marine Bacterial Communities in the Xisha Islands, South China Sea. Diversity. 2023; 15(7):865. https://doi.org/10.3390/d15070865
Chicago/Turabian StyleWang, Yihui, Lei Wang, Yongliang Liu, Shengqi Su, and Wenjin Hao. 2023. "Marine Bacterial Communities in the Xisha Islands, South China Sea" Diversity 15, no. 7: 865. https://doi.org/10.3390/d15070865
APA StyleWang, Y., Wang, L., Liu, Y., Su, S., & Hao, W. (2023). Marine Bacterial Communities in the Xisha Islands, South China Sea. Diversity, 15(7), 865. https://doi.org/10.3390/d15070865