Potential Distribution of Bryophyte, Entodon challengeri (Entodontaceae), under Climate Warming in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Occurrence Records
2.2. Environmental Variable Datasets
2.3. Software and Digital Maps
2.4. Operation and Accuracy of the MaxEnt Model
2.5. Spatiotemporal Distribution Pattern and Calculation of Area
2.6. Migration Routes of Distributional Centroids
3. Results
3.1. Accuracy Test of the MaxEnt Model Using the ROC Curve and AUC Value
3.2. Critical Environmental Variables Affecting the Distribution of E. challengeri
3.3. Current Distribution Pattern of E. challengeri
3.4. Dynamic Spatiotemporal Distribution of E. challengeri under Future Scenarios
3.5. Migration Routes of Distributional Centroids of E. challengeri
4. Discussion
4.1. Performance of the MaxEnt Model
4.2. Critical Environmental Factors Affecting the Distribution of E. challengeri
4.3. Suitable Habitats for E. challengeri under the Current Climate Scenario
4.4. Spatiotemporal Shifts in Suitable Habitats under Future Climate Scenarios
4.5. Migration Routes of Centroid under Future Climate Scenarios
4.6. Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbarossa, V.; Bosmans, J.; Wanders, N.; King, H.; Biekens, M.F.P.; Huijbregts, M.A.J.; Schipper, A.M. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 2021, 12, 1701. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wang, Y.R.; Peng, P.H.; Wang, G.Y.; Zhao, G.Y.; Zhou, Y.X.; Tang, Z.H. Mapping the distribution and dispersal risks of the alien invasive plant Ageratina adenophora in China. Diversity 2022, 14, 915. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Tao, J. Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a maxent model. Forests 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jiménez, I.; Delgado-Sánchez, P.; Guerrero-González, M.d.l.L.; Puente-Martínez, R.; Flores, J.; De-Nova, J.A. Predicting geographic distribution and habitat suitability of Opuntia streptacantha in paleoclimatic, current, and future scenarios in Mexico. Ecol. Evol. 2023, 13, e10050. [Google Scholar] [CrossRef]
- Puchałka, R.; Paź-Dyderska, S.; Woziwoda, B.; Dyderski, M.K. Climate change will cause climatic niche contraction of Vaccinium myrtillus L. and V. vitis-idaea L. in Europe. Sci. Total Environ. 2023, 892, 164483. [Google Scholar] [CrossRef]
- Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt modelling and impact of climate change on habitat suitability variations of economically important chilgoza pine (Pinus gerardiana Wall.) in South Asia. Forests 2022, 13, 715. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Maksimova, V.; Klavina, L.; Bikovens, O.; Zicmanis, A.; Purmalis, O. Structural characterization and chemical classification of some bryophytes found in Latvia. Chem. Biodivers. 2013, 10, 1284–1294. [Google Scholar] [CrossRef]
- Chiarenzelli, J.R.; Aspler, L.B.; Ozarko, D.L.; Hall, G.E.M.; Powis, K.B.; Donaldson, J.A. Heavy metals in lichens, southern district of Keewatin Northwest Territories Canada. Chemosphere 1997, 35, 1329–1341. [Google Scholar] [CrossRef]
- Cowden, P.; Aherne, J. Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos. Environ. 2019, 201, 84–91. [Google Scholar] [CrossRef]
- Trujillo-Gonzalez, J.M.; Zapata-Muñoz, Y.L.; Torres-Mora, M.A.; García-Navarro, F.J.; Jiménez-Ballesta, C.R. Assessment of urban environmental quality through the measurement of lead in bryophytes: Case study in a medium-sized city. Environ. Geochem. Health 2020, 42, 3131–3139. [Google Scholar] [CrossRef]
- Bates, J.W.; Thompson, K.; Grime, J.P. Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community. Glob. Chang. Biol. 2005, 11, 757–769. [Google Scholar] [CrossRef]
- He, X.L.; He, K.S.; Hyvönen, J. Will bryophytes survive in a warming world? Perspect. Plant Ecol. Evol. Syst. 2016, 19, 49–60. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paz, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions. Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Wu, J.G. The danger and indeterminacy of forfeiting perching space of bryophytes from climate shift: A case study for 115 species in China. Environ. Monit. Assess. 2022, 194, 233. [Google Scholar] [CrossRef]
- Mao, L.H.; Li, Y.; Liu, C.; Fang, Y.M. Prediction of potential distribution of Haplocladium microphyllum in China based on MaxEnt model. Chin. J. Ecol. 2017, 36, 54–60. (In Chinese) [Google Scholar] [CrossRef]
- Koncz, P.; Hermanutz, L.; Marino, P.; Wheeler, J.; Cranston, B. Bryophyte community diversities and expected change under a warming climate in contrasting habitats of the Torngat Mountains, Labrador. Bryologist 2018, 121, 174–182. [Google Scholar] [CrossRef]
- Chan, L.M.; Brown, J.L.; Yoder, A.D. Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol. Phylogenet. Evol. 2011, 59, 523–537. [Google Scholar] [CrossRef]
- Liao, Y.; Song, X.; Ye, Y.; Gu, J.; Wang, R.; Zhuogabayong; Zhao, D.; Shao, X. Climate change may pose additional rhreats to the endangered endemic species Encalypta buxbaumioidea in China. Diversity 2023, 15, 269. [Google Scholar] [CrossRef]
- Scrivanti, L.R.; Anton, A.M. Impact of climate change on the Andean distribution of Poa scaberula (Poaceae). Flora 2021, 278, 151805. [Google Scholar] [CrossRef]
- Iwatsuki, Z.; Tan, B.C. Entodon challengeri (Paris) Cardot, the correct name for E. compressus sensu Mizushima and Crum and Anderson. Taxon 2001, 50, 1125–1128. [Google Scholar] [CrossRef]
- Jiang, P.H.; Luo, Y.L.; Peng, K.J.; Chen, C. Progress on the research of bryophytes applied to monitoring of air pollution by heavy metal. Environ. Pollut. Control 2015, 37, 82–87. (In Chinese) [Google Scholar] [CrossRef]
- Harris, E.S.J. Ethnobryology: Traditional uses and folk classification of bryophytes. Bryologist 2008, 111, 169–217. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Lautenbach, S. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Vanagas, G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interact. Cardiovasc. Thorac. Surg. 2004, 3, 319–322. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Wierzcholska, S.; Dyderski, M.K.; Jagodziński, A.M. Potential distribution of an epiphytic bryophyte depends on climate and forest continuity. Glob. Planet. Chang. 2020, 193, 103270. [Google Scholar] [CrossRef]
- Cong, M.Y.; Jian, M.F.; Xu, Y.Y.; Tang, L.Y.; Li, J.J.; Yang, W.J.; Zhu, Y.M. Geographical distribution and migration routes of the medical bryophyte, Climacium dendroides, under climate warming in China. Plant Biosyst. 2021, 156, 663–670. [Google Scholar] [CrossRef]
- Kruijer, H.; Raes, N.; Stech, M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nova Hedwig. 2010, 91, 399–420. [Google Scholar] [CrossRef]
- Wang, Z.M.; Ye, W.; Xing, F.W. Bryophyte diversity on a tropical continental island (Hainan, China): Potential vulnerable species and environmental indicators. J. Bryol. 2019, 41, 350–360. [Google Scholar] [CrossRef]
- Cong, M.Y.; Xu, Y.Y.; Tang, L.Y.; Yang, W.J.; Jian, M.F. Predicting the dynamic distribution of Sphagnum bogs in China under climate change since the last interglacial period. PLoS ONE 2020, 15, e0230969. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.H. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing. J. Basic Microbiol. 2017, 57, 57–67. [Google Scholar] [CrossRef]
- Delgadillo, C.; Villaseñor, J.L.; Ortiz, E. The potential distribution of Grimmia (Grimmiaceae) in Mexico. Bryologist 2012, 115, 12–22. [Google Scholar] [CrossRef]
- Lin, S.L.; Chen, L.; Peng, W.X.; Yu, J.H.; He, J.K.; Jiang, H.S. Temperature and historical land connectivity jointly shape the floristic relationship between Hainan Island and the neighbouring landmasses. Sci. Total Environ. 2021, 769, 144629. [Google Scholar] [CrossRef]
- Désamoré, A.; Laenen, B.; Stech, M.; Papp, B.; Hedenäs, L.; Mateo, R.G.; Vanderpoorten, A. How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Glob. Chang. Biol. 2012, 18, 2915–2924. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.F.; Zhou, S.Y.; Yin, X.J.; Zhang, C.; Li, R.L.; Chen, J.H.; Ma, D.X.; Yi, W.; Yu, Z.X.; Chen, Y.H. Patterns of tree species richness in Southwest China. Environ. Monit. Assess. 2021, 193, 97. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Matesanz, S.; Valladares, F. Ecological and evolutionary responses of Mediterranean plants to global change. Environ. Exp. Bot. 2014, 103, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Wei, H.Y.; Zhao, Z.F.; Liu, J.; Zhang, Q.Z.; Zhang, X.Y.; Gu, W. The global potential distribution of invasive plants: Anredera cordifolia under climate change and human activity based on random forest models. Sustainability 2020, 12, 1491. [Google Scholar] [CrossRef] [Green Version]
- Varol, T.; Canturk, U.; Cetin, M.; Ozel, H.B.; Sevik, H. Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. For. Ecol. Manag. 2021, 491, 119199. [Google Scholar] [CrossRef]
- Zanatta, F.; Engler, R.; Collart, F.; Broennimann, O.; Mateo, R.G.; Papp, B.; Muñoz, J.; Baurain, D.; Guisan, A.; Vanderpoorten, A. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 2020, 11, 5601. [Google Scholar] [CrossRef]
- Draper, D.; Rosselló-Graell, A.; Garcia, C.; Gomes, C.T.; Sérgio, C. Application of GIS in plant conservation programmes in Portugal. Biol. Conserv. 2003, 113, 337–349. [Google Scholar] [CrossRef]
Codes | Description of Environment Variables | Unit |
---|---|---|
Bio1 | Annual mean air temperature | °C × 10 |
Bio2 | Mean diurnal range | °C × 10 |
Bio3 | Isothermality | ×100 |
Bio4 | Temperature seasonality | ×100 |
Bio5 | Max temperature of warmest month | °C × 10 |
Bio6 | Min temperature of coldest month | °C × 10 |
Bio7 | Temperature annual range | °C × 10 |
Bio8 | Mean temperature of wettest quarter | °C × 10 |
Bio9 | Mean temperature of driest quarter | °C × 10 |
Bio10 | Mean temperature of warmest quarter | °C × 10 |
Bio11 | Mean temperature of coldest quarter | °C × 10 |
Bio12 | Annual precipitation | mm |
Bio13 | Precipitation of wettest month | mm |
Bio14 | Precipitation of driest month | mm |
Bio15 | Precipitation seasonality | ×100 |
Bio16 | Precipitation of wettest quarter | mm |
Bio17 | Precipitation of driest quarter | mm |
Bio18 | Precipitation of warmest quarter | mm |
Bio19 | Precipitation of coldest quarter | mm |
Codes | Description of Environment Variables | Contribution Rate (%) |
---|---|---|
Bio12 | Annual precipitation | 31.7 |
Bio13 | Precipitation of wettest month | 18.8 |
Bio3 | Isothermality | 11.8 |
Alt. | Altitude | 10.8 |
Bio11 | Mean temperature of coldest quarter | 9.3 |
Slo. | Slope | 6.4 |
Bio14 | Precipitation of driest month | 5.9 |
Bio2 | Mean diurnal range | 2.7 |
Asp. | Aspect | 2.3 |
Bio9 | Mean temperature of driest quarter | 0.3 |
Climate Scenarios | Area (×106 km2) | |||||||
---|---|---|---|---|---|---|---|---|
Unsuitable Habitats | Poor-Suitability Habitats | Moderate-Suitability Habitats | High-suitability Habitats | Total Suitable Area | Loss | Gain | Unchanged | |
Current | 5.28 | 1.69 | 1.25 | 1.08 | 4.32 | — | — | — |
RCP2.6–2050s | 5.66 | 1.63 | 1.33 | 0.98 | 3.94 | 0.54 | 0.32 | 3.68 |
RCP2.6–2070s | 5.69 | 1.64 | 1.31 | 0.96 | 3.91 | 0.71 | 0.36 | 3.67 |
RCP8.5–2050s | 6.63 | 1.36 | 1.03 | 0.58 | 2.97 | 1.77 | 0.42 | 3.56 |
RCP8.5–2070s | 6.83 | 1.29 | 0.99 | 0.49 | 2.77 | 2.38 | 0.51 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, M.; Li, Y.; Yang, W. Potential Distribution of Bryophyte, Entodon challengeri (Entodontaceae), under Climate Warming in China. Diversity 2023, 15, 871. https://doi.org/10.3390/d15070871
Cong M, Li Y, Yang W. Potential Distribution of Bryophyte, Entodon challengeri (Entodontaceae), under Climate Warming in China. Diversity. 2023; 15(7):871. https://doi.org/10.3390/d15070871
Chicago/Turabian StyleCong, Mingyang, Yongkun Li, and Wenjing Yang. 2023. "Potential Distribution of Bryophyte, Entodon challengeri (Entodontaceae), under Climate Warming in China" Diversity 15, no. 7: 871. https://doi.org/10.3390/d15070871
APA StyleCong, M., Li, Y., & Yang, W. (2023). Potential Distribution of Bryophyte, Entodon challengeri (Entodontaceae), under Climate Warming in China. Diversity, 15(7), 871. https://doi.org/10.3390/d15070871