Comparison of Growth Characteristics and Active Compounds of Cultivated Hovenia dulcis under Different Environments in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Growth Characteristics
2.3. Samples and Standard Preparation
2.4. UPLC Conditions
2.5. Method Validation
2.6. Soil Sample Analysis
2.7. Data on Climate Factors
2.8. Data Analysis
3. Results and Discussion
3.1. Growth Characteristics
3.2. Validation
3.3. Quantitative Analysis of Active Compounds and HCA Analysis
3.4. Soil Characteristics and Climate Factors
3.5. Correlation between Environmental Factors and Growth Characteristics
3.6. Correlation between Growth Characteristics and Contents of Active Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hyun, T.K.; Eom, S.H.; Yu, C.Y.; Roitsch, T. Hovenia dulcis—An asian traditional herb. Planta Med. 2010, 76, 943–949. [Google Scholar] [CrossRef]
- Gupta, G.S.; Safui, B. The genus Hovenia (Rhamnaceae) in the indian subcontinent. Nelumbo 1983, 26, 52–56. [Google Scholar]
- Lim, T.K. Hovenia dulcis. In Edible Medicinal and Nonmedicinal Plants, 1st ed.; Lim, T.K., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 5, pp. 568–577. [Google Scholar]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Gamba, G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Emerging species with nutraceutical properties: Bioactive compounds from Hovenia dulcis pseudofruits. Food Chem. 2020, 310, 125816. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Zovko-Končić, M.; Chrostek, L. Phytotherapy of alcoholism. Nat. Prod. Commun. 2012, 7, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Morales, P.; Maieves, H.A.; Dias, M.I.; Calhella, R.C.; Sánchez-Mata, M.C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C. Hovenia dulcis Thunb. pseudofruits as functional foods: Phytochemicals and bioactive properties in different maturity stages. J. Funct. Foods 2017, 29, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Sferrazza, G.; Brusotti, G.; Zonfrillo, M.; Temporini, C.; Tengattini, S.; Bonomi, M.; Tateo, F.; Calleri, E.; Pierimarchi, P. Hovenia dulcis Thumberg: Phytochemistry, pharmacology, toxicology and regulatory framework for its use in the European Union. Molecules 2021, 26, 903. [Google Scholar] [CrossRef] [PubMed]
- Le, T.C.; Kang, K.Y.; Yang, I.; Leutou, A.S.; Ko, J.; Son, Y.J.; Yee, S.T.; Nam, S.J. A new secondary metabolite from Korean traditional herb plant Hovenia dulcis. Nat. Prod. Commun. 2018, 13, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.J.; Deng, Y.Q.; Lee, J.H.; Mo, E.K.; Sung, C.K. Chemical composition of the Genus Hovenia. Nat. Prod. Sci. 2003, 9, 143–153. [Google Scholar]
- Wang, M.; Zhu, P.; Jiang, C.; Ma, L.; Zhang, Z.; Zeng, X. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis. Food Chem. Toxicol. 2012, 50, 2964–2970. [Google Scholar] [CrossRef]
- Shen, Y.; Lindemeyer, A.K.; Gonzalez, C.; Shao, X.M.; Spigelman, I.; Olsen, R.W.; Liang, J. Dihydromyricetin as a novel anti-alcohol intoxication medication. J. Neurosci. 2012, 32, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Park, N.H.; Lee, S.J.; Mechesso, A.F.; Boby, N.; Yixian, Q.; Yoon, W.K.; Lee, S.P.; Lee, J.S.; Park, S.C. Hepatoprotective effects of gamma-aminobutyric acid-enriched fermented Hovenia dulcis extract on ethanol-induced liver injury in mice. BMC Complement. Med. Ther. 2020, 20, 75. [Google Scholar] [CrossRef]
- Na, C.S.; Yoon, S.Y.; Kim, J.B.; Na, D.S.; Dong, M.S.; Lee, M.Y.; Hong, C.Y. Anti-fatigue activity of Hovenia dulcis on a swimming mouse model through the inhibition of stress hormone expression and antioxidation. Am. J. Chin. Med. 2013, 41, 945–955. [Google Scholar] [CrossRef]
- Liu, Y.; Qiang, M.; Sun, Z.; Du, Y. Optimization of ultrasonic extraction of polysaccharides from Hovenia dulcis peduncles and their antioxidant potential. Int. J. Biol. Macromol. 2015, 80, 350–357. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J. Evaluation of anti-diabetic activities of Hovenia dulcis Thunb. Adv. Mater. 2012, 554–556, 1827–1830. [Google Scholar] [CrossRef]
- Kim, H.L.; Sim, J.E.; Choi, H.M.; Choi, I.Y.; Jeong, M.Y.; Park, J.B.; Jung, Y.; Youn, D.H.; Cho, J.H.; Kim, J.H.; et al. The AMPK pathway mediates an anti-adipogenic effect of fruits of Hovenia dulcis Thunb. Food Funct. 2014, 5, 2961. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Kim, M.; Randy, A.; Nho, C.W. Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice. Food Funct. 2015, 6, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Castro, T.C.; Pelliccione, V.L.B.; Figueiredo, M.R.; Soares, R.O.A.; Bozza, M.T.; Viana, V.R.C.; Albarallo, N.; Solange, F.L.F. Actividade antineoplásica e tripanocida de Hovenia dulcis Thunb. cultivada in vivo e in vitro. Rev. Bras. Farmacogn. 2002, 12, 96–99. [Google Scholar] [CrossRef]
- Park, S.H.; Chang, E.Y. Antimutagenic and cytotoxic effects of Hovenia dulcis Thumb. leaves extracts. Korean J. Soc. Food Sci. Nutr. 2007, 36, 1371–1376. [Google Scholar] [CrossRef]
- Mi, H.J.; Nim, L.H.; Jin, J.H. Hovenia dulcis Thunb. and its active compound ampelopsin inhibit angiogenesis through suppression of VEGFR2 signaling and HIF-1α expression. Oncol. Rep. 2017, 38, 3430–3438. [Google Scholar]
- Yang, B.; Wu, Q.; Luo, Y.; Yang, Q.; Chen, G.; Wei, X.; Kan, J. Japanese grape (Hovenia dulcis) polysaccharides: New insight into extraction, characterization, rheological properties, and bioactivities. Int. J. Biol. Macromol. 2019, 134, 631–644. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, W.; Li, Z.; Ling, S. Effect of juice fermented vinegar from Hovenia dulcis peduncles on chronically alcohol-induced liver damage in mice. Food Funct. 2012, 3, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.A.A.; Reineri, D.; Loss, E.M.S. Cookies formulados com biomassa fermentada de uva-do-japão: Uma nova proposta de aproveitamento. Braz. J. Food Res. 2015, 6, 26–36. [Google Scholar]
- Pinto, J.T.; Alvarenga, L.F.; Oliveira, D.P.D.; Oliveira, T.T.D.; Schwan, R.F.; Dias, D.R.; Queiroz, J.H.D. Elaboration and characterization of Japanese raisin tree (Hovenia dulcis Thumb.) pseudofruits fermented alcoholic beverage. Food Sci. Technol. 2017, 37, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Park, W.L.; Cho, H.D.; Kim, J.H.; Min, H.J.; Seo, K.I. Antioxidant activity and blood alcohol concentration lowering effect of fermented Hovenia dulcis fruit vinegar. Food Sci. Biotechnol. 2022, 32, 299–308. [Google Scholar] [CrossRef]
- Wink, M.; Schimmer, O. Molecular modes of action of defensive secondary metabolites. In Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology; Wink, M., Ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Patil, B.S.; Jayaprakasha, G.K.; Murthy, K.N.C.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef]
- Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.; Altaf-Ul-Amin, M.; Darusman, L.K.; et al. KNApAScK family databases: Intergrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012, 53, e1. [Google Scholar] [CrossRef] [Green Version]
- Takai, M.; Ohihara, Y.; Shibata, S. New peptide alkaloids from Hovenia dulcis and H. tomentella. Phytochemistry 1973, 12, 2985–2986. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, I.S.; Rehman, S.U.; Na, C.S.; Yoo, H.H. Hplc determination of bioactive flavonoids in Hovenia dulcis fruit extracts. J. Chromatogr. Sci. 2016, 54, 130–135. [Google Scholar]
- Linsheng, D.; Qiaoli, L.; Yanfen, T. Study on flavonoids in seeds of Hovenia dulcis. Yaoxue Xuebao 1997, 32, 600–602. [Google Scholar]
- Hase, K.; Ohsugi, M.; Xiong, Q.; Basnet, P.; Kadota, S.; Namba, T. Hepatoprotective effect of Hovenia dulcis Thunb. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide. Biol. Pharm. Bull. 1997, 20, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Cha, K.H.; Selenge, D.; Solongo, A.; Nho, C.W. The chemopreventive effect of taxifolin is exerted through ARE-dependent gene regulation. Biol. Pharm. Bull. 2007, 30, 1074–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.H.; Oh, Y.C.; Cho, W.K.; Yim, N.H.; Ma, J.Y. Hoveniae semen seu fructus ethanol extract exhibits anti-inflammatory activity via MAPK, AP-1, and STAT signaling pathways in LPS-stimulated RAW 264.7 and mouse peritoneal macrophages. Mediat. Inflamm. 2019, 4, 9184769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duthie, S.; Collins, A.; Duthie, G.; Dobson, V. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1997, 393, 223–231. [Google Scholar] [CrossRef]
- Ong, K.C.; Khoo, H.-E. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci. 2000, 67, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, K.; Figueiredo, C.; Figueredo, T.; Freire, K.R.I.; Santos, F.A.R.; Alcantara-Neves, N.M.; Silva, T.M.S.; Piuvezam, M.R. Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice. J. Ethnopharmacol. 2008, 119, 41–46. [Google Scholar] [CrossRef]
- Xavier, C.P.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother. Pharmacol. 2011, 68, 1449–1457. [Google Scholar] [CrossRef]
- Jung, C.H.; Cho, I.; Ahn, J.; Jeon, T.I.; Ha, T.Y. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism. Phytother. Res. 2013, 27, 139–143. [Google Scholar] [CrossRef]
- Lee, H.Y. Hovenodulinol, an Active Compound Extracted from Hovenia dulcis Thunb., a Preparing the Same, and an Alcohol Decomposing Agent or an Agent for Alleviating Lingering Intoxication Containing the Same. U.S. Patent WO 20020224678A1, 28 March 2002. [Google Scholar]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Robinson, M.M.; Zhang, X. Traditional medicines: Global situation, issues and challenges. In The world Medicines Situation, 3rd ed.; WHO: Geneva, Switzerland, 2011; pp. 1–14. [Google Scholar]
- Khan, M.S.A.; Ahmad, I. Herbal medicine: Current trends and future prospects. In New Look to Phytomedicine, 1st ed.; Khan, M.S.A., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 3–13. [Google Scholar]
- Tilburt, J.C.; Kaptchuk, T.J. Herbal medicine research and global health: An ethical analysis. Bull. World Health Organ. 2008, 86, 594–599. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. HerbMed Pharmacol. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Chan, K.; Shaw, D.; Simmonds, M.S.; Leon, C.J.; Xu, Q.; Lu, A.; Sutherland, I.; Ignatova, S.; Zhu, Y.P.; Verpoorte, R.; et al. Good practice in reviewing and publishing studies on herbal medicine, with special emphasis on traditional Chinese medicine and Chinese materia medica. J. Ethnopharmacol. 2012, 140, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Horti. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Pott, D.M.; Osorio, S.; Vallarino, J.G. From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front. Plant Sci. 2019, 10, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.B.; Huh, J.H.; Um, Y. Correlations among soil properties, growth characteristics, and ginsenoside contents in wild-simulated ginseng with different ages. Forests 2022, 13, 2065. [Google Scholar] [CrossRef]
- Zhang, X.D.; Yu, Y.G.; Yang, D.F.; Qi, Z.C.; Liu, R.Z.; Deng, F.T.; Cai, Z.X.; Li, Y.; Sun, Y.F.; Liang, Z.S. Chemotaxonomic variation in secondary metabolites contents and their correlation between environmental factors in Salvia miltiorrhiza Bunge from natural habitat of China. Ind. Crops Prod. 2022, 113, 335–347. [Google Scholar] [CrossRef]
- Park, Y.; Park, P.S.; Jeong, D.H.; Sim, S.; Kim, N.; Park, H.; Jeon, K.S.; Um, Y.; Kim, M.J. The characteristics of the growth and the active compounds of Angelica gigas Nakai in cultivation sites. Plants 2020, 9, 823. [Google Scholar] [CrossRef]
- Lee, D.H.; Son, Y.H.; Jang, J.H.; Lee, S.Y.; Kim, H.J. The growth characteristics and the active compounds of Cudrania tricuspidata fruits in different cultivation environments in South Korea. Plants 2023, 12, 2107. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, J. Breeding of Korean raisin tree (Hovenia dulcis var. koreana Nakai) for high productivity in Korea. Korean J. Breed Sci. 2008, 40, 371–376. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Tokalıoğlu, Ş. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012, 134, 2504–2508. [Google Scholar] [CrossRef]
- Fischer, G.; Ramírez, F.; Casierra-Posada, F. Ecophysiological aspects of fruit crops in the era of climate change. a review. Agron. Colomb. 2016, 34, 190–199. [Google Scholar] [CrossRef]
- National Institute of Forest Science. Hovenia dulcis; National Institute of Forest Science: Seoul, Republic of Korea, 2017; pp. 35–43. (In Korean)
- Reason, A.J. Validation of amino acid analysis method. Methods Mol. Biol. 2003, 211, 181–194. [Google Scholar] [PubMed]
- Lee, J.E.; Kyunn, W.W. Chemotaxonomic classification using flavonoid and comparative alcohol decomposition activity of different origin of Hovenia dulcis fruit. Vegetos 2015, 28, 111–123. [Google Scholar] [CrossRef]
- Oleszek, W.; Stochmal, A.; Karolewski, P.; Simonet, A.M.; Macias, F.A.; Tava, A. Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area. Biochem. Syst. Ecol. 2002, 30, 1011–1022. [Google Scholar] [CrossRef]
- Dong, J.; Ma, X.; Wei, Q.; Peng, S.; Zhang, S. Effects of growing location on the contents of secondary metabolites in the leaves of four selected superior clones of Eucommia ulmoides. Ind. Crops Prod. 2011, 34, 1607–1614. [Google Scholar] [CrossRef]
- National Institute of Forest Science. Forest Soil Acidification Status in Korea; National Institute of Forest Science: Seoul, Republic of Korea, 2021; p. 23. (In Korean)
- Srivastava, A.K. Nutrient management in nagpur mandarin: Frontier developments. J. Agric. Sci. 2013, 2, 1–14. [Google Scholar]
- Srivastava, A.K.; Ngullie, E. Integrated nutrient management: Theory and practice. Dyn. Soil Dyn. Plant 2009, 3, 1–30. [Google Scholar]
- Bergamin, R.S.; Gama, M.; Almerão, M.; Hofmann, G.S.; Anastácio, P.M. Predicting current and future distribution Hovenia dulcis Thunb. (Rhamnaceae) worldwide. Biol. Invasions 2022, 24, 2229–2243. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Goldman, D.H. Hovenia dulcis (Rhamnaceae) naturalized in central Texas. Bot. Res. Inst. Tex. 1998, 18, 350–352. [Google Scholar]
- Carvaloho, P.E.R. Ecologia, Silvicultura e Usos da Uva-do-Japao (Hovenia dulcis Thunberg); Embrapa-CNP Florestas: Colombo, Sri Lanka, 1994. [Google Scholar]
- Jiang, G.L.; Zhang, G.L.; Sun, S.X.; Li, J.; Xie, H.J.; Chen, D.; Tu, M.Y. The biological responses of loquat (Eriobotrya japonica Lindl.) in diverse ecotypes of Sichuan. J. Agron. 2010, 9, 82–86. [Google Scholar] [CrossRef]
- Monaco, S.; Hatch, D.J.; Sacco, D.; Bertora, C.; Grignani, C. Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biol. Biochem. 2008, 40, 608–615. [Google Scholar] [CrossRef]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Tkaczyk, P.; Bednarek, W.; Dresler, S.; Krzyszczak, J.; Baranowski, P.; Brodowska, S.M. Content of certain macro- and microelements in orchard soils in relation to agronomic categories and reaction of these soil. J. Elem. 2018, 23, 1361–1372. [Google Scholar]
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Gautier, H.; Rocci, A.; Buret, M.; Grasselly, D.; Causse, M. Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. J. Sci. Food Agric. 2005, 85, 1009–1016. [Google Scholar] [CrossRef]
- Ali, M.M.; Yousef, A.F.; Li, B.; Chen, F. Effect of environmental factors on growth and development of fruits. Trop. Plant Biol. 2021, 14, 226–238. [Google Scholar] [CrossRef]
- Shivashankara, K.S.; Pavithra, K.C.; Laxman, R.H.; Sadashiva, A.T.; Christopher, M.G. Genotypic variability in tomato for total carotenoids and lycopene content during summer and response to post harvest temperature. J. Hortic. Sci. 2014, 9, 98–102. [Google Scholar]
- Lee, D.H.; Park, Y.; Jang, J.H.; Son, Y.; Kim, J.A.; Lee, S.-Y.; Kim, H.J. The growth characteristics and lignans contents of Schisandra chinensis fruits from different cultivation regions. Appl. Biol. Chem. 2022, 65, 77. [Google Scholar] [CrossRef]
- Choi, S.H.; Ahn, J.B.; Kozukue, N.; Levin, C.E.; Friedman, M. Distribution of free amino acids, flavonoids, total phenolic, and antioxidative activities of jujube (Ziziphus jujuba) Fruits and seeds harvested from plants grown in Korea. Agric. Food Chem. 2011, 59, 6594–6604. [Google Scholar] [CrossRef]
- Blažek, J.; Hlušičková, I. Seed count, fruit quality and storage properties in four apple cultivars. J. Fruit Ornam. Plant Res. 2006, 14, 151–160. [Google Scholar]
- de Jesús Guerrero, E.; Rubio, W.; Torres, W.; Saavedra, S.H.; Muñoz, L.M.M.; Reyes, C.; Villegas, B.; Morales, C.S.; de Jesús Jarma, A.; Careño, J.A.F.; et al. Manual Para el Cultivo de Frutales en el Trópico; Produmedios: Bogota, Columbia, 2012. [Google Scholar]
Compound | Regression Equation | Correlation Coefficient (r2) | Range (µg/mL) | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|---|---|
Ampelopsin | Y = 897.71X − 3436.4 | 0.9999 | 20–800 | 0.27 | 0.89 |
Taxifolin | Y = 811.56X + 378.98 | 1.0000 | 20–800 | 0.32 | 1.06 |
Myricetin | Y = 8134.9X + 21650 | 0.9999 | 5–400 | 0.02 | 0.06 |
Quercetin | Y = 13583X − 10778 | 1.0000 | 5–400 | 0.02 | 0.06 |
Compound | Concentration (µg/mL) | Intra-Day (n = 3) 1 | Inter-Day (n = 3) 2 | ||
---|---|---|---|---|---|
Concentration Found (µg/mL) | RSD (%) | Concentration Found (µg/mL) | RSD (%) | ||
Ampelopsin | 20 | 19.6 | 0.89 | 19.7 | 0.27 |
100 | 101.1 | 0.06 | 101.0 | 0.13 | |
400 | 400.8 | 0.30 | 402.0 | 0.43 | |
Taxifolin | 20 | 19.3 | 0.56 | 19.4 | 0.63 |
100 | 98.5 | 0.18 | 98.8 | 0.51 | |
400 | 397.9 | 0.04 | 401.4 | 0.79 | |
Myricetin | 20 | 20.7 | 0.49 | 20.7 | 0.38 |
100 | 99.9 | 0.08 | 100.0 | 0.08 | |
400 | 409.0 | 0.18 | 409.3 | 0.06 | |
Quercetin | 20 | 19.1 | 0.93 | 19.2 | 0.59 |
100 | 97.0 | 0.21 | 97.6 | 0.55 | |
400 | 399.6 | 0.46 | 400.2 | 0.78 |
Compound | Concentration (µg/mL) | Recovery (%) (n = 3) | RSD (%) |
---|---|---|---|
Ampelopsin | 10 | 98.95 | 0.82 |
20 | 98.72 | 0.36 | |
100 | 102.84 | 0.35 | |
Taxifolin | 10 | 100.06 | 0.37 |
20 | 99.74 | 0.68 | |
100 | 99.94 | 0.13 | |
Myricetin | 10 | 101.63 | 0.29 |
20 | 103.38 | 0.36 | |
100 | 104.49 | 0.10 | |
Quercetin | 10 | 103.63 | 0.22 |
20 | 101.18 | 0.40 | |
100 | 101.27 | 0.21 |
Cultivation Sites (n = 3) | Ampelopsin (%) | Taxifolin (%) | Myricetin (%) | Quercetin (%) | Total (%) |
---|---|---|---|---|---|
1 | 2.008 ± 0.346 b | ND * | 0.064 ± 0.018 ab | ND | 2.071 ± 0.363 bc |
2 | 0.074 ± 0.052 g | 0.925 ± 0.242 cd | 0.003 ± 0.002 e | 0.061 ± 0.022 cd | 1.062 ± 0.269 cde |
3 | 1.496 ± 0.134 cd | 0.004 ± 0.003 d | 0.048 ± 0.014 bc | 0.001 ± 0.000 d | 1.548 ± 0.145 bcde |
4 | 1.800 ± 0.594 bc | 0.718 ± 1.243 cd | 0.054 ± 0.027 bc | 0.025 ± 0.043 cd | 2.597 ± 0.751 b |
5 | 1.767 ± 0.190 bc | ND | 0.053 ± 0.019 bc | 0.001 ± 0.001 d | 1.821 ± 0.196 bc |
6 | ND | 0.352 ± 0.152 d | ND | 0.028 ± 0.011 cd | 0.380 ± 0.163 e |
7 | ND | 3.951 ± 1.228 a | 0.005 ± 0.001 e | 0.166 ± 0.065 b | 4.122 ± 1.291 a |
8 | 0.007 ± 0.007 g | 4.587 ± 0.833 a | 0.005 ± 0.005 e | 0.321 ± 0.158 a | 4.920 ± 0.951 a |
9 | 1.208 ± 0.277 de | 0.879 ± 0.887 cd | 0.033 ± 0.016 cd | 0.021 ± 0.031 cd | 2.147 ± 0.698 bc |
10 | 0.742 ± 0.178 ef | 0.298 ± 0.437 d | 0.018 ± 0.006 de | 0.027 ± 0.031 d | 1.070 ± 0.445 cde |
11 | 1.523 ± 0.213 bcd | ND | 0.049 ± 0.007 bc | ND | 1.572 ± 0.208 bcde |
12 | 2.513 ± 0.638 a | ND | 0.082 ± 0.029 a | ND | 2.595 ± 0.667 b |
13 | 0.809 ± 0.278 ef | ND | 0.017 ± 0.005 de | ND | 0.826 ± 0.283 cde |
14 | 1.718 ± 0.139 bc | ND | 0.035 ± 0.002 cd | ND | 1.754 ± 0.140 bcd |
15 | 0.461 ± 0.210 fg | ND | 0.009 ± 0.003 e | ND | 0.470 ± 0.213 de |
16 | ND | 1.871 ± 0.416 bc | ND | 0.073 ± 0.036 cd | 1.944 ± 0.451 bc |
17 | ND | 2.525 ± 1.731 b | ND | 0.104 ± 0.071 bc | 2.628 ± 1.802 b |
Correlation Coefficient (r) * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OM | TN | Avail. P2O5 | Exchangeable Cations | CEC | pH | EC | Sand | Silt | Clay | ||||
K+ | Ca2+ | Mg2+ | Na+ | ||||||||||
Length of fruit bunch | 0.187 | 0.192 | 0.130 | 0.120 | 0.146 | 0.092 | −0.059 | 0.109 | 0.064 | 0.261 | −0.054 | 0.133 | −0.115 |
(0.188) | (0.176) | (0.362) | (0.400) | (0.307) | (0.520) | (0.678) | (0.447) | (0.657) | (0.065) | (0.707) | (0.353) | (0.420) | |
Width of fruit bunch | −0.116 | −0.041 | −0.218 | 0.211 | −0.053 | 0.214 | 0.308 * | −0.095 | 0.023 | −0.114 | −0.245 | 0.369 ** | −0.180 |
(0.419) | (0.774) | (0.125) | (0.138) | (0.709) | (0.131) | (0.028) | (0.507) | (0.872) | (0.426) | (0.083) | (0.008) | (0.206) | |
No. of peduncles per fruit | −0.010 | 0.030 | 0.100 | 0.500 ** | −0.034 | 0.201 | 0.235 | −0.039 | 0.102 | −0.039 | −0.168 | −0.013 | 0.267 |
(0.944) | (0.834) | (0.483) | (0.000) | (0.814) | (0.158) | (0.097) | (0.787) | (0.478) | (0.785) | (0.237) | (0.929) | (0.058) | |
Length of peduncle | −0.147 | −0.091 | −0.323 * | −0.130 | 0.010 | 0.034 | 0.350 * | −0.053 | 0.053 | −0.089 | −0.309 * | 0.464 ** | −0.226 |
(0.304) | (0.525) | (0.021) | (0.361) | (0.946) | (0.815) | (0.012) | (0.713) | (0.712) | (0.533) | (0.028) | (0.001) | (0.111) | |
Width of peduncle | −0.103 | 0.003 | −0.028 | 0.250 | 0.236 | 0.329 * | 0.288* | −0.129 | 0.309 * | 0.013 | −0.216 | 0.128 | 0.130 |
(0.473) | (0.984) | (0.846) | (0.077) | (0.096) | (0.019) | (0.041) | (0.367) | (0.028) | (0.926) | (0.128) | (0.369) | (0.363) | |
Diameter of peduncle | −0.296 * | −0.219 | −0.159 | −0.136 | −0.118 | 0.043 | 0.084 | −0.296 * | 0.133 | −0.371 ** | −0.273 | 0.262 | 0.018 |
(0.035) | (0.122) | (0.266) | (0.341) | (0.409) | (0.763) | (0.556) | (0.035) | (0.352) | (0.007) | (0.053) | (0.063) | (0.899) | |
Fresh weight of peduncle | 0.199 | 0.283 * | 0.148 | 0.095 | 0.332 * | 0.433 ** | −0.141 | 0.134 | 0.313 * | −0.013 | −0.250 | 0.329 * | −0.114 |
(0.161) | (0.045) | (0.300) | (0.508) | (0.017) | (0.002) | (0.323) | (0.347) | (0.025) | (0.930) | (0.077) | (0.018) | (0.424) | |
No. of seeds per peduncle | 0.416 ** | 0.387 ** | 0.323 * | 0.011 | 0.280 * | 0.145 | −0.395 ** | 0.379 ** | 0.073 | 0.164 | −0.283 * | 0.373 ** | −0.130 |
(0.002) | (0.005) | (0.021) | (0.940) | (0.046) | (0.311) | (0.004) | (0.006) | (0.612) | (0.251) | (0.044) | (0.007) | (0.363) | |
Sugar contents | −0.027 | −0.002 | 0.005 | 0.177 | 0.003 | −0.019 | 0.288 * | −0.021 | −0.116 | 0.097 | 0.275 | −0.347 * | 0.104 |
(0.851) | (0.990) | (0.973) | (0.215) | (0.982) | (0.893) | (0.040) | (0.885) | (0.419) | (0.497) | (0.051) | (0.013) | (0.470) | |
Fresh weight of 10 peduncle | 0.244 | 0.308 * | 0.081 | 0.051 | 0.379 ** | 0.430 ** | −0.098 | 0.136 | 0.280 * | −0.003 | −0.252 | 0.392 ** | −0.203 |
(0.085) | (0.028) | (0.574) | (0.723) | (0.006) | (0.002) | (0.492) | (0.342) | (0.047) | (0.984) | (0.074) | (0.004) | (0.153) |
Correlation Coefficient (r) * | ||||||||
---|---|---|---|---|---|---|---|---|
Annual Mean Temp. | Annual Mean Max Temp. | Annual Mean Min Temp. | Annual Max Temp. | Annual Min Temp. | Monthly Precipitation | Sunshine Duration | Altitude | |
Length of the fruit bunch | −0.146 | −0.166 | −0.121 | −0.152 | −0.090 | 0.008 | −0.026 | −0.019 |
(0.307) | (0.243) | (0.397) | (0.287) | (0.528) | (0.995) | (0.854) | (0.896) | |
Width of the fruit bunch | 0.061 | −0.199 | 0.141 | −0.235 | 0.025 | −0.371 ** | 0.376 ** | −0.034 |
(0.670) | (0.162) | (0.323) | (0.097) | (0.859) | (0.007) | (0.007) | (0.812) | |
No. of peduncles per fruit | 0.255 | 0.187 | 0.239 | 0.367 ** | 0.051 | −0.346 * | 0.298 * | 0.530 ** |
(0.071) | (0.190) | (0.091) | (0.008) | (0.723) | (0.013) | (0.034) | (0.000) | |
Length of peduncle | 0.007 | −0.233 | 0.104 | −0.347 * | 0.045 | −0.175 | 0.269 | −0.294 * |
(0.962) | (0.099) | (0.468) | (0.013) | (0.756) | (0.219) | (0.057) | (0.036) | |
Width of peduncle | 0.045 | −0.033 | 0.066 | 0.005 | −0.036 | −0.339 * | 0.150 | 0.035 |
(0.755) | (0.816) | (0.645) | (0.972) | (0.804) | (0.015) | (0.293) | (0.809) | |
Diameter of peduncle | 0.058 | −0.122 | 0.144 | −0.229 | 0.043 | −0.273 | 0.253 | −0.260 |
(0.684) | (0.393) | (0.427) | (0.106) | (0.765) | (0.053) | (0.074) | (0.065) | |
Fresh weight of peduncle | −0.282 * | −0.215 | −0.261 | −0.142 | −0.230 | −0.239 | −0.179 | −0.208 |
(0.045) | (0.131) | (0.065) | (0.320) | (0.104) | (0.091) | (0.209) | (0.143) | |
No. of seeds per peduncle | −0.279 * | −0.222 | −0.281 * | −0.168 | −0.178 | −0.017 | −0.156 | −0.046 |
(0.047) | (0.117) | (0.046) | (0.239) | (0.210) | (0.908) | (0.273) | (0.747) | |
Sugar contents of peduncle | 0.396 ** | 0.446 ** | 0.337 * | 0.260 | 0.385 ** | 0.166 | 0.019 | −0.176 |
(0.004) | (0.001) | (0.016) | (0.065) | (0.005) | (0.245) | (0.897) | (0.216) | |
Fresh weight of 10 peduncles | −0.304 * | −0.265 | −0.266 | −0.238 | −0.239 | −0.253 | −0.177 | −0.267 |
(0.030) | (0.060) | (0.059) | (0.093) | (0.091) | (0.073) | (0.215) | (0.058) |
Correlation Coefficient (r) * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Length of Fruit Bunch | Width of Fruit Bunch | No. of Peduncles per Fruit | Length of Peduncle | Width of Peduncle | Diameter of Peduncle | Fresh Weight of Peduncle | No. of Seeds per Peduncle | Sugar Contents of Peduncle | Fresh Weight of 10 Peduncles | |
Ampelopsin | 0.298 * | 0.084 | −0.334 * | 0.093 | −0.056 | −0.046 | 0.271 | 0.431 ** | −0.228 | 0.313 * |
(0.034) | (0.560) | (0.016) | (0.515) | (0.694) | (0.750) | (0.054) | (0.002) | (0.108) | (0.025) | |
Taxifolin | −0.133 | −0.201 | 0.259 | −0.116 | 0.007 | −0.072 | −0.140 | 0.077 | −0.028 | −0.182 |
(0.351) | (0.156) | (0.066) | (0.418) | (0.959) | (0.617) | (0.329) | (0.590) | (0.844) | (0.200) | |
Myricetin | 0.320 * | 0.035 | −0.298 * | 0.040 | −0.001 | −0.079 | 0.308 * | 0.372 ** | −0.222 | 0.332 * |
(0.022) | (0.808) | (0.033) | (0.783) | (0.996) | (0.581) | (0.028) | (0.007) | (0.117) | (0.017) | |
Quercetin | −0.263 | −0.315 * | 0.111 | −0.084 | −0.052 | 0.068 | −0.123 | −0.010 | 0.023 | −0.167 |
(0.062) | (0.024) | (0.438) | (0.560) | (0.720) | (0.635) | (0.389) | (0.947) | (0.872) | (0.242) | |
Total | 0.031 | −0.202 | 0.082 | −0.079 | −0.033 | −0.112 | 0.015 | 0.387 ** | −0.189 | −0.010 |
(0.829) | (0.155) | (0.566) | (0.583) | (0.819) | (0.435) | (0.914) | (0.005) | (0.184) | (0.947) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.; Lee, D.H.; Park, G.H.; Jang, J.-H.; Kim, J.A.; Park, Y.; Lee, S.-Y.; Kim, H.-J. Comparison of Growth Characteristics and Active Compounds of Cultivated Hovenia dulcis under Different Environments in South Korea. Diversity 2023, 15, 905. https://doi.org/10.3390/d15080905
Son Y, Lee DH, Park GH, Jang J-H, Kim JA, Park Y, Lee S-Y, Kim H-J. Comparison of Growth Characteristics and Active Compounds of Cultivated Hovenia dulcis under Different Environments in South Korea. Diversity. 2023; 15(8):905. https://doi.org/10.3390/d15080905
Chicago/Turabian StyleSon, Yonghwan, Dong Hwan Lee, Gwang Hun Park, Jun-Hyuk Jang, Ji Ah Kim, Youngki Park, Sun-Young Lee, and Hyun-Jun Kim. 2023. "Comparison of Growth Characteristics and Active Compounds of Cultivated Hovenia dulcis under Different Environments in South Korea" Diversity 15, no. 8: 905. https://doi.org/10.3390/d15080905
APA StyleSon, Y., Lee, D. H., Park, G. H., Jang, J. -H., Kim, J. A., Park, Y., Lee, S. -Y., & Kim, H. -J. (2023). Comparison of Growth Characteristics and Active Compounds of Cultivated Hovenia dulcis under Different Environments in South Korea. Diversity, 15(8), 905. https://doi.org/10.3390/d15080905