Ecological Factors and Anthropogenic Disturbance May Restructure the Skin Microbiota of Maoershan Hynobiids (Hynobius maoershanensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preservation
2.2. Anthropogenic Disturbance
2.3. DNA Extraction, Amplification, and Sequencing
2.4. Data Analysis
3. Results
3.1. Composition of Skin Microbiota in Maoershan Hynobiids
3.2. Alpha and Beta Diversity of the Skin Microbiota Varies in Habitats
3.3. Differences in the Skin Microbiota between HADD Habitats and LADD Habitats
3.4. Effects of Ecological Factors on Skin Microbiota Diversity and Dominant Bacteria
4. Discussion
4.1. Characteristics of the Skin Microbiota of Maoershan hynobiids
4.2. Effects of Ecological Factors on the Skin Microbiota
4.3. Effects of Anthropogenic Disturbance on the Skin Microbiota
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assis, A.B.; Bevier, C.R.; Chaves Barreto, C.; Arturo Navas, C. Environmental influences on and antimicrobial activity of the skin microbiota of Proceratophrys boiei (Amphibia, Anura) across forest fragments. Ecol. Evol. 2020, 10, 901–913. [Google Scholar] [CrossRef] [Green Version]
- Mangoni, M.L.; Miele, R.; Tindaro, G.R.; Barra, D.; Simmaco, M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J. 2001, 15, 1431–1432. [Google Scholar] [CrossRef] [PubMed]
- West, A.G.; Waite, D.W.; Deines, P.; Bourne, D.G.; Digby, A.; McKenzie, V.J.; Taylor, M.W. The microbiome in threatened species conservation. Biol. Conserv. 2019, 229, 2164–2172. [Google Scholar] [CrossRef]
- Kueneman, J.G.; Woodhams, D.C.; Harris, R.; Archer, H.M.; Knight, R.; McKenzie, V.J. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc. Biol. Sci. 2016, 283, 20161553. [Google Scholar] [CrossRef] [PubMed]
- Piovia-Scott, J.; Rejmanek, D.; Woodhams, D.C.; Worth, S.J.; Kenny, H.; McKenzie, V.; Lawler, S.P.; Foley, J.E. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 2017, 74, 217–226. [Google Scholar] [CrossRef]
- Neely, W.J.; Greenspan, S.E.; Stahl, L.M.; Heraghty, S.D.; Marshall, V.M.; Atkinson, C.L.; Becker, C.G. Habitat disturbance linked with host microbiome dispersion and Bd dynamics in temperate amphibians. Microb. Ecol. 2022, 84, 901–910. [Google Scholar] [CrossRef]
- Ross, A.A.; Rodrigues Hoffmann, A.; Neufeld, J.D. The skin microbiome of vertebrates. Microbiome 2019, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belden, L.K.; Hughey, M.C.; Rebollar, E.A.; Umile, T.P.; Loftus, S.C.; Burzynski, E.A.; Minbiole, K.P.; House, L.L.; Jensen, R.V.; Becker, M.H.; et al. Panamanian frog species host unique skin bacterial communities. Front. Microbiol. 2015, 6, 1171. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, P.J.; Smith, J.M.; Harris, R.N.; Minbiole, K.P.C. Gut of red-backed salamanders (Plethodon cinereus) may serve as a reservoir for an antifungal cutaneous bacterium. J. Herpetol. 2011, 45, 329–332. [Google Scholar] [CrossRef]
- Antoniazzi, M.M.; Mailho-Fontana, P.L.; Nomura, F.; Azevedo, H.B.; Pimenta, D.C.; Sciani, J.M.; Carvalho, F.R.; Rossa-Feres, D.C.; Jared, C. Reproductive behaviour, cutaneous morphology, and skin secretion analysis in the anuran Dermatonotus muelleri. iScience 2022, 25, 104073. [Google Scholar] [CrossRef]
- Rebollar, E.A.; Martínez-Ugalde, E.; Orta, A.H. The amphibian skin microbiome and its protective role against chytridiomycosis. Herpetologica 2020, 76, 167–177. [Google Scholar] [CrossRef]
- Pereira, K.E.; Crother, B.I.; Sever, D.M.; Fontenot, C.L., Jr.; Pojman, J.A., Sr.; Wilburn, D.B.; Woodley, S.K. Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens. J. Exp. Biol. 2018, 221, jeb183707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenzie, V.J.; Bowers, R.M.; Fierer, N.; Knight, R.; Lauber, C.L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 2012, 6, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Abarca, J.G.; Zuniga, I.; Ortiz-Morales, G.; Lugo, A.; Viquez-Cervilla, M.; Rodriguez-Hernandez, N.; Vazquez-Sanchez, F.; Murillo-Cruz, C.; Torres-Rivera, E.A.; Pinto-Tomas, A.A.; et al. Characterization of the skin microbiota of the cane toad Rhinella cf. marina in Puerto Rico and Costa Rica. Front. Microbiol. 2017, 8, 2624. [Google Scholar] [CrossRef]
- Jimenez, R.R.; Alvarado, G.; Estrella, J.; Sommer, S. Moving beyond the host: Unraveling the skin microbiome of endangered Costa Rican amphibians. Front. Microbiol. 2019, 10, 2060. [Google Scholar] [CrossRef] [Green Version]
- Douglas, A.J.; Hug, L.A.; Katzenback, B.A. Composition of the North American wood frog (Rana sylvatica) bacterial skin microbiome and seasonal variation in community structure. Microb. Ecol. 2021, 81, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Basanta, M.D.; Rebollar, E.A.; GarcíaCastillo, M.G.; Parra, O.G. Comparative analysis of skin bacterial diversity and its potential antifungal function between desert and pine forest populations of boreal toads Anaxyrus boreas. Microb. Ecol. 2021, 84, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Kueneman, J.G.; Parfrey, L.W.; Woodhams, D.C.; Archer, H.M.; Knight, R.; McKenzie, V.J. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 2014, 23, 1238–1250. [Google Scholar] [CrossRef]
- Rebollar, E.A.; Hughey, M.C.; Daniel, M.; Harris, R.N.; Roberto, I.; Belden, L.K. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 2016, 10, 1682–1695. [Google Scholar] [CrossRef] [Green Version]
- Muletz, C.R.; Myers, J.M.; Domangue, R.J.; Herrick, J.B.; Harris, R.N. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol. Conserv. 2012, 152, 119–162. [Google Scholar] [CrossRef]
- Wang, H.; Marshall, C.W.; Cheng, M.; Xu, H.; Li, H.; Yang, X.; Zheng, T. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Sci. Rep. 2017, 7, 44049. [Google Scholar] [CrossRef]
- Sanchez, E.; Bletz, M.C.; Duntsch, L.; Bhuju, S.; Geffers, R.; Jarek, M.; Dohrmann, A.B.; Tebbe, C.C.; Steinfartz, S.; Vences, M. Cutaneous bacterial communities of a poisonous salamander: A perspective from life stages, body parts and environmental conditions. Microb. Ecol. 2017, 73, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Robak, M.J.; Richards-Zawacki, C.L.; Richards-Zawacki, C.L. Temperature-dependent effects of cutaneous bacteria on a frog’s tolerance of fungal infection. Front. Microbiol. 2018, 9, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, A.C. Antimicrobial peptides from amphibian skin: An expanding scenario. Curr. Opin. Chem. Biol. 2002, 6, 799–804. [Google Scholar] [CrossRef]
- Tennessen, J.A.; Woodhams, D.C.; Chaurand, P.; Reinert, L.K.; Billheimer, D.; Shyr, Y.; Caprioli, R.M.; Blouin, M.S.; Rollins-Smith, L.A. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev. Comp. Immunol. 2009, 33, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Muletz, C.R.; Yarwood, S.A.; Campbell Grant, E.H.; Fleischer, R.C.; Lips, K.R. Effects of host species and environment on the skin microbiome of Plethodontid salamanders. J. Anim. Ecol. 2018, 87, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Kohl, K.D.; Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 2016, 18, 1561–1565. [Google Scholar] [CrossRef]
- Longo, A.V.; Zamudio, K.R. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME J. 2017, 11, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowley, J.J.; Alford, R.A. Hot bodies protect amphibians against chytrid infection in nature. Sci. Rep. 2013, 3, 1515. [Google Scholar] [CrossRef] [Green Version]
- Julia, M.S.; Ryan, M.U.; Corinne, L.R.Z. Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere 2019, 10, e02892. [Google Scholar]
- Kueneman, J.G.; Bletz, M.C.; McKenzie, V.J.; Becker, C.G.; Joseph, M.B.; Abarca, J.G.; Archer, H.; Arellano, A.L.; Bataille, A.; Becker, M. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 2019, 3, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Barelli, C.; Davide, A.; Claudio, D.; Massimo, P.; Chiara, D.; Francesco, R.; Duccio, C.; Michael, T.K.; Christine, H.H.; Carlotta, D.F. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: Implications for conservation. Sci. Rep. 2015, 5, 14862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, S.; Lopes, I.; Proenca, D.N.; Ribeiro, R.; Morais, P.V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 2016, 572, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, R.R.; Alvarado, G.; Sandoval, J.; Sommer, S. Habitat disturbance influences the skin microbiome of a rediscovered neotropical-montane frog. BMC Microbiol. 2020, 20, 292. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol. 2018, 9, 3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proenca, D.N.; Fasola, E.; Lopes, I.; Morais, P.V. Characterization of the skin cultivable microbiota composition of the frog Pelophylax perezi inhabiting different environments. Int. J. Environ. Res. Public Health 2021, 18, 2585. [Google Scholar] [CrossRef]
- Preuss, J.F.; Greenspan, S.E.; Rossi, E.M.; Lucas Gonsales, E.M.; Neely, W.J.; Valiati, V.H.; Woodhams, D.C.; Becker, C.G.; Tozetti, A.M. Widespread pig farming practice linked to shifts in skin microbiomes and disease in pond-breeding amphibians. Environ. Sci. Technol. 2020, 54, 11301–11312. [Google Scholar] [CrossRef]
- Chen, W. Hynobius maoershanensis. Guangxi For. 2017, 10, 19. [Google Scholar]
- IUCN SSC Amphibian Specialist Group. Hynobius maoershanensis: The IUCN Red List of Threatened Species 2020: e.T135908A63849673. 2020. Available online: https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T135908A63849673.en (accessed on 12 February 2023).
- Huang, H.; Bu, R.; Xie, H.; Hou, S.; Wu, Z. Habitat selection by Hynobius maoershanensis during its breeding period. Acta Ecol. Sin. 2019, 39, 6443–6451. [Google Scholar]
- Liu, H.Y.; Chen, T.; Li, Y.H.; Zheng, J.J.; Liu, Z.; Li, Y.B.; Huang, Z.H. Seasonal variations in gut microbiota of semiprovisioned rhesus macaques (Macaca mulatta) living in a limestone forest of Guangxi, China. Front. Microbiol. 2022, 13, 951507. [Google Scholar] [CrossRef]
- Dallas, J.W.; Warne, R.W. Captivity and animal microbiomes: Potential roles of microbiota for influencing animal conservation. Microb. Ecol. 2023, 85, 820–838. [Google Scholar] [CrossRef]
- Becker, C.G.; Longo, A.V.; Haddad, C.F.B.; Zamudio, K.R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170582. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xiang, M.; Zhu, W.; Zhang, M.; Chen, H.; Huang, J.; Chen, Y.; Chang, Q.; Jiang, J.; Zhu, L. The behavior of amphibians shapes their symbiotic microbiomes. mSystems 2020, 5, e00626-20. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Song, J.; Song, H.; Zeng, Q.; Shi, K. A robust noninvasive approach to study gut microbiota structure of amphibian tadpoles by feces. Asian Herpetol. Res. 2018, 9, 1–12. [Google Scholar]
- Bates, K.A.; Friesen, J.; Loyau, A.; Butler, H.; Vredenburg, V.T.; Laufer, J.; Chatzinotas, A.; Schmeller, D.S. Environmental and anthropogenic factors shape the skin bacterial communities of a semi-arid amphibian species. Microb. Ecol. 2022, 86, 1393–1404. [Google Scholar] [CrossRef]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Lavergne, C.; Bovio-Winkler, P.; Etchebehere, C.; Garcia-Gen, S. Towards centralized biogas plants: Co-digestion of sewage sludge and pig manure maintains process performance and active microbiome diversity. Bioresour. Technol. 2020, 297, 122442. [Google Scholar] [CrossRef]
- Warton, D.I.; Hui, F.K.C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Van Passel, M.W.; Kant, R.; Zoetendal, E.G.; Plugge, C.M.; Derrien, M.; Malfatti, S.A.; Chain, P.S.; Woyke, T.; Palva, A.; de Vos, W.M.; et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 2011, 6, e16876. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, G.T.; Bates, S.T.; Eilers, K.G.; Lauber, C.L.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 2011, 43, 1450–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abarca, J.G.; Vargas, G.; Zuniga, I.; Whitfield, S.M.; Woodhams, D.C.; Kerby, J.; McKenzie, V.J.; Murillo-Cruz, C.; Pinto-Tomás, A.A. Assessment of bacterial communities associated with the skin of Costa Rican amphibians at La Selva biological station. Front. Microbiol. 2018, 9, 2001. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, C.; Feng, J.; Chang, J.; Zhu, W.; Chang, L.; Liu, J.; Xie, F.; Li, C.; Jiang, J.; et al. Effects of habitat river microbiome on the symbiotic microbiota and multi-organ gene expression of captive-bred Chinese giant salamander. Front. Microbiol. 2022, 13, 884880. [Google Scholar] [CrossRef] [PubMed]
- Hughey, M.C.; Pena, J.A.; Reyes, R.; Medina, D.; Belden, L.K.; Burrowes, P.A. Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients. PeerJ 2017, 5, e3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catenazzi, A.; Flechas, S.V.; Burkart, D.; Hooven, N.D.; Townsend, J.; Vredenburg, V.T. Widespread elevational occurrence of antifungal bacteria in Andean amphibians decimated by disease: A complex role for skin symbionts in defense against chytridiomycosis. Front. Microbiol. 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Kueneman, J.G.; Woodhams, D.C.; Van Treuren, W.; Archer, H.M.; Knight, R.; McKenzie, V.J. Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J. 2016, 10, 934–944. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xie, J.; Wang, Z. Diversity of microflora involved in skin ulcer and death of Andrias davidianus. J. Fish. China 2022, 46, 2186–2195. [Google Scholar]
- Frey, S.D.; Lee, J.; Melillo, J.M.; Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 2013, 3, 395–398. [Google Scholar] [CrossRef]
- Krynak, K.L.; Burke, D.J.; Benard, M.F. Landscape and water characteristics correlate with immune defense traits across Blanchard’s cricket frog (Acris blanchardi) populations. Biol. Conserv. 2016, 193, 153–167. [Google Scholar] [CrossRef]
- Longo, A.V.; Zamudio, K.R. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Mol. Ecol. 2017, 26, 4787–4797. [Google Scholar] [CrossRef]
- Longo, A.V.; Savage, A.E.; Hewson, I.; Zamudio, K.R. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R. Soc. Open Sci. 2015, 2, 140377. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.A.; Cramp, R.L.; Bernal, M.H.; Franklin, C.E. Changes in cutaneous microbial abundance with sloughing: Possible implications for infection and disease in amphibians. Dis. Aquat. Organ. 2012, 101, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, A.; Hughey, M.C.; Medina, D.; Rebollar, E.A.; Walke, J.B.; Harris, R.N.; Belden, L.K. Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling. PeerJ 2019, 7, e7044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela, B.J.; Lesbarreres, D.; Ibanez, R.; Green, D.M. Environmental and host effects on skin bacterial community composition in Panamanian frogs. Front. Microbiol. 2018, 9, 298. [Google Scholar] [CrossRef]
- Martínez-Ugalde, E.; Ávila-Akerberg, V.; González Martínez, T.M.; Vázquez Trejo, M.; Zavala Hernández, D.; Anaya-Morales, S.L.; Rebollar, E.A. The skin microbiota of the axolotl Ambystoma altamirani is highly influenced by metamorphosis and seasonality but not by pathogen infection. Anim. Microb. 2022, 4, 1–17. [Google Scholar] [CrossRef]
- Shen, C.; Xiong, J.; Zhang, H.; Feng, Y.; Lin, X.; Li, X.; Liang, W.; Chu, H. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- Ning, M.; Chi, H.; Chen, Y.; Yang, B.; Wu, Z.; Huang, H. A preliminary study on the ontogenetic characteristics of captive-bred Hynobius maoershanensis. Sichuan J. Zool. 2021, 40, 196–202. [Google Scholar]
- Tornabene, B.J.; Hossack, B.R.; Crespi, E.J.; Breuner, C.W. Evaluating corticosterone as a biomarker for amphibians exposed to increased salinity and ambient corticosterone. Conserv. Physiol. 2021, 9, coab049. [Google Scholar] [CrossRef]
- Assis, A.B.; Barreto, C.C.; Navas, C.A. Skin microbiota in frogs from the Brazilian Atlantic Forest: Species, forest type, and potential against pathogens. PLoS ONE 2017, 12, e0179628. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Cui, L.; Cao, X.; Lv, Q.; Chen, T. Evaluation of the human interference on the microbial diversity of Poyang Lake using high-throughput sequencing analyses. Int. J. Environ. Res. Public Health 2019, 16, 4218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, H.; Cao, X.; Cui, L.; Lv, Q.; Chen, T. The influence of human interference on zooplankton and fungal diversity in Poyang Lake watershed in China. Diversity 2020, 12, 296. [Google Scholar] [CrossRef]
- Woodhams, D.C.; Alford, R.A.; Antwis, R.E.; Archer, H.; Becker, M.H.; Belden, L.K.; Bell, S.C.; Bletz, M. Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens. Ecology 2015, 96, 595. [Google Scholar] [CrossRef] [Green Version]
- Janda, J.M.; Abbott, S.L. Evolving concepts regarding the genus Aeromonas: An expanding panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 1998, 27, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Wuerthner, V.P.; Hua, J.; Hernandez-Gomez, O. Life stage and proximity to roads shape the skin microbiota of eastern newts (Notophthalmus viridescens). Environ. Microbiol. 2022, 24, 3954–3965. [Google Scholar] [CrossRef] [PubMed]
- Fournier, I.B.; Lovejoy, C.; Vincent, W.F. Changes in the community structure of under-ice and open-water microbiomes in urban lakes exposed to road salts. Front. Microbiol. 2021, 12, 660719. [Google Scholar] [CrossRef]
- Bowen, J.; Siddiq, F. Salt of the earth-does the application of road salt select for microbial halotolerance? Mich. Acad. 2021, 47, 80. [Google Scholar]
Estimators | HADD | LADD | Z/t | n/df | p-Value | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||
Adult | ||||||
ACE | 522.735 ± 760.209 | 375.647 ± 339.347 | Z = −0.675 | n = 24 | 0.499 | |
Chao | 512.983 ± 740.024 | 373.359 ± 339.983 | Z = −0.675 | n = 24 | 0.499 | |
Shannon | 2.854 ± 1.584 | 2.811 ± 1.635 | Z = −0.107 | n = 24 | 0.915 | |
Simpson | 0.193 ± 0.125 | 0.282 ± 0.179 | Z = −0889 | n = 24 | 0.374 | |
Hindlimb bud tadpole | ||||||
ACE | 366.303 ± 186.993 | 148.357 ± 66.579 | t = 2.895 | df = 11 | 0.015 | |
Chao | 355.946 ± 177.974 | 146.026 ± 65.794 | t = 2.915 | df = 11 | 0.014 | |
Shannon | 2.864 ± 0.709 | 2.415 ± 0.648 | t = 1.097 | df = 11 | 0.296 | |
Simpson | 0.167 ± 0.0881 | 0.197 ± 0.085 | t = −0.578 | df = 11 | 0.575 | |
Forelimb bud tadpole | ||||||
ACE | 177.763 ± 73.048 | 184.933 ± 74.466 | t = −0.249 | df = 28 | 0.806 | |
Chao | 172.613 ± 70.407 | 178.643 ± 73.244 | t = −0.215 | df = 28 | 0.831 | |
Shannon | 2.244 ± 0.601 | 1.731 ± 0.688 | t = 2.138 | df = 28 | 0.041 | |
Simpson | 0.231 ± 0.129 | 0.407 ± 0.205 | t = −2.900 | df = 28 | 0.007 |
Dependent Variable | Detectable Regression Factor | Regression Coefficient | ||
---|---|---|---|---|
r | df | p | ||
ACE | Water depth | −0.732 | 23 | <0.001 |
Chao | Water depth | −0.731 | 23 | 0.004 |
Shannon | Air temperature | −0.690 | 23 | <0.001 |
Simpson | Water temperature | 0.578 | 23 | 0.003 |
Proteobacteria | Anthropogenic disturbance | 0.764 | 23 | <0.001 |
Bacteroidota | Anthropogenic disturbance | −0.522 | 23 | 0.009 |
Actinobacteriota | Water pH | −0.490 | 23 | 0.015 |
Firmicutes | ||||
Pseudomonadaceae | Water pH | −1.618 | 23 | <0.001 |
Pseudomonadaceae | Air temperature | −0.974 | 23 | 0.017 |
Alcaligenaceae | Water pH | −0.561 | 23 | 0.004 |
Nocardiaceae | Water pH | −0.536 | 23 | 0.007 |
Flavobacteriaceae | Different habitats | −0.518 | 23 | 0.01 |
Dependent Variable | Detectable Regression Factor | Regression Coefficient | ||
---|---|---|---|---|
r | df | p | ||
ACE | Anthropogenic disturbance | 0.722 | 12 | 0.005 |
Chao | Anthropogenic disturbance | 0.737 | 12 | 0.004 |
Shannon | Water pH | −0.717 | 12 | 0.006 |
Simpson | Water pH | 0.661 | 12 | 0.014 |
Proteobacteria | ||||
Bacteroidota | Different habitats | −0.647 | 12 | 0.017 |
Actinobacteriota | Water depth | −1.020 | 12 | <0.001 |
Actinobacteriota | Anthropogenic disturbance | 0.447 | 12 | 0.018 |
Campylobacterota | Water pH | −0.719 | 12 | <0.001 |
Campylobacterota | Anthropogenic disturbance | 0.384 | 12 | 0.002 |
Campylobacterota | Water temperature | −0.210 | 12 | 0.025 |
Comamonadaceae | Water depth | −1.025 | 12 | <0.001 |
Comamonadaceae | Anthropogenic disturbance | 0.372 | 12 | 0.033 |
Burkholderiaceae | ||||
Pseudomonadaceae | ||||
Aeromonadaceae |
Dependent Variable | Detectable Regression Factor | Regression Coefficient | ||
---|---|---|---|---|
r | df | p | ||
ACE | Humidity | 0.561 | 29 | 0.001 |
Chao | Humidity | 0.562 | 29 | 0.001 |
Shannon | Anthropogenic disturbance | 0.566 | 29 | 0.001 |
Simpson | Anthropogenic disturbance | −0.607 | 29 | <0.001 |
Actinobacteriota | Humidity | −0.932 | 29 | <0.001 |
Firmicutes | ||||
Fusobacteriota | ||||
Proteobacteria | ||||
Pseudomonadaceae | Anthropogenic disturbance | 0.613 | 29 | <0.001 |
Comamonadaceae | Anthropogenic disturbance | −0.756 | 29 | <0.001 |
Burkholderiaceae | Anthropogenic disturbance | 0.855 | 29 | <0.001 |
Clostridiaceae |
Species | Locations | Dominant Bacteria Phyla | Habitat | References |
---|---|---|---|---|
Craugastor fitzingeri (Anura) | Heredia province, Costa Rica | Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria | Terrestrial | [55] |
Isthmohyla pseudopuma (Anura) | Alajuela province, Costa Rica | Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria | Ponds | [15] |
Agalychnis callidryas (Anura) | Panamá province, Panamá | Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes | Ponds | [8] |
Rana sylvatica (Anura) | Ontario, Canada | Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobiota | Ponds and forest floor | [16] |
Andrias davidianus (Urodela) | Sichuan province, China | Proteobacteria, Firmicutes, Bacteroidetes, Verrucomicrobiota | Artificial habitats | [56] |
Hynobius maoershanensis (Urodela) | Guangxi, China | Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota | Deep pool and lake | This research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Huang, Y.; Pang, G.; Cui, Z.; Wu, Z.; Huang, H. Ecological Factors and Anthropogenic Disturbance May Restructure the Skin Microbiota of Maoershan Hynobiids (Hynobius maoershanensis). Diversity 2023, 15, 932. https://doi.org/10.3390/d15080932
Chen H, Huang Y, Pang G, Cui Z, Wu Z, Huang H. Ecological Factors and Anthropogenic Disturbance May Restructure the Skin Microbiota of Maoershan Hynobiids (Hynobius maoershanensis). Diversity. 2023; 15(8):932. https://doi.org/10.3390/d15080932
Chicago/Turabian StyleChen, Huiqun, Yingying Huang, Guangyan Pang, Zhenzhen Cui, Zhengjun Wu, and Huayuan Huang. 2023. "Ecological Factors and Anthropogenic Disturbance May Restructure the Skin Microbiota of Maoershan Hynobiids (Hynobius maoershanensis)" Diversity 15, no. 8: 932. https://doi.org/10.3390/d15080932
APA StyleChen, H., Huang, Y., Pang, G., Cui, Z., Wu, Z., & Huang, H. (2023). Ecological Factors and Anthropogenic Disturbance May Restructure the Skin Microbiota of Maoershan Hynobiids (Hynobius maoershanensis). Diversity, 15(8), 932. https://doi.org/10.3390/d15080932