The Diversity of Arbuscular Mycorrhizal Fungi and Their Associations in South America: A Case Study of Argentinean and Brazilian Cattle Raising Productive Ecosystems: A Review
Abstract
:1. Introduction
1.1. Grasslands and Pastures
1.2. Mycorrhizal Symbioses in Temperate Grasslands and Pastures
2. Materials and Methods
3. Results and Discussion
3.1. Argentina
3.2. Brazil
AMF Species | Vegetation Type | Reference | Country |
---|---|---|---|
Acaulospora bireticulata | Grassland; Pasture | [96,97] | Argentina |
Acaulospora cavernata | Pasture | [97] | |
Acaulospora excavata | Grassland; Pasture | [91,98] | |
Acaulospora laevis | Grassland; Pasture | [91,96,99,100] | |
Acaulospora scrobiculata | Grassland; Pasture | [92,97,98,99] | |
Acaulospora spinosa | Grassland; Pasture | [92,99,100,101,102] | |
Ambispora leptoticha | Grassland; Pasture | [91,92] | |
Dentiscutata heterogama | Grassland | [96,99] | |
Entrophospora claroidea | Grassland; Pasture | [92,97,99,100] | |
Entrophospora etunicata | Grassland; Pasture | [91,92,96,97,99,100] | |
Entrophospora infrequens | Grassland; Pasture | [92,97,99,100,101,102] | |
Entrophospora nevadensis | Grassland; Pasture | [92,97,100] | |
Funneliformis badium | Grassland | [98,102] | |
Funneliformis mosseae | Grassland; Pasture | [89,91,92,97,99,100,101,102] | |
Gigaspora candida | Grassland | [96,99] | |
Gigaspora margarita | Grassland; Pasture | [97,102] | |
Glomus fuegianum | Grassland | [98,102] | |
Glomus hoi | Grassland | [98,102] | |
Pacispora scintillans | Grassland | [98,102] | |
Rhizophagus intraradices | Grassland; Pasture | [92,98,102] | |
Sclerocystis sinuosa | Grassland | [101] | |
Scutellospora biornata | Grassland; Pasture | [92,96,99] | |
Scutellospora calospora | Grassland | [89,96,99] | |
Scutellospora dipapillosa | Grassland | [89,96,99] | |
Septoglomus constrictum | Grassland; Pasture | [92,97,99,100,101] | |
Acaulospora sp. 1 [103] | Pasture | [103] | Brazil |
Acaulospora sp. 1 [55] | Pasture | [55] | |
Acaulospora sp. 1 [104] | Grassland | [104] | |
Acaulospora sp. 2 [103] | Pasture | [103] | |
Acaulospora sp. 2 [104] | Grassland | [104] | |
Acaulospora sp. 3 [103] | Pasture | [103] | |
Acaulospora sp. 3 [104] | Grassland | [104] | |
Acaulospora sp. 4 | Grassland | [105] | |
Acaulospora sp. 5 | Grassland | [105] | |
Acaulospora bireticulata | Grassland | [104] | |
Acaulospora brasiliensis | Grassland | [104] | |
Acaulospora colombiana | Pasture | [55] | |
Acaulospora colossica | Grassland | [104,105] | |
Acaulospora delicata | Grassland | [104,105] | |
Acaulospora elegans cf | Pasture | [55] | |
Acaulospora excavata | Pasture | [106,107] | |
Acaulospora foveata | Pasture | [55,95,105,108] | |
Acaulospora foveoreticulata | Pasture | [106] | |
Acaulospora gedanensis cf | Pasture | [55,103] | |
Acaulospora koskei | Grassland | [104,105] | |
Acaulospora laevis | Grassland; Pasture | [55,105] | |
Acaulospora longula | Pasture | [106] | |
Acaulospora mellea | Grassland; Pasture | [104,105,106] | |
Acaulospora morrowiae | Grassland | [104,105] | |
Acaulospora rehmii | Pasture | [55] | |
Acaulospora rugosa | Grassland | [104,105] | |
Acaulospora spinosa | Grassland; Pasture | [55,104] | |
Acaulospora scrobiculata | Grassland; Pasture | [104,105,106,109] | |
Acaulospora tuberculata | Grassland; Pasture | [55,105] | |
Ambispora appendicula | Grassland; Pasture | [55,104,107,107] | |
Ambispora callosa | Grassland | [104] | |
Ambispora leptoticha | Pasture | [103] | |
Archaeospora trappei | Pasture | [55] | |
Cetraspora pellucida | Pasture | [55,103,105] | |
Dentiscutata erythropus | Grassland; Pasture | [104,106] | |
Dentiscutata heterogama | Pasture | [103] | |
Diversispora sp. | Grassland | [104] | |
Diversispora spurca cf | Grassland; Pasture | [55,105] | |
Entrophospora claroidea | Grassland; Pasture | [105,106] | |
Entrophospora etunicata | Grassland; Pasture | [95,104,105,106,110] | |
Entrophospora infrequens | Grassland | [105] | |
Entrophospora lamellosa | Grassland | [104] | |
Entrophospora lutea | Grassland | [105] | |
Funneliformis sp. | Grassland | [104] | |
Funneliformis geosporus | Grassland | [95,104,105] | |
Funneliformis mosseae | Grassland | [104,105] | |
Fuscutata heterogama | Grassland | [104] | |
Gigaspora sp. 1 | Pasture | [103] | |
Gigaspora decipiens | Grassland | [104,105] | |
Gigaspora gigantea | Grassland | [104,105,110] | |
Gigaspora margarita | Grassland | [104] | |
Glomus sp. 1 [104] | Grassland | [104] | |
Glomus sp. 1 [105] | Grassland | [105] | |
Glomus sp. 2 [104] | Grassland | [104] | |
Glomus sp. 2 [105] | Grassland | [105] | |
Glomus sp. 3 | Grassland | [104] | |
Glomus sp. 4 [55] | Pasture | [55] | |
Glomus sp. 4 [104] | Grassland | [104] | |
Glomus sp. 5 [104] | Grassland | [104] | |
Glomus sp. 5 [105] | Grassland | [105] | |
Glomus sp. 6 | Grassland | [104] | |
Glomus sp. 7 | Grassland | [105] | |
Glomus sp. 8 | Grassland | [105] | |
Glomus sp. 9 [55] | Pasture | [55] | |
Glomus sp. 9 [105] | Grassland | [105] | |
Glomus sp. 10 | Grassland | [105] | |
Glomus sp. 13 | Grassland | [105] | |
Glomus sp. 15 | Pasture | [55] | |
Glomus sp. 16 [55] | Pasture | [55] | |
Glomus sp. 16 [105] | Grassland | [105] | |
Glomus corymbiforme | Pasture | [55] | |
Glomus glomerulatum | Grassland; Pasture | [104,106] | |
Glomus hoi | Grassland | [105] | |
Glomusmicrocarpum | Grassland | [104,105] | |
Oehlia diaphana | Grassland | [104,105] | |
Pacispora sp. | Grassland | [104] | |
Paraglomus albidum | Grassland | [105] | |
Paraglomus occultum | Grassland | [104,105] | |
Rhizoglomus microaggregatum | Grassland | [104,105] | |
Rhizophagus clarus | Grassland; Pasture | [55,104,105] | |
Rhizophagus fasciculatus | Grassland | [104] | |
Rhizophagus intraradices | Pasture | [55,106] | |
Rhizophagus invermaius | Grassland | [104,105] | |
Sclerocystis clavispora | Grassland | [105] | |
Sclerocystis sinuosa | Grassland | [105] | |
Scutellospora sp. | Grassland | [104] | |
Scutellospora auriglobosa | Pasture | [106] | |
Scutellospora biornata | Grassland; Pasture | [55,104] | |
Scutellospora calospora | Grassland | [104] | |
Scutellospora dipurpurescens | Grassland | [104] | |
Scutellospora pernambucana | Grassland | [104] | |
Scutellospora rubra | Grassland | [104] | |
Scutellospora scutata | Pasture | [95,108] | |
Septoglomus constrictum | Grassland | [104,105] | |
Sieverdingia tortuosa | Pasture | [103] |
3.3. AMF Diversity in Argentinean and Brazilian Grasslands and Pastures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pagano, M.C.; Lugo, M.A. Mycorrhizal Fungi in South America; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2019; p. 365. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press: Cambridge, UK, 2008; p. 787. [Google Scholar]
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Aguilera, P.; Ortiz, N.; Becerra, N.; Turrini, A.; Gainza-Cortes, F.; Silva-Flores, P.; Aguilar-Paredes, A.; Romero, J.K.; Jorquera-Fontena, E.; Mora, M.d.L.; et al. Application of arbuscular mycorrhizal fungi in vineyards: Water and biotic stress under a climate change scenario: New challenge for Chilean grapevine crop. Front. Microbiol. 2022, 13, 826571. [Google Scholar] [CrossRef]
- Velázquez, M.S.; Fabisik, J.C.; Barrera, M.; Allegrucci, N.; Valdez, F.; Abarca, C.L.; Cabello, M. Diversity and abundance of arbuscular mycorrhizal fungi (Glomeromycota) associated with Ilex paraguarensis in Northeastern Argentina. Rev. Biol. Trop. 2020, 68, 1231–1240. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.; et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792. [Google Scholar] [CrossRef]
- Salloum, M.S.; Guzzo, M.C.; Velázquez, M.S.; Sagadin, M.B.; Luna, C.M. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Can. J. Microbiol. 2016, 62, 1034–1040. [Google Scholar] [CrossRef]
- Molina, A.S.; Lugo, M.A.; Pérez Chaca, M.V.; Vargas-Gil, S.; Zirulnik, F.; Leporati, J.; Ferrol, N.; Azcón-Aguilar, C. Effect of arbuscular mycorrhizal colonization on cadmium-mediated oxidative stress in Glycine max (L.) Merr. Plants 2020, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Díaz, L.; Paz, G.; Ontivero, R.E.; Iriarte, H.J.; Lugo, M.A. Effect of land use change on arbuscular mycorrhizal colonization in the Caldenal (Espinal Ecoregion, San Luis, Argentina). In Proceedings of the III Reunión de la Asociación Micológica Carlos Spegazzini, Córdoba, Argentina, 21 October 2022. [Google Scholar]
- Faggioli, V.; Cabello, M.; Grilli, G.; Opik, M. Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agric. Ecosys. Environ. 2019, 269, 174–182. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O. Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 2017, 101, 4871–4881. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, J.; Chaudhary, P.; Bhagwiti, U.; Bhandari, G.; Chaudhary, A. Impact of endophytic fungi in biotic stress management. In Plant Protection. From Chemicals to Biologicals; Soni, R., Chandra Suyal, D., Goel, R., Eds.; De Gruyter: Berlin, Germany, 2022; pp. 447–461. [Google Scholar] [CrossRef]
- Tyagi, J.; Chaudhary, P.; Mishra, A.; Khatwani, M.; Dey, S.; Varma, A. Role of endophytes in abiotic stress tolerance: With special emphasis on Serendipita indica. Int. J. Environ. Res. 2022, 16, 62. [Google Scholar] [CrossRef]
- Stevens, C.J. Recent advances in understanding grasslands. F1000Research 2018, 7, F1000 Faculty Rev-1363. [Google Scholar] [CrossRef]
- Gibson, D.J. Grasses and Grassland Ecology; Oxford University Press, Biology: New York, NY, USA, 2009; p. 323. [Google Scholar]
- O´Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- Available online: https://www.fao.org/agriculture/crops/thematicsitemap/theme/compendium/scpi-practices/management-of-grassland-and-pasture-areas (accessed on 18 August 2022).
- Fedele, G.; Locatelli, B.; Djoudi, H.; Colloff, M.J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS ONE 2018, 13, e0195895. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.fao.org/agriculture/crops/thematic-sitemap/theme/biodiversity/ (accessed on 6 October 2022).
- Lehman, R.M.; Acosta-Martinez, V.; Buyer, J.S. Soil biology for resilient, healthy soil. J. Soil Water Conserv. 2015, 70, 12A–18A. [Google Scholar] [CrossRef]
- Dodd, I.C.; Ruiz-Lozano, J.M. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotech. 2012, 23, 236–242. [Google Scholar] [CrossRef]
- De Vries, F.T.; Wallenstein, M.D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 2017, 105, 913–920. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Gollotte, A.; Binet, M.N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Van der Heyde, M.; Bennett, J.A.; Piter, J.; Hart, M.M. Long-term effects of grazing on the arbuscular mycorrhizal symbiosis. Agric. Ecosys. Environ. 2017, 243, 27–33. [Google Scholar] [CrossRef]
- Van der Heyde, M.; Abbott, L.K.; Gehring, C.; Kokkoris, V.; Hart, M.M. Reconciling disparate responses to grazing in the arbuscular mycorrhizal symbiosis. Rhizosphere 2019, 11, 100167. [Google Scholar] [CrossRef]
- Faghihinia, M.; Zou, Y.; Chen, Z.; Bai, Y.; Li, W.; Marrs, R.; Staddon, P.L. Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Appl. Soil Ecol. 2020, 153, 103591. [Google Scholar] [CrossRef]
- Klironomos, J.N.; McCune, J.; Moutoglis, P. Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Appl. Soil Ecol. 2004, 26, 133–141. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J.; Klironomos, J.N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol. Evol. 2003, 18, 418–423. [Google Scholar] [CrossRef]
- IICA. Informe Anual; Instituto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 1994; pp. 1–36. [Google Scholar]
- Maraschin, G.E. Production potential of South America grasslands. In Proceedings of the XIX International Grassland Congress, São Paulo, Brazil, 11–21 February 2001; Available online: https://uknowledge.uky.edu/igc (accessed on 21 November 2022).
- Toledo, C.S. The Chaco savanna lands of South America with particular reference to the processes of degradation in their pastoral and forestry resources. In Proceedings of the XVII International Grassland Congress, Palmerston North, New Zealand, 8–21 February 1993; pp. 241–246. [Google Scholar]
- Modernel, P.; Rossing, W.A.H.; Corbeels, M.; Dogliotti, S.; Picasso, V.; Tittonell, P. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environ. Res. Lett. 2016, 11, 113002. [Google Scholar] [CrossRef]
- FAO. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; Available online: https://www.fao.org/3/a0701e/a0701e.pdf (accessed on 6 October 2022).
- Meyer, C.; Kreft, H.; Guralnick, R.; Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 2015, 6, 8221. [Google Scholar] [CrossRef]
- Wetzel, F.T.; Bingham, H.C.; Groom, Q.; Haase, P.; Kõljalg, U.; Kuhlmann, M.; Martin, C.S.; Penev, L.; Robertson, T.; Saarenmaa, H.; et al. Unlocking biodiversity data: Prioritization and filling the gaps in biodiversity observation data in Europe. Biol. Conserv. 2018, 221, 78–85. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Miss. Bot. Garden 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Marín, C.; Bueno, C.G. A systematic review on south American and European mycorrhizal research: Is there a need for scientific symbiosis. In Mycorrhizal Fungi in South America; Pagano, M.C., Lugo, M.A., Eds.; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2019; pp. 97–110. [Google Scholar]
- Lugo, M.A.; Pagano, M.C. Overview of the mycorrhizal fungi in South America. In Mycorrhizal Fungi in South America; Pagano, M.C., Lugo, M.A., Eds.; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2019; pp. 1–27. [Google Scholar]
- Cofré, N.; Soteras, F.; Del Rosario Iglesias, M.; Velázquez, S.; Abarca, C.; Risio, L.; Ontivero, E.; Cabello, M.; Domínguez, L.S.; Lugo, M.A. Morphospecies biodiversity of arbuscular mycorrhizal fungi in South America. A review. In Mycorrhizal Fungi in South America; Pagano, M.C., Lugo, M.A., Eds.; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2019; pp. 49–72. [Google Scholar]
- Clark, F.E.; Paul, E.A. The microflora of grasslands. Adv. Agron. 1970, 22, 375–435. [Google Scholar]
- Schöps, R.; Goldmann, K.; Herz, K.; Lentendu, G.; Schöning, I.; Bruelheide, H.; Wubet, T.; Buscot, F. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front. Microbiol. 2018, 9, 2711. [Google Scholar] [CrossRef]
- Navrátilová, D.; Tláskalová, P.; Kohout, P.; Dřevojan, P.; Fajmon, K.; Chytrý, M.; Baldrian, P. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiol. Ecol. 2019, 95, fiy208. [Google Scholar] [CrossRef]
- Chao, L.; Ma, X.; Tsetsegmaa, M.; Zheng, Y.; Qu, H.; Dai, Y.; Li, J.; Bao, Y. Response of soil microbial community composition and diversity at different gradients of grassland degradation in Central Mongolia. Agriculture 2022, 12, 1430. [Google Scholar] [CrossRef]
- Romdhane, S.; Spor, A.; Banerjee, S.; Breuil, M.-C.; Bru, D.; Chabbi, A.; Hallin, S.; van der Heijden, M.G.A.; Saghai, A.; Laurent Philippot, L. Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environ. Microbiome 2022, 17, 1. [Google Scholar] [CrossRef]
- Stoian, V.; Vidican, R.; Florin, P.; Corcoz, L.; Pop-Moldovan, V.; Vaida, I.; Vâtcă, S.-D.; Stoian, V.A.; Pleşa, A. Exploration of soil functional microbiomes—A concept proposal for long-term fertilized grasslands. Plants 2022, 11, 1253. [Google Scholar] [CrossRef]
- Wang, Y.; Dang, N.; Feng, K.; Wang, J.; Jin, X.; Yao, S.; Wang, L.; Gu, S.; Zheng, H.; Lu, G.; et al. Grass-microbial inter-domain ecological networks associated with alpine grassland productivity. Front. Microbiol. 2023, 14, 1109128. [Google Scholar] [CrossRef]
- Busso, M.A.; Busso, M.B. Arbuscular mycorrhizal fungi and common mycorrhizal networks benefit plants through morphological, physiological and productive traits and soil quality. Lilloa 2022, 59, 301–317. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.N.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Bullock, J.M.; Jefferson, R.G.; Blackstock, T.H.; Pakeman, R.J.; Emmett, B.A.; Pywell, R.J.; Grime, J.P.; Silvertown, J. Semi-natural grasslands. In The UK National Ecosystem Assessment; UNEP-WCMC: Cambridge, UK, 2011; pp. 161–196. [Google Scholar]
- Zhao, Y.; Zhifeng Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Sawchik, J.; Taboada, M.A. Agronomic and environmental impacts of pasture–crop rotations in temperate North and South America. Agric. Ecosyst. Environ. 2014, 190, 18–26. [Google Scholar] [CrossRef]
- Porqueddu, C.; Ates, C.S.; Louhaichi, M.; Kyriazopoulos, A.P.; Moreno, G.; del Pozo, A.; Ovalle, C.; Ewing, M.A.; Nichols, P.G.H. Grasslands in ‘Old World’ and ‘New World’ mediterranean climate zones: Past trends, current status, and future research priorities. Grass Forage Sci. 2016, 71, 1–35. [Google Scholar] [CrossRef]
- Cheeke, T.E.; Zheng, C.; Koziol, L.; Gurholt, C.R.; Bever, J.D. Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology 2019, 100, e02855. [Google Scholar] [CrossRef]
- Melo, C.; Walker, C.; Rodríguez-Echeverría, S.A.V.; Borges, P.; Freitas, H. Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 2014, 64, 73–85. [Google Scholar] [CrossRef]
- Lopes Leal, P.; Siqueira, J.O.; Stürmer, S.L. Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Appl. Soil Ecol. 2013, 71, 72–80. [Google Scholar] [CrossRef]
- Joubran, A.M.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F.A. perspective on pasture-based dairy systems and products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef]
- Hartnett, D.C.; Wilson, G.W.T. The role of mycorrhizas in plant community structure and dynamics: Lessons from the grasslands. Plant Soil 2002, 244, 319–331. [Google Scholar] [CrossRef]
- Ambrosino, M.L.; Velázquez, M.S.; Ontivero, E.; Cabello, M.N.; Lugo, M.A. Communities of Glomeromycota in the Argentine Arid Diagonal: An Approach from their Ecological Role in Grassland Management and Use. In Mycorrhizal Fungi in South America—Biodiversity, Conservation, and Sustainable Food Production; Lugo, M.A., Pagano, M.C., Eds.; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2022; pp. 373–392. [Google Scholar]
- Powell, J.R.; Rillig, M.C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 2018, 220, 1059–1075. [Google Scholar] [CrossRef]
- Bever, J.D.; Richardson, S.C.; Lawrence, B.M.; Holmes, J.; Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 2009, 12, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.L.; French, K. Soil nutrients differentially influence root colonisation patterns of AMF and DSE in Australian plant species. Symbiosis 2021, 83, 209–223. [Google Scholar] [CrossRef]
- Williams, A.; Manoharan, L.; Rosenstock, N.P.; Olsson, P.A.; Hedlund, K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 2017, 213, 874–885. [Google Scholar] [CrossRef]
- Frater, P.N.; Borer, E.T.; Fay, P.A.; Jin, V.; Knaeble, B.; Seabloom, E.; Sullivan, L.; Wedin, D.A.; Harpole, W.S. Nutrients and environment influence arbuscular mycorrhizal colonization both independently and interactively in Schizachyrium scoparium. Plant Soil 2018, 425, 493–506. [Google Scholar] [CrossRef]
- Klichowska, E.; Nobis, M.; Piszczek, P.; Błaszkowski, J.; Zubek, S. Soil properties, rather than topography, climatic conditions, and vegetation type, shape AMF–feathergrass relationship in semi-natural European grasslands. Appl. Soil Ecol. 2019, 144, 22–30. [Google Scholar] [CrossRef]
- Pan, S.; Wang, Y.; Qiu, Y.; Chen, D. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Glob. Chang. Biol. 2020, 26, 6568–6580. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.L.; Cai, X.B.; Li, X.L.; Christie, P.; Zhang, J.L. Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Sci. Rep. 2017, 7, 3067. [Google Scholar] [CrossRef] [PubMed]
- Sikes, B.A.; Powell, J.R.; Rillig, M.C. Deciphering the relative contributions of multiple functions within plant-microbe symbioses. Ecology 2010, 91, 1591–1597. [Google Scholar] [CrossRef]
- Kasanke, C.P.; Zhao, Q.; Alfaro, T.; Walter, C.A.; Hobbie, S.E.; Cheeke, T.E.; Hofmockel, K.S. Grassland ecosystem type drives AM fungal diversity and functional guild distribution in North American grasslands. Mol. Ecol. 2023, 32, 1133–1148. [Google Scholar] [CrossRef]
- Alba Mejía, E.J. Grasslands of South America; Online Report; Mendelova Univerzita v Brně: Brně, Czech Republic, 2019; Available online: https://web2.mendelu.cz/af_291_projekty/files/19/19-alba_mejia_2.pdf (accessed on 21 November 2022).
- Marín, C.; Godoy, R.; Rubio, J. Gaps in South American mycorrhizal biodiversity and ecosystem function research. In Mycorrhizal Fungi in South America—Biodiversity, Conservation, and Sustainable Food Production; Lugo, M.A., Pagano, M.C., Eds.; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2022; pp. 445–461. [Google Scholar]
- Lugo, M.A.; Menoyo, E. Southern highlands: Fungal endosymbiotic associations. In Mycorrhizal Fungi in South America; Pagano, M.C., Lugo, M.A., Eds.; Life Science Series, Fungal Biology; Springer: Cham, Switzerland, 2019; pp. 217–255. [Google Scholar]
- García, I.V.; Chippano, T.A. Arbuscular mycorrhizal symbiosis in temperate grassland forage species of Argentina. In Mycorrhizal Fungi in South America—Biodiversity, Conservation, and Sustainable Food Production; Lugo, M.A., Pagano, M.C., Eds.; Life Science Series Fungal Biology; Springer: Switzerland, Cham, 2022; pp. 339–355. [Google Scholar]
- Delabre, I.; Rodriguez, L.O.; Miller Smallwood, J.; Jörn, P.W.; Scharlemann, J.P.W.; Alcamo, J.; Antonarakis, A.; Rowhani, P.; Hazell, R.J.; Aksnes, D.L.; et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 2021, 7, eabc8259. [Google Scholar] [CrossRef]
- Abbona, E.A.; Sarandón, S.J.; Marasas, M.E.; Astier, M. Ecological sustainability evaluated the traditional management in different vineyard systems in Berisso, Argentina. Agric. Ecosyst. Environ. 2007, 119, 335–345. [Google Scholar] [CrossRef]
- Burkart, A. Evolution of grasses and grasslands in South America. Taxon 1975, 24, 53–66. [Google Scholar] [CrossRef]
- Oyarzabal, M.; Andrade, B.; Pillar, V.D.; Paruelo, J. Temperate subhumid grasslands of southern South America. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Oyarzabal, M.; Clavijo, J.; Oakley, L.; Biganzoli, F.; Tognetti, P.; Barberis, I.; Maturo, H.M.; Aragón, R.; Campanello, P.I.; Prado, D.; et al. Unidades de vegetación de la Argentina. Ecol. Austral 2018, 28, 40–63. [Google Scholar] [CrossRef]
- Hasenack, H.; Weber, E.; Boldrini, I.I.; Trevisan, R. Mapa de Sistemas Ecológicos da Ecorregião das Savanas Uruguaias em Escala 1:500.000 ou Superior e Relatório Técnico Descrevendo Insumos Utilizados e Metodologia de Elaboração do Mapa de Sistemas Ecológicos; Universidade Federal do Rio Grande do Sul, Centro de Ecología: Porto Alegre, Brazil, 2010; Available online: http://multimidia.ufrgs.br/conteudo/labgeoecologia/Arquivos/Publicacoes/Relatorios/2010/Relatorio_projeto_IB_CECOL_TNC_produto_4.pdf (accessed on 1 August 2023).
- Fernández, P.D.; Baumann, M.; Baldi, G.; Banegas, R.N.; Bravo, S.; Gasparri, N.I.; Lucherini, M.; Marinaro, S.; Nanni, A.S.; Nasca, J.A.; et al. Grasslands and open savannas of the Dry Chaco. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–15. [Google Scholar] [CrossRef]
- Cabido, M.; Ateca, N.; Astegiano, M.; Anton, A. Distribution of C3 and C4 grasses along an altitudinal gradient in Central Argentina. J. Biogeog. 1997, 24, 197–204. [Google Scholar] [CrossRef]
- Cabido, M.; Funes, G.; Pucheta, E.; Vendramini, F.; Diaz, S. A chorological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco. XII. Candollea 1998, 53, 321–331. [Google Scholar]
- Hetrick, B.A.D.; Kitt, D.G.; Wilson, G.W.T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Can. J. Bot. 1988, 66, 1376–1380. [Google Scholar] [CrossRef]
- Hetrick, B.A.D.; Wilson, G.W.T.; Todd, T.C. Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Can. J. Bot. 1990, 68, 461–467. [Google Scholar] [CrossRef]
- Hetrick, B.A.D.; Wilson, G.W.T.; Leslie, J.F. Root architecture to warm- and cool-season grasses: Relationship to mycorrhizal dependence. Can. J. Bot. 1991, 69, 112–118. [Google Scholar] [CrossRef]
- Lugo, M.A.; Ferrero, M.; Menoyo, E.; Estévez, M.C.; Siñeriz, F.; Anton, A.M. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 2008, 55, 705–713. [Google Scholar] [PubMed]
- Lugo, M.A.; Negritto, M.A.; Jofré, M.; Anton, A.M.; Galetto, L. Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: A matter of altitude, host photosynthetic pathway and host life cycles. FEMS Microbiol. Ecol. 2012, 81, 455–466. [Google Scholar]
- Lugo, M.A.; Menoyo, E.; Risio Allione, L.; Negritto, M.A.; Henning, J.A.; Anton, A.M. Arbuscular mycorrhizas and dark septate endophytes associated with grasses from the Argentine Puna. Mycologia 2018, 110, 654–665. [Google Scholar] [CrossRef]
- Lugo, M.A.; Cabello, M.N. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 2002, 94, 579–586. [Google Scholar]
- Dudinszky, N.; Cabello, M.N.; Grimoldi, A.A.; Schalamuk, S.; Golluscio, R.A. Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in Patagonian semiarid steppes. Rangel. Ecol. Manag. 2019, 72, 692–699. [Google Scholar] [CrossRef]
- Mendoza, R.E.; Goldmann, V.; Rivas, J.; Escudero, V.; Pagani, E.; Collantes, M.; Marbán, L. Poblaciones de hongos micorrízicos arbusculares en relación con las propiedades del suelo y de la planta hospedante en pastizales de Tierra del Fuego. Ecol. Aus. 2002, 12, 105–116. [Google Scholar]
- Ambrosino, M.L.; Cabello, M.N.; Busso, C.A.; Velázquez, M.S.; Torres, Y.A.; Cardillo, D.S.; Ithurrart, L.S.; Montenegro, O.A.; Giorgetti, H.; Rodriguez, G. Communities of arbuscular mycorrhizal fungi associated with perennial grasses of different forage quality exposed to defoliation. J. Arid Environ. 2018, 154, 61–69. [Google Scholar] [CrossRef]
- García, I.; Cabello, M.; Fernández-López, C.; Chippano, T.; Mendoza, R. Hongos Micorrícicos Arbusculares en Asociación con Lotus Tenuis en Ambientes Halomórficos de la Cuenca del río Salado; CONEBIOS V Ecología y Biología de Suelos: Buenos Aires, Argentina, 2017; ISBN 978-987-3941-39-9. [Google Scholar]
- Ontivero, R.E.; Risio Allione, L.V.; Iriarte, H.J.; Lugo, M.A. Efecto del uso del suelo sobre la abundancia de esporas de hongos micorrícicos arbusculares pertenecientes a diferentes gremios en el Espinal, Argentina. Rev. Cient. Agropec. 2022, 25, 38–51. [Google Scholar]
- Weber, S.E.; Diez, J.M.; Andrews, L.V.; Goulden, M.L.; Aronson, E.L.; Allen, M.F. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 2019, 40, 62–71. [Google Scholar] [CrossRef]
- Pagano, M.C.; Duarte, N.F.D.; Correa, E.J.A. Effect of crop and grassland management on mycorrhizal fungi and soil aggregation. Appl. Soil Ecol. 2020, 147, 103385. [Google Scholar] [CrossRef]
- Velázquez, M.S.; Cabello, M.N.; Barrera, M. Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina. Mycologia 2013, 105, 509–520. [Google Scholar] [CrossRef]
- Chippano, T.; Mendoza, R.; Cofré, N.; García, I. Divergent root P uptake strategies of three temperate grassland forage species. Rhizosphere 2021, 17, 100312. [Google Scholar] [CrossRef]
- Soteras, F.; Renison, D.; Becerra, A.G. Restoration of high altitude forests in an area affected by a wildfire: Polylepis australis Bitt. seedlings performance after soil inoculation. Trees 2014, 28, 173–182. [Google Scholar]
- Velázquez, M.S.; Biganzoli, F.; Cabello, M.N. Arbuscular mycorrhizal fungi in El Palmar National Park (Entre Rios Province, Argentina)–A protected reserve. Sydowia 2010, 62, 149–163. [Google Scholar]
- Druille, M.; Cabello, M.N.; Parisi, P.G.; Golluscio, R.A.; Omacini, M. Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands. Agric. Ecosyst. Ennviron. 2015, 202, 48–55. [Google Scholar] [CrossRef]
- Covacevich, F.; Hernández Guijarro, K.; Crespo, E.M.; Lumini, E.; Rivero Mega, M.S.; Lugo, M.A. Arbuscular mycorrhizal fungi from argentinean highland puna soils unveiled by propagule multiplication. Plants 2021, 10, 1803. [Google Scholar] [CrossRef]
- Soteras, F.; Renison, D.; Becerra, A.G. Growth response, phosphorus content and root colonization of Polylepis australis Bitt. seedlings inoculated with different soil types. New For. 2013, 44, 577–589. [Google Scholar]
- Ferreira, D.A.; Carneiro, M.A.C.; Saggin, O.J., Jr. Arbuscular mycorrhizal fungi in an oxisol under managements and uses in Cerrado. Rev. Brasil. Ciência Solo 2012, 36, 51–61. [Google Scholar] [CrossRef]
- Silva Coutinho, E.S.; Fernandes, G.W.; Berbara, R.L.L.; Valério, H.M.; Goto, B.T. Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 2015, 25, 627–638. [Google Scholar] [CrossRef]
- Zangaro, W.; Rostirola, L.V.; de Souza, P.B.; de Almeida Alves, R.; Lescano, L.E.A.M.; Rondina, A.B.L.; Carrenho, R. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 2013, 23, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.D.S.; Menezes, R.S.C.; Sampaio, E.V.D.S.B.; Lima, F.D.S.; Maia, L.C.; Oehl, F. Arbuscular mycorrhizal fungi in successional stages of Caatinga in the semi-arid region of Brazil. Ciência Florest. 2014, 24, 137–148. [Google Scholar] [CrossRef]
- Vieira, L.C.; da Silva, D.K.A.; de Melo, M.A.C.; Escobar, I.E.C.; Oehl, F.; da Silva, G.A. Edaphic factors influence the distribution of arbuscular mycorrhizal fungi along an altitudinal gradient of a tropical mountain. Microb. Ecol. 2019, 78, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, L.R.; Silva, C.F.D.; Pereira, M.G.; Gaia-Gomes, J.H.; Silva, E.M.R.D. Biological properties and organic matter dynamics of soil in pasture and natural regeneration areas in the Atlantic forest biome. Rev. Brasil. Ciên. Solo 2016, 40. [Google Scholar] [CrossRef]
- De Cristo, S.C.; Fors, R.O.; de Carvalho, A.G. Diversity of arbuscular mycorrhizal fungi in pasture areas in the Serra do Itajaí National Park. Rev. Brasil. Ciên. Agr. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Alves Fernandes, R.; Alves Ferreira, D.; Saggin-Junior, O.J.; Stürmer, S.L.; Barbosa Paulino, H.; Siqueira, J.O.; Carbone Carneiro, M.A. Occurrence and species richness of mycorrhizal fungi in soil under different management and use. Can. J. Soil Sc. 2016, 96, 271–280. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. Mycosphere Online J. Fungal Biol. 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Mäder, P.; Dubois, D.; Ineichen, K.; Boller, T.; Wiemken, A. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 2004, 138, 574–583. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2015, 6, 1559. [Google Scholar] [CrossRef]
- Bever, J.D.; Morton, J.B.; Antonovics, J.; Schultz, P.A. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J. Ecol. 1996, 84, 71–82. [Google Scholar] [CrossRef]
- Lovera, M.; Cuenca, G. Diversidad de hongos micorrízicos arbusculares (HMA) y potencial micorrízico del suelo de una Sabana natural y una Sabana perturbada de La Gran Sabana, Venezuela. Interciencia 2007, 32, 108–114. [Google Scholar]
- Chagnon, P.L.; Bradley, R.L.; Maherali, H.; Klironomos, J.N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013, 18, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Stümer, S.L.; Bever, J.D.; Morton, J.B. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): A phylogenetic perspective on species distribution patterns. Mycorrhiza 2018, 28, 587–603. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Kemmelmeier, K. The Glomeromycota in the Neotropics. Front. Microbiol. 2021, 11, 553679. [Google Scholar] [CrossRef] [PubMed]
- Rincón, C.; Droh, G.; Villard, L.; Masclaux, F.G.; N’guetta, A.; Zeze, A.; Sanders, I.R. Hierarchical spatial sampling reveals factors influencing arbuscular mycorrhizal fungus diversity in Côte d’Ivoire cocoa plantations. Mycorrhiza 2021, 31, 289–300. [Google Scholar] [CrossRef]
- Hazard, C.; Gosling, P.; van der Gast, C.J.; Mitchell, D.T.; Doohan, F.M.; Bending, G.D. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J. 2013, 7, 498–508. [Google Scholar] [CrossRef]
- Romero, F.; Argüello, A.; de Bruin, S.; van der Heijden, M.G. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Func. Ecol. 2023, 37, 2386–2398. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Blagodatskaya, E.V.; Anderson, T.H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol. Biochem. 1998, 30, 1269–1274. [Google Scholar] [CrossRef]
- Rousk, J.; Demoling, L.A.; Bahr, A.; Bååth, E. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol. Ecol. 2008, 63, 350–358. [Google Scholar] [CrossRef]
- Aponte, C.; García, L.V.; Marañón, T.; Gardes, M. Indirect host effect on ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol. Biochem. 2010, 42, 788–796. [Google Scholar] [CrossRef]
- Janowski, D.; Leski, T. Factors in the distribution of mycorrhizal and soil fungi. Diversity 2022, 14, 1122. [Google Scholar] [CrossRef]
- Dumbrell, A.J.; Ashton, P.D.; Aziz, N.; Feng, G.; Nelson, M.; Dytham, C.; Fitter, A.H.; Helgason, T. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol. 2011, 190, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Lekberg, Y.; Meadow, J.; Rohr, J.R.; Redecker, D.; Zabinski, C.A. Importance of dispersal and thermal environment for mycorrhizal communities: Lessons from Yellowstone National Park. Ecology 2011, 92, 1292–1302. [Google Scholar] [CrossRef]
- Davison, J.; Moora, M.; Öpik, M.; Adholeya, A.; Ainsaar, L.; Bâ, A.; Burla, S.; Diedhiou, A.G.; Hiiesalu, I.; Jairus, T.; et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 2015, 349, 970–973. [Google Scholar] [CrossRef]
- van Geel, M.; Jacquemyn, H.; Plue, J.; Saar, L.; Kasari, L.; Peeters, G.; van Acker, K.; Honnay, O.; Ceulemans, T. Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytol. 2018, 220, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.I.; Wang, I.J.; Bruns, T.D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 2017, 26, 6960–6973. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Hubbell, D.H.; Mahmud, A.W. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant Soil 1984, 76, 115–124. [Google Scholar] [CrossRef]
- Wang, G.M.; Stribley, D.P.; Tinker, P.B.; Walker, C. Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol. 1993, 124, 465–472. [Google Scholar] [CrossRef]
- Coughlan, A.P.; Dalpé, Y.; Lapointe, L.; Piché, Y. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can. J. For. Res. 2000, 30, 1543–1554. [Google Scholar] [CrossRef]
- Davison, J.; Moora, M.; Semchenko, M.; Adenan, S.B.; Ahmed, T.; Akhmetzhanova, A.A.; Alatalo, J.M.; Al-Quraishy, S.; Andriyanova, E.; Anslan, S.; et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 2021, 231, 763–776. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Oliverio, A.M.; Geisen, S.; Delgado-Baquerizo, M.; Maestre, F.T.; Turner, B.L.; Fierer, N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 2020, 6, eaax8787. [Google Scholar] [CrossRef]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Comm. 2019, 10, 5142. [Google Scholar] [CrossRef] [PubMed]
- Sales, L.R.; Silva, A.O.; Sales, F.R.; Rodrigues, T.L.; Barbosa, M.V.; dos Santos, J.V.; Kemmelmeier, K.; Siqueira, J.O.; Carbone Carneiro, M.A. On farm inoculation of native arbuscular mycorrhizal fungi improves efficiency in increasing sugarcane productivity in the field. Rhizosphere 2022, 22, 100539. [Google Scholar] [CrossRef]
- Ma, X.; Xu, X.; Geng, Q.; Luo, Y.; Ju, C.; Li, Q.; Zhou, Y. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecol. Biog. 2023, 32, 1241–1461. [Google Scholar] [CrossRef]
- Lavado, R.S.; Taboada, M.A. The Argentinean Pampas: A key region with a negative nutrient balance and soil degradation needs better nutrient management and conservation programs to sustain its future viability as a world agroresource. J. Soil Water Conserv. 2009, 64, 150A–153A. [Google Scholar] [CrossRef]
- Colazo, J.C.; de Dios Herrero, J.; Sager, R.; Guzmán, M.L.; Zaman, M. Contribution of integrated crop livestock systems to climate smart agriculture in Argentina. Land 2022, 11, 2060. [Google Scholar] [CrossRef]
- Quiroga Mendiola, M.; Cladera, J. Ganadería en la Puna Argentina, La Puna Argentina: Naturaleza y Cultura. In Serie Conservación de la Naturaleza; Grau, H.R., Babot, J., Izquierdo, A., Grau, A., Eds.; Fundación Miguel Lillo: Tucumán, Argentina, 2018; pp. 387–402. [Google Scholar]
- Blair, J.; Nippert, J.; Briggs, J. Grassland Ecology. In Ecology and the Environment; Monson, R.K., Ed.; The Plant Sciences 8; Springer: New York, NY, USA, 2014; pp. 389–423. [Google Scholar] [CrossRef]
- Chaneton, E.J.; Perelman, S.B.; Omancini, M.; León, R.J.C. Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biol. Invasions 2002, 4, 7–24. [Google Scholar] [CrossRef]
- Cid, M.S.; Grecco, R.C.F.; Oesterheld, M.; Paruelo, J.M.; Cibils, A.F.; Brizuela, M.A. Grass-fed beef production systems of Argentina’s flooding pampas: Understanding ecosystem heterogeneity to improve livestock production. Outlook Agrc. 2011, 40, 181–189. [Google Scholar] [CrossRef]
- Nepote, V.D.; Voyron, S.; Soteras, F.; Iriarte, H.J.; Giovannini, A.; Lumini, E.; Lugo, M.A. Modeling geographic distribution of arbuscular mycorrhizal fungi from molecular evidence in soils of Argentinean Puna using a maximum entropy approach. PeerJ 2023, 11, e14651. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.L.; Weber, S.E.; Andrews, L.V.; Aronson, E.L.; Allen, M.F.; Allen, E.B. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol. 2019, 40, 107–117. [Google Scholar] [CrossRef]
- Ontivero, R.E.; Voyron, S.; Risio Allione, L.V.; Bianco, P.; Bianciotto, V.; Iriarte, H.J.; Lugo, M.A.; Lumini, E. Impact of land use history on the arbuscular mycorrhizal fungal diversity in arid soils of Argentinean farming fields. FEMS Microbiol. Lett. 2020, 367, fnaa114. [Google Scholar] [CrossRef] [PubMed]
- Paruelo, J.M.; Jobbagy, E.; Oesterheld, M.; Golluscio, R.A.; Aguiar, M.R. The grasslands and steppes of Patagonia and the Rio de la Plata plains. In The Physical Geography of South America; Veblen, T.T., Young, K.R., Orme, A.R., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 232–248. [Google Scholar]
- Lemaire, G.; Hodgson, J.; Chabbi, A. (Eds.) Grassland Productivity and Ecosystem Services; CABI: Wallingford, UK; Cambridge, MA, USA, 2011; p. 312. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/3/cb1329en/CB1329EN.pdf (accessed on 15 April 2023).
- Koziol, L.; McKenna, T.P.; Crews, T.E.; Bever, J.D. Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Rest. Ecol. 2023, 31, e137721of8. [Google Scholar] [CrossRef]
- Koziol, L.; McKenna, T.P.; Bever, J.D. Native microbes amplify native seedling establishment and diversity while inhibiting a non-native grass. Plants 2023, 12, 1184. [Google Scholar] [CrossRef]
- Gou, X.; Ni, H.; Sadowsky, M.J.; Chang, X.; Liu, W.; Wei, X. Arbuscular mycorrhizal fungi alleviate erosion-induced soil nutrient losses in experimental agro-ecosystems. Catena 2023, 220 Pt A, 106687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugo, M.A.; Ontivero, R.E.; Iriarte, H.J.; Yelikbayev, B.; Pagano, M.C. The Diversity of Arbuscular Mycorrhizal Fungi and Their Associations in South America: A Case Study of Argentinean and Brazilian Cattle Raising Productive Ecosystems: A Review. Diversity 2023, 15, 1006. https://doi.org/10.3390/d15091006
Lugo MA, Ontivero RE, Iriarte HJ, Yelikbayev B, Pagano MC. The Diversity of Arbuscular Mycorrhizal Fungi and Their Associations in South America: A Case Study of Argentinean and Brazilian Cattle Raising Productive Ecosystems: A Review. Diversity. 2023; 15(9):1006. https://doi.org/10.3390/d15091006
Chicago/Turabian StyleLugo, Mónica A., Roberto Emanuel Ontivero, Hebe J. Iriarte, Bakhytzhan Yelikbayev, and Marcela C. Pagano. 2023. "The Diversity of Arbuscular Mycorrhizal Fungi and Their Associations in South America: A Case Study of Argentinean and Brazilian Cattle Raising Productive Ecosystems: A Review" Diversity 15, no. 9: 1006. https://doi.org/10.3390/d15091006
APA StyleLugo, M. A., Ontivero, R. E., Iriarte, H. J., Yelikbayev, B., & Pagano, M. C. (2023). The Diversity of Arbuscular Mycorrhizal Fungi and Their Associations in South America: A Case Study of Argentinean and Brazilian Cattle Raising Productive Ecosystems: A Review. Diversity, 15(9), 1006. https://doi.org/10.3390/d15091006