Unexpected Links between Communities of a Freshwater–Cropland Mediterranean Metanetwork
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Literature Review
2.3. Model Construction
2.4. Node-Level Measures
3. Results
3.1. Network Model Structure
3.2. Influences of Nodes within the Network
3.3. Transmission of Effects between Ecosystems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Pereira, P. Ecosystem services in a changing environment. Sci. Total Environ. 2020, 702, 135008. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.V.; Fausch, K.D.; Murakami, M.; Chapman, P.L. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 2004, 85, 2656–2663. [Google Scholar] [CrossRef]
- Paetzold, A.; Smith, M.; Warren, P.H.; Maltby, L. Environmental impact propagated by cross-system subsidy: Chronic stream pollution controls riparian spider populations. Ecology 2011, 92, 1711–1716. [Google Scholar] [CrossRef]
- Greig, H.S.; Kratina, P.; Thompson, P.L.; Palen, W.J.; Richardson, J.S.; Shurin, J.B. Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Glob. Change Biol. 2012, 18, 504–514. [Google Scholar] [CrossRef]
- Kraus, J.M.; Schmidt, T.S.; Walters, D.M.; Wanty, R.B.; Zuellig, R.E.; Wolf, R.E. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecol. Appl. 2014, 24, 235–243. [Google Scholar] [CrossRef]
- Schiesari, L.; Matias, M.G.; Prado, P.I.; Leibold, M.A.; Albert, C.H.; Howeth, J.G.; Leroux, S.J.; Pardini, R.; Siqueira, T.; Brancalion, P.H.; et al. Towards an applied metaecology. Perspect. Ecol. Conserv. 2019, 17, 172–181. [Google Scholar] [CrossRef]
- Hagen, M.; Kissling, W.D.; Rasmussen, C.; De Aguiar, M.A.M.; Brown, L.E.; Carstensen, D.W.; Alves-Dos-Santos, I.; Dupont, Y.L.; Edwards, F.K.; Genini, J.; et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 2012, 46, 89–210. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Morris, R.J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 25–48. [Google Scholar] [CrossRef]
- Delettre, Y.R.; Morvan, N. Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshw. Biol. 2000, 44, 399–411. [Google Scholar] [CrossRef]
- Burel, F.; Butet, A.; Delettre, Y.R.; de la Peña, N.M. Differential response of selected taxa to landscape context and agricultural intensification. Landsc. Urban Plan. 2004, 67, 195–204. [Google Scholar] [CrossRef]
- Delettre, Y.R. Short-range spatial patterning of terrestrial Chironomidae (Insecta: Diptera) and farmland heterogeneity. Pedobiologia 2005, 49, 15–27. [Google Scholar] [CrossRef]
- Carlson, P.E.; McKie, B.G.; Sandin, L.; Johnson, R.K. Strong land-use effects on the dispersal patterns of adult stream insects: Implications for transfers of aquatic subsidies to terrestrial consumers. Freshw. Biol. 2016, 61, 848–861. [Google Scholar] [CrossRef]
- Raitif, J.; Plantegenest, M.; Agator, O.; Piscart, C.; Roussel, J.M. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape. Sci. Total Environ. 2018, 644, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Raitif, J.; Roussel, J.M.; Olmos, M.; Piscart, C.; Plantegenest, M. Assessing spatial deposition of aquatic subsidies by insects emerging from agricultural streams. Sci. Total Environ. 2022, 837, 155686. [Google Scholar] [CrossRef]
- Iwata, T.; Nakano, S.; Murakami, M. Stream meanders increase insectivorous bird abundance in riparian deciduous forests. Ecography 2003, 26, 325–337. [Google Scholar] [CrossRef]
- Knight, T.M.; McCoy, M.W.; Chase, J.M.; McCoy, K.A.; Holt, R.D. Trophic cascades across ecosystems. Nature 2005, 437, 880–883. [Google Scholar] [CrossRef]
- Paetzold, A.; Schubert, C.J.; Tockner, K. Aquatic terrestrial linkages along a braided-river: Riparian arthropods feeding on aquatic insects. Ecosystems 2005, 8, 748–759. [Google Scholar] [CrossRef]
- Fukui, D.A.I.; Murakami, M.; Nakano, S.; Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 2006, 75, 1252–1258. [Google Scholar] [CrossRef]
- Sato, A.A.W.; Kato, M. Pollination system of Corylopsis gotoana (Hamamelidaceae) and its stonefly (Plecoptera) co-pollinator. Plant Spec. Biol. 2017, 32, 440–447. [Google Scholar] [CrossRef]
- Thompson, R.M.; Dunne, J.A.; Woodward, G.U.Y. Freshwater food webs: Towards a more fundamental understanding of biodiversity and community dynamics. Freshw. Biol. 2012, 57, 1329–1341. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Evans, D.M.; Memmott, J. The robustness and restoration of a network of ecological networks. Science 2012, 335, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Morrison, B.M.L.; Brosi, B.J.; Dirzo, R. Agricultural intensification drives changes in hybrid network robustness by modifying network structure. Ecol. Lett. 2020, 23, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.I.A.; Andersson, G.K.S.; Brönmark, C.; Klatt, B.K.; Hansson, L.A.; Zülsdorff, V.; Smith, H.G. Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination. Basic Appl. Ecol. 2017, 18, 13–20. [Google Scholar] [CrossRef]
- Klatt, B.K.; Pudifoot, B.; Urrutia-Cordero, P.; Smith, H.G.; Alsterberg, C.M. A trophic cascade causes unexpected ecological interactions across the aquatic-terrestrial interface under extreme weather. Oikos 2022, 2022, e09047. [Google Scholar] [CrossRef]
- Sullivan, S.M.P.; Manning, D.W. Aquatic-terrestrial linkages as complex systems: Insights and advances from network models. Freshw. Sci. 2019, 38, 936–945. [Google Scholar] [CrossRef]
- Figueroa, R.; Palma, A.; Ruiz, V.; Niell, X. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de las aguas en un río mediterráneo de Chile: Río Chillán, VIII Región. Rev. Chil. Hist. Nat. 2007, 80, 225–242. [Google Scholar] [CrossRef]
- Underwood, E.C.; Viers, J.H.; Klausmeyer, K.R.; Cox, R.L.; Shaw, M.R. Threats and biodiversity in the mediterranean biome. Divers. Distrib. 2009, 15, 188–197. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of global change on Mediterranean forests and their services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Newman, M. Networks: An Introduction; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Bender, E.A.; Case, T.J.; Gilpin, M.E. Perturbation experiments in community ecology: Theory and practice. Ecology 1984, 65, 1–13. [Google Scholar] [CrossRef]
- Puccia, C.; Levins, R. Qualitative Modeling of Complex Systems: An Introduction to Loop Analysis and Time Averaging; Harvard University Press: Cambridge, MA, USA; London, UK, 1985. [Google Scholar] [CrossRef]
- Yodzis, P. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 1988, 69, 508–515. [Google Scholar] [CrossRef]
- Nakajima, H. Sensitivity and stability of flow networks. Ecol. Model. 1992, 62, 123–133. [Google Scholar] [CrossRef]
- Dambacher, J.M.; Li, H.W.; Rossignol, P.A. Qualitative predictions in model ecosystems. Ecol. Model. 2003, 161, 79–93. [Google Scholar] [CrossRef]
- Novak, M.; Yeakel, J.D.; Noble, A.E.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Jacob, U.; Tinker, M.T.; Wootton, J.T. Characterizing species interactions to understand press perturbations: What is the community matrix? Annu. Rev. Ecol. Evol. Syst. 2016, 47, 409–432. [Google Scholar] [CrossRef]
- Puche, E.; Rojo, C.; Ramos-Jiliberto, R.; Rodrigo, M.A. Structure and vulnerability of the multi-interaction network in macrophytes-dominated lakes. Oikos 2020, 129, 35–48. [Google Scholar] [CrossRef]
- Aschmann, H. Distribution and peculiarity of Mediterranean ecosystems. In Mediterranean Type Ecosystems. Ecological Studies (Analysis and Synthesis); di Castri, F., Mooney, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1973; Volume 7, pp. 11–19. [Google Scholar] [CrossRef]
- Cowling, R.M.; Rundel, P.W.; Lamont, B.B.; Arroyo, M.K.; Arianoutsou, M. Plant diversity in Mediterranean-climate regions. Trends Ecol. Evol. 1996, 11, 362–366. [Google Scholar] [CrossRef]
- Cowling, R.M.; Potts, A.J.; Bradshaw, P.L.; Colville, J.; Arianoutsou, M.; Ferrier, S.; Forest, F.; Fyllas, N.M.; Hopper, S.D.; Ojeda, F.; et al. Variation in plant diversity in mediterranean-climate ecosystems: The role of climatic and topographical stability. J. Biogeogr. 2015, 42, 552–564. [Google Scholar] [CrossRef]
- Medail, F.; Quezel, P. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Mo. Bot. Gard. 1997, 84, 112–127. [Google Scholar] [CrossRef]
- Gasith, A.; Resh, V.H. Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Syst. 1999, 30, 51–81. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S., 3rd; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2005, 8, 23–29. [Google Scholar] [CrossRef]
- Bonada, N.; Resh, V.H. Mediterranean-climate streams and rivers: Geographically separated but ecologically comparable freshwater systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- PNUD. Catálogo de las Especies Exóticas Asilvestradas/Naturalizadas en Chile. Laboratorio de Invasiones Biológicas (LIB) Universidad de Concepción, Proyecto GEF/MMA/PNUD Fortalecimiento de los Marcos Nacionales para la Gobernabilidad de las Especies Exóticas Invasoras: Proyecto Piloto en el Archipiélago de Juan Fernández. Santiago de Chile. 2017. Available online: http://bibliotecadigital.ciren.cl/handle/123456789/32888 (accessed on 13 June 2020).
- AvesdeChile. Aves de Chile. Myiopsitta monachus. 2018. Available online: http://www.avesdechile.cl/468.htm (accessed on 8 May 2018).
- Bertellotti, M.; Pagnoni, G.; Yorio, P. Comportamiento de Alimentación de la Gaviota Cocinera (Larus dominicanus) Durante la Temporada no Reproductiva en Playas Arenosas de Península Valdés, Argentina. El hornero 2003, 18, 37–42. Available online: https://bibliotecadigital.exactas.uba.ar/collection/hornero/document/hornero_v018_n01_p037 (accessed on 12 November 2021). [CrossRef]
- Celis-Diez, J.L.; Ippi, S.; Charrier, A.; Garín, C. Fauna de los Bosques Templados de Chile. Guía de Campo de los Vertebrados Terrestres. Ed. Corporación Chilena de la Madera, Concepción, Chile. 2011. Available online: https://www.curriculumnacional.cl/614/articles-89559_recurso_pdf.pdf (accessed on 1 February 2019).
- Chester, S. A Wildlife Guide to Chile: Continental Chile, Chilean Antarctica, Easter Island, Juan Fernandez Archipelago; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- del Hoyo, J.; Elliott, A.; Sargatal, J.; Christie, D. Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. 2018. Available online: https://birdsoftheworld.org (accessed on 8 May 2018).
- FAO. Estado del Arte del Servicio Ecosistémico de la Polinización en Chile, Paraguay y Perú; FAO: Santiago, Chile, 2017; Available online: https://www.fao.org/3/i8162s/i8162s.pdf (accessed on 5 February 2019).
- Feio, M.J.; Almeida, S.F.; Aguiar, F.C. Functional associations between microalgae, macrophytes and invertebrates distinguish river types. Aquat. Sci. 2017, 79, 909–923. [Google Scholar] [CrossRef]
- Gillespie, G.R. The role of introduced trout in the decline of the spotted tree frog (Litoria spenceri) in south-eastern Australia. Biol. Conserv. 2001, 100, 187–198. [Google Scholar] [CrossRef]
- González, R. Insectos y Ácaros de Importancia Agrícola y Cuarentenaria en Chile. 1989. Available online: http://libros.uchile.cl/357 (accessed on 14 January 2019).
- Jaramillo, A.; Burke, P.; Beadle, D. Birds of Chile; Christopher Helm: London, UK, 2003. [Google Scholar]
- Lafferty, K.D.; Page, C.J. Predation on the endangered tidewater goby, Eucyclogobius newberryi, by the introduced African clawed frog, Xenopus laevis, with notes on the frog’s parasites. Copeia 1997, 1997, 589–592. [Google Scholar] [CrossRef]
- Lobos, G.; Jaksic, F.M. The ongoing invasion of African clawed frogs (Xenopus laevis) in chile: Causes of concern. Biodivers. Conserv. 2005, 14, 429–439. [Google Scholar] [CrossRef]
- Lobos, G.; Cattan, P.E.; López, M. Antecedentes de la Ecología Trófica del Sapo Africano Xenopus laevis en la Zona Central de Chile. Bol. Mus. Nac. Hist. Nat. 1999, 48, 7–18. Available online: https://publicaciones.mnhn.gob.cl/668/articles-64438_archivo_01.pdf (accessed on 11 July 2019).
- Luppichini, P.; Olivares, N.; Montenegro, N. Guía de Campo: Plagas del Palto y sus Enemigos Naturales [en línea]. Quillota: Boletín INIA—Instituto de Investigaciones Agropecuarias. no. 239. 2013. Available online: https://biblioteca.inia.cl/handle/123456789/7578 (accessed on 14 January 2019).
- McCormick, S.; Polis, G.A. Arthropods that prey on vertebrates. Biol. Rev. 1982, 57, 29–58. [Google Scholar] [CrossRef]
- Muñoz-Sáez, A.; Perez-Quezada, J.F.; Estades, C.F. Agricultural landscapes as habitat for birds in central Chile. Rev. Chil. Hist. Nat. 2017, 90, 3:1–3:12. [Google Scholar] [CrossRef]
- ODEPA. Regiones de Valparaíso, Metropolitana, Bernardo O’Higgins, Maule y del Biobío. Información Regional 2018. 2018. Available online: https://www.odepa.gob.cl/estadisticas-del-sector/ficha-nacional-y-regionales (accessed on 26 April 2018).
- Ortiz, J.C.; Díaz-Páez, H. Estado de conocimiento de los anfibios de Chile. Gayana 2006, 70, 114–121. [Google Scholar] [CrossRef]
- Palma, A.; González-Barrientos, J.; Reyes, C.A.; Ramos-Jiliberto, R. Biodiversity and community structure of rivers from the arid, semi-arid and north-mediterranean zones of Chile. Rev. Chil. Hist. Nat. 2013, 86, 1–14. [Google Scholar] [CrossRef]
- Peña-Villalobos, I.; Fibla, P.; Salazar, J.E.; Sallaberry, M. Cambios temporales en la abundancia y composición del ensamble de aves acuáticas en tranques artificiales en Chile central. Gayana 2012, 76, 92–101. [Google Scholar] [CrossRef]
- Prado, E. Artrópodos y Enemigos Naturales Asociados a Plantas Cultivadas en Chile [en línea]. Santiago: Boletín Técnico—Instituto de Investigaciones Agropecuarias. 1991. Available online: https://biblioteca.inia.cl/handle/20.500.14001/37317 (accessed on 28 May 2018).
- Pritchard, G. The prey of adult dragonflies in northern Alberta. Can. Entomol. 1964, 96, 821–825. [Google Scholar] [CrossRef]
- Rabanal, F.E.; Nuñez, J.J. Anfibios de los Bosques Templados de Chile; Universidad Austral de Chile: Valdivia, Chile, 2009. [Google Scholar]
- Rojas, S. Control Biológico de Plagas en Chile Historia y Avances [en línea]. Santiago: Impresora y Editora Ograma S.A. Colección Libros INIA—Instituto de Investigaciones Agropecuarias. no. 12. 2005. Available online: https://biblioteca.inia.cl/handle/123456789/3693 (accessed on 14 January 2019).
- Sabo, J.L.; Hoekman, D. Dynamic systems of exchange link trophic dynamics in freshwater and terrestrial food webs. In Trophic Ecology: Bottom-Up and Top-Down Interactions Across Aquatic and Terrestrial Systems; Hanley, T., La Pierre, K., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 134–156. [Google Scholar] [CrossRef]
- Simaika, J.P.; Samways, M.J. Valuing dragonflies as service providers. In Dragonflies: Model Organisms for Ecological and Evolutionary Research; Córdoba-Aguilar, A., Ed.; Oxford University Press: Oxford, UK, 2008; pp. 109–123. [Google Scholar]
- Smith-Ramírez, C.; Yáñez, K. Digitalización de Datos de Polinizadores de Chile, Interacción Insecto-Planta y Distribución de Insectos. Informe Final Técnico y Financiero. Red Interamericana de Información sobre Biodiversidad. 2010. Available online: http://www.oas.org/DSD/IABIN/Component2/Chile/PTN-IEB/INFORME%20FINAL%20IABIN.pdf (accessed on 23 May 2018).
- Soares, C.M.; Hayashi, C.; Reidel, A. Predação de pós-larvas de curimba (Prochilodus lineatus, Valenciennes, 1836) por larvas de Odonata (Pantala, Fabricius, 1798) em diferentes tamanhos. Acta Sci. Biol. Sci. 2003, 25, 95–100. [Google Scholar] [CrossRef]
- Valdés, C.A. Evaluación de Actividad de Apis mellifera L. y otros Insectos Asociados a la Floración del Plato (Persea americana Mill.) cv. Hass en dos Localidades de la V Región (Quillota y la Ligua). Undergraduate Thesis, Universidad Católica de Valparaíso, Chile, 2002. Available online: http://www.avocadosource.com/papers/chile_papers_a-z/v-w-x/valdescarolina2002.pdf (accessed on 5 February 2019).
- Victoriano, P.F.; González, A.L.; Schlatter, R. Estado de conocimiento de las aves de aguas continentales de Chile. Gayana 2006, 70, 140–162. [Google Scholar] [CrossRef]
- Vidal, M.A.; Labra, A. Dieta de anfibios y reptiles. In Herpetología de Chile; Vidal, M.A., Labra, A., Eds.; Science Verlag Ediciones: Santiago, Chile, 2008; pp. 453–482. Available online: https://www.researchgate.net/publication/274194097 (accessed on 4 February 2019).
- Vila, I.; Habit, E. Current situation of the fish fauna in the Mediterranean region of Andean river systems in Chile. Fishes Mediterr. Environ. 2015, 2, 1–19. [Google Scholar] [CrossRef]
- Yorio, P.; Bertellotti, M. Espectro trófico de la Gaviota Cocinera (Larus dominicanus) en tres áreas protegidas de Chubut, Argentina. El Hornero 2002, 17, 91–95. Available online: https://bibliotecadigital.exactas.uba.ar/collection/hornero/document/hornero_v017_n02_p091 (accessed on 12 November 2021). [CrossRef]
- Barriga, J.E. Parásitos y Depredadores de Larvas de Cerambycidae y Buprestidae (Coleoptera) de Chile. Rev. Chil. Entomol. 1990, 18, 57–59. Available online: http://www.coleoptera-neotropical.org/paginas/5-pdf/Barriga/1990%20Barriga%20Parasitos%20y%20depredadores%20de%20Cerambycidae%20y%20Buprestidae%20de%20Chile.pdf (accessed on 14 January 2019).
- Burla, J.P.; Grille, G.; Lorenzo, M.E.; Franco, J.; Bonato, O.; Basso, C. Effect of different diets on the development, mortality, survival, food uptake and fecundity of Tupiocoris cucurbitaceus (Hemiptera: Miridae). Fla. Entomol. 2014, 97, 1816–1824. [Google Scholar] [CrossRef]
- Devotto, L.; del Valle, C.; Ceballos, R.; Gerding, M. Biology of Mastrus ridibundus (Gravenhorst), a potential biological control agent for area-wide management of Cydia pomonella (Linneaus)(Lepidoptera: Tortricidae). J. Appl. Entomol. 2010, 134, 243–250. [Google Scholar] [CrossRef]
- Fuentes-Contreras, E.; Niemeyer, H.M. Effect of wheat resistance, the parasitoid Aphidius rhopalosiphi, and the entomopathogenic fungus Pandora neoaphidis, on population dynamics of the cereal aphid Sitobion avenae. Entomol. Exp. Appl. 2000, 97, 109–114. [Google Scholar] [CrossRef]
- González, R.H.; Barría, G.; Guerrero, M.A. Nematus desantisi Smith, Nueva Especie de Importancia Forestal en Chile (Hymenoptera: Tenthredinidae). Rev. Chil. Entomol. 1986, 14, 13–15. Available online: http://www.insectachile.cl/rchen/pdfs/1986v14/Gonzalez_et_al_1986.pdf (accessed on 14 January 2019).
- Grez, A.A.; Prado, E. Effect of plant patch shape and surrounding vegetation on the dynamics of predatory coccinellids and their prey Brevicoryne brassicae (Hemiptera: Aphididae). Environ. Entomol. 2000, 29, 1244–1250. [Google Scholar] [CrossRef]
- Grez, A.A.; Rivera, P.; Zaviezo, T. Foliar and ground-foraging predators of aphids associated with alfalfa crops in Chile: Are they good or bad partners? Biocontrol. Sci. Technol. 2007, 17, 1071–1077. [Google Scholar] [CrossRef]
- Grez, A.A.; Viera, B.; Soares, A.O. Biotic interactions between Eriopis connexa and Hippodamia variegata, a native and an exotic coccinellid species associated with alfalfa fields in Chile. Entomol. Exp. Appl. 2012, 142, 36–44. [Google Scholar] [CrossRef]
- Grez, A.A.; Zaviezo, T.; Mancilla, A. Effect of prey density on intraguild interactions among foliar- and ground-foraging predators of aphids associated with alfalfa crops in Chile: A laboratory assessment. Entomol. Exp. Appl. 2011, 139, 1–7. [Google Scholar] [CrossRef]
- Navea, D.; Vargas, R.M. Parasitoidism rate and life table parameters of Aphytis diaspidis (howard)(Hymenoptera: Aphelinidae) and Hemiberlesia lataniae (signoret)(Hemiptera: Diaspididae). Chil. J. Agric. Res. 2012, 72, 338–344. [Google Scholar] [CrossRef]
- Niemeyer, H.M.; Bustamante, R.O.; Simonetti, J.A.; Teillier, S.; Fuentes-Contreras, E.; Mella, J.E. Historia Natural de la Reserva Nacional Río Clarillo: Un Espacio Para Aprender Ecología; Impresos Socías: Santiago, Chile, 2002; Available online: https://www.researchgate.net/publication/266579995_HISTORIA_NATURAL_DE_LA_RESERVA_NACIONAL_RIO_CLARILLO_UN_ESPACIO_PARA_APRENDER_ECOLOGIA (accessed on 14 January 2019).
- Olivares, N.; Luppichini, P.; Volosky, C. Plagas de los Cítricos: Reconocimiento y Manejo [en línea]. La Cruz, Chile: Boletín INIA—Instituto de Investigaciones Agropecuarias. no. 282. 2014. Available online: https://biblioteca.inia.cl/handle/123456789/7686 (accessed on 14 January 2019).
- Rioja, T.; Ceballos, R.; Rebolledo, R.; Vargas, R. Rearing and development of Oligota pygmaea and Parastethorus histrio (Coleoptera: Staphylinidae, Coccinellidae) feeding on Oligonychus yothersi (Acari: Tetranychidae) and survival on non-mite foods under laboratory conditions. Int. J. Acarol. 2015, 41, 681–687. [Google Scholar] [CrossRef]
- Tello, V.; Solimano, E.; Giliomee, J.H. Life table parameters of the woolly whitefly Aleurothrixus floccosus (Hemiptera: Aleyrodidae) and its parasitoid Cales noacki (Hymenoptera: Aphelinidae). Eur. J. Entomol. 2014, 111, 251–256. [Google Scholar] [CrossRef]
- Ximenez-Embun, M.G.; Zaviezo, T.; Grez, A. Seasonal, spatial and diel partitioning of Acyrthosiphon pisum (Hemiptera: Aphididae) predators and predation in alfalfa fields. Biol. Control 2014, 69, 1–7. [Google Scholar] [CrossRef]
- Zepeda-Paulo, F.A.; Ortiz-Martínez, S.A.; Figueroa, C.C.; Lavandero, B. Adaptive evolution of a generalist parasitoid: Implications for the effectiveness of biological control agents. Evol. Appl. 2013, 6, 983–999. [Google Scholar] [CrossRef]
- Bersier, L.F.; Kehrli, P. The signature of phylogenetic constraints on food-web structure. Ecol. Complex. 2008, 5, 132–139. [Google Scholar] [CrossRef]
- Frost, C.M.; Peralta, G.; Rand, T.A.; Didham, R.K.; Varsani, A.; Tylianakis, J.M. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nat. Commun. 2016, 7, 12644:1–12644:12. [Google Scholar] [CrossRef]
- Gómez, J.; Verdú, M.; Perfectti, F. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 2010, 465, 918–921. [Google Scholar] [CrossRef]
- Heine-Fuster, I.; López-Allendes, C.; Aránguiz-Acuna, A.; Véliz, D. Differentiation of diatom guilds in extreme environments in the Andean Altiplano. Front. Environ. Sci. 2021, 9, 701970:1–701970:12. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Passy, S.I. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 2007, 86, 171–178. [Google Scholar] [CrossRef]
- Power, M.E. Depth distributions of armored catfish: Predator-induced resource avoidance? Ecology 1984, 65, 523–528. [Google Scholar] [CrossRef]
- Ramírez, C.D.; San Martín, C. Diversidad de macrófitos chilenos. In Macrófitas y Vertebrados de los Sistemas Límnicos de Chile; Vila, I., Veloso, A., Schlatter, R., Ramírez, C., Eds.; Editorial Universitaria: Santiago, Chile, 2006; pp. 21–61. [Google Scholar]
- Rimet, F.; Bouchez, A. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Manag. Aquat. Ec. 2012, 406, 1–14. [Google Scholar] [CrossRef]
- Srivastava, D.S.; Cadotte, M.W.; MacDonald, A.A.M.; Marushia, R.G.; Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 2012, 15, 637–648. [Google Scholar] [CrossRef]
- Leroux, S.J.; Loreau, M. Dynamics of reciprocal pulsed subsidies in local and meta-ecosystems. Ecosystems 2012, 15, 48–59. [Google Scholar] [CrossRef]
- García-Callejas, D.; Molowny-Horas, R.; Araújo, M.B.; Gravel, D. Spatial trophic cascades in communities connected by dispersal and foraging. Ecology 2019, 100, e02820. [Google Scholar] [CrossRef]
- Quévreux, P.; Barbier, M.; Loreau, M. Synchrony and perturbation transmission in trophic metacommunities. Am. Nat. 2021, 197, E188–E203. [Google Scholar] [CrossRef]
- Dambacher, J.M.; Li, H.W.; Rossignol, P.A. Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology 2002, 83, 1372–1385. [Google Scholar] [CrossRef]
- Ramos-Jiliberto, R.; Jiliberto Herrera, R. Evaluating social policy scenarios for tourism development of Barú Island (Colombia) using structural qualitative modeling. Front. Ecol. Evol. 2021, 9, 241. [Google Scholar] [CrossRef]
- Sole, R.V.; Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 2001, 268, 2039–2045. [Google Scholar] [CrossRef]
- Dunne, J.A.; Williams, R.J.; Martinez, N.D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 2002, 5, 558–567. [Google Scholar] [CrossRef]
- Memmott, J.; Waser, N.M.; Price, M.V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 2004, 271, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.; Woodward, G.; Emmerson, M.C.; Solé, R.V. Press perturbations and indirect effects in real food webs. Ecology 2009, 90, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Miyasaka, H.; Kuhara, N. Terrestrial-aquatic linkages: Riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 1999, 80, 2435–2441. [Google Scholar] [CrossRef]
- Murakami, M.; Nakano, S. Indirect effect of aquatic insect emergence on a terrestrial insect population through by birds predation. Ecol. Lett. 2002, 5, 333–337. [Google Scholar] [CrossRef]
- Sabo, J.L.; Power, M.E. River-watershed exchange: Effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 2002, 83, 1860–1869. [Google Scholar] [CrossRef]
- Sabo, J.L.; Power, M.E. Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey. Ecology 2002, 83, 3023–3036. [Google Scholar] [CrossRef]
- Wallace, J.B.; Eggert, S.L.; Meyer, J.L.; Webster, J.R. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 1997, 277, 102–104. [Google Scholar] [CrossRef]
- Wallace, J.B.; Eggert, S.L.; Meyer, J.L.; Webster, J.R. Effects of resource limitation on a detrital-based ecosystem. Ecol. Monogr. 1999, 69, 409–442. [Google Scholar] [CrossRef]
- Johnson, B.R.; Wallace, J.B. Bottom-up limitation of a stream salamander in a detritus-based food web. Can. J. Fish. Aquat. Sci. 2005, 62, 301–311. [Google Scholar] [CrossRef]
- Bartels, P.; Cucherousset, J.; Gudasz, C.; Jansson, M.; Karlsson, J.; Persson, L.; Premke, K.; Rubach, A.; Steger, K.; Tranvik, L.J.; et al. Terrestrial subsidies to lake food webs: An experimental approach. Oecologia 2012, 168, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Gratton, C.; Donaldson, J.; Zanden, M.J.V. Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland. Ecosystems 2008, 11, 764–774. [Google Scholar] [CrossRef]
- Hoekman, D.; Dreyer, J.; Jackson, R.D.; Townsend, P.A.; Gratton, C. Lake to land subsidies: Experimental addition of aquatic insects increases terrestrial arthropod densities. Ecology 2011, 92, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Hoekman, D.; Bartrons, M.; Gratton, C. Ecosystem linkages revealed by experimental lake-derived isotope signal in heathland food webs. Oecologia 2012, 170, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, J.; Hoekman, D.; Gratton, C. Lake-derived midges increase abundance of shoreline terrestrial arthropods via multiple trophic pathways. Oikos 2012, 121, 252–258. [Google Scholar] [CrossRef]
- Turnbull, L.; Hütt, M.-T.; Ioannides, A.A.; Kininmonth, S.; Poeppl, R.; Tockner, K.; Bracken, L.J.; Keesstra, S.; Liu, L.; Masselink, R.; et al. Connectivity and complex systems: Learning from a multi-disciplinary perspective. Appl. Netw. Sci. 2018, 3, 11:1–11:49. [Google Scholar] [CrossRef]
- De Omena, P.M.; Srivastava, D.S.; Romero, G.Q. Does the strength of cross-ecosystem trophic cascades vary with ecosystem size? A test using a natural microcosm. Freshw. Biol. 2017, 62, 724–736. [Google Scholar] [CrossRef]
- McKinney, M.L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 1997, 28, 495–516. [Google Scholar] [CrossRef]
- Purvis, A.; Agapow, P.M.; Gittleman, J.L.; Mace, G.M. Nonrandom extinction and the loss of evolutionary history. Science 2000, 288, 328–330. [Google Scholar] [CrossRef]
- Brown, B.J.; Mitchell, R.J.; Graham, S.A. Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 2002, 83, 2328–2336. [Google Scholar] [CrossRef]
- Brown, P.M.; Roy, H.E. Native ladybird decline caused by the invasive harlequin ladybird Harmonia axyridis: Evidence from a long-term field study. Insect Conserv. Divers. 2018, 11, 230–239. [Google Scholar] [CrossRef]
- Matsuzaki, S.S.; Usio, N.; Takamura, N.; Washitani, I. Contrasting impacts of invasive engineers on freshwater ecosystems: An experiment and meta-analysis. Oecologia 2009, 158, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Arbetman, M.P.; Meeus, I.; Morales, C.L.; Aizen, M.A.; Smagghe, G. Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol. Invasions 2013, 15, 489–494. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef]
- Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef] [PubMed]
- David, P.; Thébault, E.; Anneville, O.; Duyck, P.-F.; Chapuis, E.; Loeuille, N. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 2017, 56, 1–60. [Google Scholar] [CrossRef]
- Liere, H.; Kim, T.N.; Werling, B.P.; Meehan, T.D.; Landis, D.A.; Gratton, C. Trophic cascades in agricultural landscapes: Indirect effects of landscape composition on crop yield. Ecol. Appl. 2015, 25, 652–661. [Google Scholar] [CrossRef]
- Carbonne, B.; Bohan, D.A.; Foffová, H.; Daouti, E.; Frei, B.; Neidel, V.; Saska, P.; Skuhrovec, J.; Petit, S. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J. Appl. Ecol. 2022, 59, 176–187. [Google Scholar] [CrossRef]
- MMA, Ministerio del Medio Ambiente (Ministry of the Environment). Clasificación de Especies Según Estado de Conservación. 2022. Available online: https://clasificacionespecies.mma.gob.cl (accessed on 21 November 2022).
- Urrutia, J.; Sánchez, P.; Pauchard, A.; Hauenstein, E. Plantas acuáticas invasoras presentes en Chile: Distribución, rasgos de vida y potencial invasor. Gayana Bot. 2017, 74, 147–157. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database. 2022. Available online: http://www.fao.org/faostat/en/#compare (accessed on 13 November 2022).
- IUCN. The IUCN Red List of Threatened Species. Version 2022-1. 2022. Available online: https://www.iucnredlist.org (accessed on 3 October 2022).
- Novak, M.; Wootton, J.T.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Tinker, M.T. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology 2011, 92, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.H.; Edwards, K.F.; Byrnes, J.E.; Bastow, J.L.; Wright, A.N.; Spence, K.O. A meta-analysis of resource pulse–consumer interactions. Ecol. Monogr. 2010, 80, 125–151. [Google Scholar] [CrossRef]
- Takimoto, G.; Iwata, T.; Murakami, M. Timescale hierarchy determines the indirect effects of fluctuating subsidy inputs on in situ resources. Am. Nat. 2009, 173, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Kloeden, P.E.; Pötzsche, C. Nonautonomous Dynamical Systems in the Life Sciences; Springer: Cham, Switzerland, 2013. [Google Scholar] [CrossRef]
- Dambacher, J.M.; Ramos-Jiliberto, R. Understanding and predicting effects of modified interactions through a qualitative analysis of community structure. Q. Rev. Biol. 2007, 82, 227–250. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Leirs, H.; Skonhoft, A.; Davis, S.A.; Pech, R.P.; Andreassen, H.P.; Singleton, G.R.; Lima, M.; Machang’u, R.S.; Makundi, R.H.; et al. Mice, rats, and people: The bio-economics of agricultural rodent pests. Front. Ecol. Environ. 2003, 1, 367–375. [Google Scholar] [CrossRef]
- Maine, J.J.; Boyles, J.G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. USA 2015, 112, 12438–12443. [Google Scholar] [CrossRef]
- De Angelis, D.L. Dynamics of Nutrient Cycling and Food Webs; Chapman and Hall: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Loreau, M. From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Hobbie, S.; Villóeger, S. Interactive effects of plants, decomposers, herbivores, and predators on nutrient cycling. In Trophic Ecology: Bottom-Up and Top-Down Interactions Across Aquatic and Terrestrial Systems; Hanley, T., La Pierre, K., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 233–259. [Google Scholar] [CrossRef]
- Hinsley, S.A.; Bellamy, P.E. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: A review. J. Environ. Manag. 2000, 60, 33–49. [Google Scholar] [CrossRef]
- Norris, R.F.; Kogan, M. Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci. 2000, 48, 94–158. [Google Scholar] [CrossRef]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; van Nouhuys, S.; Vidal, S. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape effects on crop pollination services: Are there general patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.; Leston, L.; Messmer, D.; Asong, E.; Bayne, E.M.; Bortolotti, L.E.; Sekulic, G.; Wheater, H.; Howerter, D.W.; Clark, R.G. Antagonistic, synergistic and direct effects of land use and climate on Prairie wetland ecosystems: Ghosts of the past or present? Divers. Distrib. 2019, 25, 1924–1940. [Google Scholar] [CrossRef]
- Cole, L.J.; Brocklehurst, S.; Robertson, D.; Harrison, W.; McCracken, D.I. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 2017, 246, 157–167. [Google Scholar] [CrossRef]
- Petersen, I.; Winterbottom, J.H.; Orton, S.; Friberg, N.; Hildrew, A.G.; Spiers, D.C.; Gurney, W.S.C. Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone Stream. Freshw. Biol. 1999, 42, 401–416. [Google Scholar] [CrossRef]
- Hladyz, S.; Åbjörnsson, K.; Giller, P.S.; Woodward, G. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 2011, 48, 443–452. [Google Scholar] [CrossRef]
- Nakano, S.; Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 2001, 98, 166–170. [Google Scholar] [CrossRef]
Node Label | Functional Unit | Aggregate |
---|---|---|
1 | Carnivore birds | Aquatic birds |
2 | Omnivore birds (AP) | Aquatic birds |
3 | Omnivore birds (TP) | Aquatic birds |
4 | Carnivore fish | Fish |
5 | Detritivore fish | Fish |
6 | Omnivore fish (FM) | Fish |
7 | Omnivore fish | Fish |
8 | Collector | Aquatic invertebrates |
9 | Collector/grazer | Aquatic invertebrates |
10 | Collector/grazer/predator | Aquatic invertebrates |
11 | Collector/predator | Aquatic invertebrates |
12 | Collector/shredder | Aquatic invertebrates |
13 | Filter | Aquatic invertebrates |
14 | Filter/collector/predator | Aquatic invertebrates |
15 | Grazer | Aquatic invertebrates |
16 | Predator | Aquatic invertebrates |
17 | Shredder | Aquatic invertebrates |
18 | High-profile | Diatoms |
19 | Motile | Diatoms |
20 | Planktic | Diatoms |
21 | Planktic/High-Profile | Diatoms |
22 | Helophyte | Macrophytes |
23 | Hydrophyte | Macrophytes |
24 | Hydrophyte/helophyte | Macrophytes |
25 | Amphibian | Ecosystems-linking |
26 | Birds (FCI) | Ecosystems-linking |
27 | Odonata | Ecosystems-linking |
28 | Carnivore birds | Cropland birds |
29 | Omnivore birds (C) | Cropland birds |
30 | Omnivore birds (I) | Cropland birds |
31 | Acari | Pests’ natural enemies |
32 | Araneae | Pests’ natural enemies |
33 | Coleoptera | Pests’ natural enemies |
34 | Diptera | Pests’ natural enemies |
35 | Diptera (PNE/P) | Pests’ natural enemies/Pollinators |
36 | Hemiptera | Pests’ natural enemies |
37 | Hymenoptera | Pests’ natural enemies |
38 | Mantodea | Pests’ natural enemies |
39 | Neuroptera | Pests’ natural enemies |
40 | Orthoptera | Pests’ natural enemies |
41 | Thysanoptera | Pests’ natural enemies |
42 | Acariformes | Pests |
43 | Aphididae | Pests |
44 | Coleoptera | Pests |
45 | Collembola | Pests |
46 | Curculionidae | Pests |
47 | Diptera | Pests |
48 | Gastropoda | Pests |
49 | Hemiptera | Pests |
50 | Hymenoptera | Pests |
51 | Lepidoptera | Pests |
52 | Noctuidae | Pests |
53 | Orthoptera | Pests |
54 | Thysanoptera | Pests |
55 | Apini | Pollinators |
56 | Bombini | Pollinators |
57 | Diptera | Pollinators |
58 | Hymenoptera | Pollinators |
59 | Annual, non-pollinated | Crops |
60 | Annual, pollinated | Crops |
61 | Deciduous orchard | Crops |
62 | Perennial orchard | Crops |
63 | Vegetable | Crops |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Barrientos, J.; Ramos-Jiliberto, R.; Aliste-Jara, L.; Canelo-Araya, N.; Cattan, P.E. Unexpected Links between Communities of a Freshwater–Cropland Mediterranean Metanetwork. Diversity 2023, 15, 1011. https://doi.org/10.3390/d15091011
González-Barrientos J, Ramos-Jiliberto R, Aliste-Jara L, Canelo-Araya N, Cattan PE. Unexpected Links between Communities of a Freshwater–Cropland Mediterranean Metanetwork. Diversity. 2023; 15(9):1011. https://doi.org/10.3390/d15091011
Chicago/Turabian StyleGonzález-Barrientos, Javier, Rodrigo Ramos-Jiliberto, Lidia Aliste-Jara, Nahuel Canelo-Araya, and Pedro E. Cattan. 2023. "Unexpected Links between Communities of a Freshwater–Cropland Mediterranean Metanetwork" Diversity 15, no. 9: 1011. https://doi.org/10.3390/d15091011
APA StyleGonzález-Barrientos, J., Ramos-Jiliberto, R., Aliste-Jara, L., Canelo-Araya, N., & Cattan, P. E. (2023). Unexpected Links between Communities of a Freshwater–Cropland Mediterranean Metanetwork. Diversity, 15(9), 1011. https://doi.org/10.3390/d15091011