Spatial Identification and Conservation Gaps of Wilderness Areas in the State-Owned Forest Region of Daxing’anling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Wilderness Mapping
2.2.1. Data Sources
2.2.2. Identifying WAs Using Boolean
2.2.3. Mapping Wilderness Quality Using MCE
2.3. Analysis of Spatial Patterns in WAs
2.4. Analysis of Priority Conservation Areas for Wilderness Based on ESVs and PAs
3. Results
3.1. Spatial Patterns of WAs
3.2. ESVs of WAs
3.3. Status of Wilderness Protection in PAs
3.4. Priority Conservation Areas for Wilderness Based on ESVs and PAs
4. Discussion
4.1. The Spatial Patterns of WAs
4.2. How Can High-Quality WAs with High ESVs Be Protected?
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AN | apparent naturalness |
BN | biophysical naturalness |
DSM | digital surface model |
ESVs | ecosystem service values |
GBF | Global Biodiversity Framework |
GIS | geographic information system |
HHWAs | high-quality wilderness areas with high ecosystem service values |
IUCN | International Union for Conservation of Nature |
MCE | Multi-Criteria Evaluation |
NCSFGI | National Catalogue Service for Geographic Information |
NPs | nature parks |
NRs | nature reserves |
PAs | protected areas |
PD | population density |
RA | remoteness from access |
RESDC | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences |
RS | remoteness from settlements |
SAR | species–area relationship |
SDGs | Sustainable Development Goals |
TR | terrain ruggedness |
VRM | vector ruggedness measurement |
WAs | wilderness areas |
WLC | weighted linear combination |
Appendix A. Results on Percent of Eigenvalues and Accumulative of Eigenvalues
PC Layer | Percent of Eigenvalues (%) | Accumulative of Eigenvalues (%) |
1 | 58.9152 | 58.9152 |
2 | 22.5926 | 81.5078 |
3 | 9.8194 | 91.3273 |
4 | 7.7035 | 99.0307 |
5 | 0.7058 | 99.7365 |
6 | 0.2635 | 100.0000 |
Appendix B. Area of WAs in PAs
Code of PAs | Name of PAs | Area of WAs/Area of PAs (%) |
NP01 | Jiagedaqi National Forest Park | 95.87% |
NP02 | Huzhong National Forest Park | 96.10% |
NP03 | Zhalinkule National Forest Park | 97.11% |
NP04 | Mohe National Geopark | 92.97% |
NP05 | Huzhong Cangshan Stone Forest Geopark | 5.74% |
NP06 | Amur National Wetland Park | 91.36% |
NP07 | Mohe Dalin River National Wetland Park | 86.75% |
NP08 | Mohe Jiuqushibawan National Wetland Park | 88.65% |
NP09 | Jiagedaqi Gan River National Wetland Park | 61.25% |
NP10 | Candu River National Wetland Park | 98.69% |
NP11 | Guli River National Wetland Park | 96.43% |
NP12 | Huzhong Source of Huma River National Wetland Park | 3.16% |
NP13 | Source of Shuang River National Wetland Park | 94.05% |
NP14 | Shibazhan Huma River National Wetland Park | 85.97% |
NP15 | Ta River Guqigu National Wetland Park | 62.77% |
NP16 | Xinlin Aokusakaai River Wetland Park | 93.35% |
NR01 | Arctic Village National Nature Reserve | 96.10% |
NR02 | Lingfeng National Nature Reserve | 99.01% |
NR03 | Duobukuer National Nature Reserve | 88.90% |
NR04 | Nanweng River National Nature Reserve | 99.09% |
NR05 | Huzhong National Nature Reserve | 82.23% |
NR06 | Chuona River National Nature Reserve | 98.98% |
NR07 | Panzhong National Nature Reserve | 99.17% |
NR08 | Shuanghe National Nature Reserve | 95.16% |
NR09 | Mohe Dusiyueju Provincial Nature Reserve | 98.74% |
NR10 | Changqing Provincial Nature Reserve | 98.20% |
NR11 | Huyuan Salix bracteosa Provincial Nature Reserve | 33.59% |
NR12 | Huma River Nature Reserve | 1.53% |
NR13 | Pangu River Provincial Nature Reserve | 98.35% |
NR14 | Emuer River Inlet Wetland Prefecture-level Nature Reserve | 91.73% |
NR15 | Emuer River Wetland Prefecture-level Nature Reserve | 97.57% |
NR16 | Jingou Prefecture-level Nature Reserve | 98.78% |
NR17 | Menduli River Wetland Prefecture-level Nature Reserve | 99.32% |
NR18 | Yixi Prefecture-level Nature Reserve | 99.23% |
NR19 | Beiqing Wolverine Prefecture-level Nature Reserve | 98.70% |
NR20 | Hannuo River Wetland Prefecture-level Nature Reserve | 95.60% |
NR21 | Naduli River Wetland Prefecture-level Nature Reserve | 80.16% |
NR22 | Nayuan Wading Bird and Migratory Bird Prefecture-level Nature Reserve | 98.74% |
NR23 | Tahe Headwaters Wetland Prefecture-level Nature Reserve | 96.22% |
NR24 | Xinlin Daqingshan Peat Moss Wetland Prefecture-level Nature Reserve | 99.02% |
NR25 | Huzhong Taiga Musk Deer Prefecture-level Nature Reserve | 89.69% |
NR26 | Halabaqi Wetland Prefecture-level Nature Reserve | 98.08% |
NR27 | Wolegen River Wetland Prefecture-level Nature Reserve | 98.37% |
NR28 | Pangu River Peat Moss Wetland Prefecture-level Nature Reserve | 99.12% |
NR29 | Talin Prefecture-level Nature Reserve | 97.06% |
NR30 | Wujiabeini River Prefecture-level Nature Reserve | 98.88% |
NR31 | Xiufeng Prefecture-level Nature Reserve | 99.49% |
References
- Cookson, L.J. A definition for wildness. Ecopsychology 2011, 3, 187–193. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Venter, O.; Lee, J.; Jones, K.R.; Robinson, J.G.; Possingham, H.P.; Allan, J.R. Protect the last of the wild. Nature 2018, 563, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, M.; Ferrier, S.; Harwood, T.D.; Hoskins, A.J.; Watson, J.E.M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 2019, 573, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484–1241496. [Google Scholar] [CrossRef] [PubMed]
- Mittermeier, R.A.; Mittermeier, C.G.; Brooks, T.M.; Pilgrim, J.D.; Konstant, W.R.; da Fonseca, G.A.B.; Kormos, C. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 2003, 100, 10309–10313. [Google Scholar] [CrossRef]
- Martin, T.G.; Watson, J.E.M. Intact ecosystems provide best defence against climate change. Nat. Clim. Change 2016, 6, 122–124. [Google Scholar] [CrossRef]
- Cooper, N.; Brady, E.; Steen, H.; Bryce, R. Aesthetic and spiritual values of ecosystems: Recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 2016, 21, 218–229. [Google Scholar] [CrossRef]
- Foster, F.A. Mapping Impacts of Education for Wilderness Management Planning; University of Alaska Fairbanks: Fairbanks, AK, USA, 1998. [Google Scholar]
- Watson, J.E.M.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B.; Venter, O. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef]
- Jones, K.R.; Klein, C.J.; Halpern, B.S.; Venter, O.; Grantham, H.; Kuempel, C.D.; Shumway, N.; Friedlander, A.M.; Possingham, H.P.; Watson, J.E.M. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 2018, 28, 2506–2512.e3. [Google Scholar] [CrossRef]
- Williams, B.A.; Venter, O.; Allan, J.R.; Atkinson, S.C.; Rehbein, J.A.; Ward, M.; Di Marco, M.; Grantham, H.S.; Ervin, J.; Goetz, S.J.; et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Theobald, D.M.; Kennedy, C.; Chen, B.; Oakleaf, J.; Baruch-Mordo, S.; Kiesecker, J. Earth transformed: Detailed mapping of global human modification from 1990 to 2017. Earth Syst. Sci. Data 2020, 12, 1953–1972. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558–12568. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Jose Negret, P.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, W.; Li, F.; Long, Y.; Guo, S.; Li, X.; Lin, C.; Li, J. Global projections of future wilderness decline under multiple IPCC Special Report on Emissions Scenarios. Resour. Conserv. Recycl. 2022, 177, 105983–105994. [Google Scholar] [CrossRef]
- Aycrigg, J.L.; Mccarley, T.R.; Belote, R.T.; Martinuzzi, S. Wilderness areas in a changing landscape: Changes in land use, land cover, and climate. Ecol. Appl. 2022, 32, e02471. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D.; Hall, C.M.; Saarinen, J. Making wilderness: Tourism and the history of the wilderness idea in Iceland. Polar Geogr. 2011, 34, 249–273. [Google Scholar] [CrossRef]
- Wu, C.Z.; Ouyang, Y.Q.; Pan, W.Q.; Zheng, J. The significance and approaches of defining wilderness zone in Chinese national parks. Chin. Landsc. Archit. 2022, 38, 10–15. [Google Scholar]
- Cao, Y.; Yang, R. Identification of wilderness areas from global to China: Review and prospect on wilderness mapping. Environ. Prot. 2017, 45, 39–44. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Beier, P.; Spencer, W.; Baldwin, R.F.; Mcrae, B.H. Toward best practices for developing regional connectivity maps. Conserv. Biol. 2011, 25, 879–892. [Google Scholar] [CrossRef]
- Lesslie, R.G.; Taylor, S.G. The wilderness continuum concept and its implications for Australian wilderness preservation policy. Biol. Conserv. 1985, 32, 309–333. [Google Scholar] [CrossRef]
- Mccloskey, J.M.; Spalding, H. A reconnaissance-level inventory of the amount of wilderness remaining in the world. Ambio 1989, 18, 221–227. [Google Scholar]
- Carver, S.; Comber, A.; Mcmorran, R.; Nutter, S. A GIS model for mapping spatial patterns and distribution of wild land in Scotland. Landsc. Urban Plan. 2012, 104, 395–409. [Google Scholar] [CrossRef]
- Carruthers-Jones, J.; Eldridge, A.; Guyot, P.; Hassall, C.; Holmes, G. The call of the wild: Investigating the potential for ecoacoustic methods in mapping wilderness areas. Sci. Total Environ. 2019, 695, 133797–133807. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Ibisch, P.L.; Hoffmann, M.T.; Kreft, S.; Pe’er, G.; Kati, V.; Biber-Freudenberger, L.; Dellasala, D.A.; Vale, M.M.; Hobson, P.R.; Selva, N. A global map of roadless areas and their conservation status. Science 2016, 354, 1423–1427. [Google Scholar] [CrossRef]
- Lesslie, R.G.; Mackey, B.G.; Preece, K.M. A computer-based method of wilderness evaluation. Environ. Conserv. 1988, 15, 225–232. [Google Scholar] [CrossRef]
- Müller, A.; Bøcher, P.K.; Svenning, J.C. Where are the wilder parts of anthropogenic landscapes? A mapping case study for Denmark. Landsc. Urban Plan. 2015, 144, 90–102. [Google Scholar] [CrossRef]
- Măntoiu, D.Ş.; Nistorescu, M.C.; Şandric, I.C.; Mirea, I.C.; Hăgătiş, A.; Stanciu, E. Wilderness areas in Romania: A case study on the South Western Carpathians. In Mapping Wilderness Concepts, Techniques and Applications; Springer: Dordrecht, The Netherlands, 2016; pp. 145–156. [Google Scholar]
- Barr, B.W.; Kliskey, A.D. “I know it when I see it”: Identifying ocean wilderness using a photo-based survey approach. Glob. Ecol. Conserv. 2014, 2, 72–80. [Google Scholar] [CrossRef]
- Barr, B.W.; Kliskey, A.D. Perceptions of wilderness and their application to ocean and coastal waters. Ocean Coast. Manag. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Carver, S.; Yang, R. Mapping wilderness in China: Comparing and integrating Boolean and WLC approaches. Landsc. Urban Plan. 2019, 192, 103636–103649. [Google Scholar] [CrossRef]
- Pimm, S.L.; Jenkins, C.N.; Li, B.V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 2018, 4, eaat2616. [Google Scholar] [CrossRef]
- Honkanen, M.; Roberge, J.M.; Rajasärkkä, A.; Mönkkönen, M. Disentangling the effects of area, energy and habitat heterogeneity on boreal forest bird species richness in protected areas. Glob. Ecol. Biogeogr. 2010, 19, 61–71. [Google Scholar] [CrossRef]
- Cho, S.H.; Thiel, K.; Armsworth, P.R.; Sharma, B.P. Effects of protected area size on conservation return on investment. Environ. Manag. 2019, 63, 777–788. [Google Scholar] [CrossRef]
- Armsworth, P.R.; Jackson, H.B.; Cho, S.H.; Clark, M.; Fargione, J.E.; Iacona, G.D.; Kim, T.; Larson, E.R.; Minney, T.; Sutton, N.A. Is conservation right to go big? Protected area size and conservation return-on-investment. Biol. Conserv. 2018, 225, 229–236. [Google Scholar] [CrossRef]
- Wu, R.; Long, Y.; Malanson, G.P.; Garber, P.A.; Zhang, S.; Li, D.; Zhao, P.; Wang, L.; Duo, H. Optimized spatial priorities for biodiversity conservation in China: A systematic conservation planning perspective. PLoS ONE 2014, 9, e103783. [Google Scholar] [CrossRef] [PubMed]
- Di Vittorio, A.V.; Narayan, K.B.; Patel, P.; Calvin, K.; Vernon, C.R. Doubling protected land area may be inefficient at preserving the extent of undeveloped land and could cause substantial regional shifts in land use. GCB Bioenergy 2023, 15, 185–207. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, F.; Tseng, T.H.; Carver, S.; Chen, X.; Zhao, J.; Yu, L.; Li, F.; Zhao, Z.; Yang, R. Identifying ecosystem service value and potential loss of wilderness areas in China to support post-2020 global biodiversity conservation. Sci. Total Environ. 2022, 846, 157348–157358. [Google Scholar] [CrossRef]
- Wang, L.; Fu, J.; Ji, X.; Tan, P.; Li, Y. Spatio-temporal variation and conservation priorities of wilderness in Lhasa River Basin, Tibetan Plateau. Front. Ecol. Evol. 2023, 11, 1254540. [Google Scholar] [CrossRef]
- Tricker, J.; Landres, P. Mapping threats to wilderness character in the National Wilderness Preservation System. Biol. Conserv. 2018, 227, 243–251. [Google Scholar] [CrossRef]
- Cao, Y.; Tseng, T.H.; Wang, F.; Jacobson, A.; Yu, L.; Zhao, J.; Carver, S.; Locke, H.; Zhao, Z.; Yang, R. Potential wilderness loss could undermine the post-2020 global biodiversity framework. Biol. Conserv. 2022, 275, 109753–109763. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y. Simulation and optimization of spatial land use of tropical forest ecological protection in southern border of Yunnan based on “wild wisdom”. J. Ecol. Rural Environ. 2022, 38, 851–859. [Google Scholar]
- Cao, Y.; Long, Y.; Yang, R. Research on the identification and spatial distribution of wilderness areas at the national scale in mainland China. Chin. Landsc. Archit. 2017, 33, 26–33. [Google Scholar]
- Ma, S.; Long, Y. Mapping potential wilderness in China with location-based services data. Appl. Spat. Anal. Policy 2020, 13, 69–89. [Google Scholar] [CrossRef]
- Lin, S.; Wu, R.; Hua, C.; Ma, J.; Wang, W.; Yang, F.; Wang, J. Identifying local-scale wilderness for on-ground conservation actions within a global biodiversity hotspot. Sci. Rep. 2016, 6, 25898–259110. [Google Scholar] [CrossRef]
- Zuo, X.; Han, X.; Chen, J.; Peng, J. The pattern analyze of wilderness in Dali City. Chin. Landsc. Archit. 2019, 35, 108–112. [Google Scholar]
- Zuo, X.; Peng, S.; Peng, J. The pattern analysis of wilderness in Malong District, Qujing City. J. Southwest For. Univ. (Nat. Sci.) 2020, 40, 124–131. [Google Scholar]
- Deng, Z.; Li, X.; Yang, H.; Gan, S. Assessing the spatial pattern of wilderness in central Yunnan: A case study from Chuxiong county, Yunnan. IOP Conf. Ser. Earth Environ. Sci. 2021, 783, 012085–012097. [Google Scholar] [CrossRef]
- Zhang, P.; Zhong, Q.; Li, M.; Wang, H.; Cui, J. Wilderness mapping in northeast China based on deep learning. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2880–2883. [Google Scholar]
- Weng, A.; Liao, L.; Cao, Y.; Carver, S.; Lin, L.; Shen, S.; Xu, Z.; Dong, J.; Lan, S.; Yang, R. Different people, different wild: Comparing and mapping wilderness representation in Wuyishan National Park, China. Geogr. Sustain. 2024, 5, 144–156. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.; Lin, W. A connectivity modeling and evaluating methodological framework in biodiversity hotspots based on naturalness and linking wilderness. Conserv. Sci. Pract. 2022, 4, e12750. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, R.; Carver, S. Linking wilderness mapping and connectivity modelling: A methodological framework for wildland network planning. Biol. Conserv. 2020, 251, 108679–108688. [Google Scholar] [CrossRef]
- Caro, T.; Darwin, J.; Forrester, T.; Ledoux-Bloom, C.; Wells, C. Conservation in the anthropocene. In Keeping the Wild: Against the Domestication of Earth; Island Press: Washington, DC, USA, 2014; pp. 109–113. [Google Scholar]
- Cao, Y.; Yang, R. Systematic conservation strategies of China’s wilderness areas under the background of the Post-2020 Global Biodiversity Framework. Chin. Landsc. Archit. 2022, 38, 6–9. [Google Scholar]
- Zhao, H.Y.; Gong, L.J.; Qu, H.H.; Zhu, H.X.; Li, X.F.; Zhao, F. The climate change variations in the northern Greater Khingan Mountains during the past centuries. J. Geogr. Sci. 2016, 26, 585–602. [Google Scholar] [CrossRef]
- Sun, B.F.; Zhao, H.; Lu, F.; Wang, X. Spatial and temporal patterns of carbon sequestration in the northeastern forest regions and its impact factors analysis. Acta Ecol. Sin. 2018, 38, 4975–4983. [Google Scholar]
- Hu, L.; Fan, W.; Ren, H.; Liu, S.; Cui, Y.; Zhao, P. Spatiotemporal dynamics in vegetation GPP over the great khingan mountains using GLASS products from 1982 to 2015. Remote Sens. 2018, 10, 488. [Google Scholar] [CrossRef]
- Chow, C.K.W.; Tsui, W.H.K. Cross-border tourism: Case study of inbound Russian visitor arrivals to China. Int. J. Tour. Res. 2019, 21, 693–711. [Google Scholar] [CrossRef]
- Xu, T.; Chen, R.; Carver, S.; Wu, J. Mapping potential conflicts between wilderness travel and ecological values on a national scale. Landsc. Urban Plan. 2024, 246, 105029–105041. [Google Scholar] [CrossRef]
- Ma, L.; Pan, J.H. Spatial identification and temporal-spatial evolution of wilderness areas in China. J. Geo-Inf. Sci. 2023, 25, 324–339. [Google Scholar]
- Huang, L.S.; Wang, B.; Niu, X.; Song, Q.F. Evaluation of eco-production value from Natural Forest Protection Program in DaHinggan Mountains Forestry Group. Sci. Soil Water Conserv. 2018, 16, 141–148. [Google Scholar]
- Jia, W.W.; Xie, X.T.; Jiang, S.W.; Li, F.R. Spatial distribution pattern of seedlings and saplings of three forest types by natural regeneration in Daxin’an Mountains Xinlin Forestry Bureau, China. Chin. J. Appl. Ecol. 2017, 28, 2813–2822. [Google Scholar]
- Daxing‘anling Forestry Group. Available online: https://www.forestry.gov.cn/c/www/zsdw/376038.jhtml (accessed on 21 August 2024).
- Li, H.P.; Xu, Z.Q.; Long, Z.H. Conservation gap analysis of key protected and rare animals in Da Hinggan Range Region, China. Biodivers. Sci. 2022, 30, 21294–21303. [Google Scholar] [CrossRef]
- Carver, S.; Tricker, J.; Landres, P. Keeping it wild: Mapping wilderness character in the United States. J. Environ. Manag. 2013, 131, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Casson, S.A.; Martin, V.G.; Watson, A.; Stringer, A.; Kormos, C.F.; Locke, H.; Ghosh, S.; Carver, S.; Mcdonald, T.; Sloan, S.S.; et al. Wilderness Protected Areas: Management Guidelines for IUCN Category 1b Protected Areas. 2016. Available online: https://portals.iucn.org/library/sites/library/files/documents/PAG-025.pdf (accessed on 21 February 2024).
- Carver, S.; Konráðsdóttir, S.; Guðmundsson, S.; Carver, B.; Kenyon, O. New approaches to modelling wilderness quality in Iceland. Land 2023, 12, 446. [Google Scholar] [CrossRef]
- Orsi, F.; Geneletti, D.; Borsdorf, A. Mapping wildness for protected area management: A methodological approach and application to the Dolomites UNESCO World Heritage Site (Italy). Landsc. Urban Plan. 2013, 120, 1–15. [Google Scholar] [CrossRef]
- Schumacher, H.; Finck, P.; Riecken, U.; Klein, M. More wilderness for Germany: Implementing an important objective of Germany’s National Strategy on Biological Diversity. J. Nat. Conserv. 2018, 42, 45–52. [Google Scholar] [CrossRef]
- Naismith, W.W. Cruach Ardran, Stobinian, and Ben More. Scott. Mt. Club J. 1892, 2, 135–136. [Google Scholar]
- Radford, S.L.; Senn, J.; Kienast, F. Indicator-based assessment of wilderness quality in mountain landscapes. Ecol. Indic. 2019, 97, 438–446. [Google Scholar] [CrossRef]
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- Mckee, J.K.; Sciulli, P.W.; Fooce, C.D.; Waite, T.A. Forecasting global biodiversity threats associated with human population growth. Biol. Conserv. 2004, 115, 161–164. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Zhu, L.; Cui, Y.; He, S.; Ren, H. Topographical relief characteristics and its impact on population and economy: A case study of the mountainous area in western Henan, China. J. Geogr. Sci. 2019, 29, 598–612. [Google Scholar] [CrossRef]
- Cervellini, M.; Di Musciano, M.; Zannini, P.; Fattorini, S.; Jiménez-Alfaro, B.; Agrillo, E.; Attorre, F.; Angelini, P.; Beierkuhnlein, C.; Casella, L.; et al. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol. Evol. 2021, 11, 18111–18124. [Google Scholar] [CrossRef] [PubMed]
- Sappington, J.M.; Longshore, K.M.; Thompson, D.B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. J. Wildl. Manag. 2007, 71, 1419–1426. [Google Scholar] [CrossRef]
- Carver, S.; Comber, L.; Mcmorran, R.; Nutter, S.; Washtell, J. Wildness study in the Loch Lomond and the Trossachs National Park; Final Report; University of Leeds: Leeds, UK, 2011; pp. 77–138. [Google Scholar]
- Han, L.; Wang, Z.; Wei, M.; Wang, M.; Shi, H.; Ruckstuhl, K.; Yang, W.; Alves, J. Small patches play a critical role in the connectivity of the Western Tianshan landscape, Xinjiang, China. Ecol. Indic. 2022, 144, 109542–109550. [Google Scholar] [CrossRef]
- Hanski, I.; Zurita, G.A.; Bellocq, M.I.; Rybicki, J. Species-fragmented area relationship. Proc. Natl. Acad. Sci. USA 2013, 110, 12715–12720. [Google Scholar] [CrossRef]
- Ramesh, T.; Kalle, R.; Rosenlund, H.; Downs, C.T. Native habitat and protected area size matters: Preserving mammalian assemblages in the Maputaland Conservation Unit of South Africa. For. Ecol. Manag. 2016, 360, 20–29. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.M. Effect of habitat fragmentation on biodiversity: A review. Chin. J. Ecol. 2014, 33, 1946–1952. [Google Scholar]
- Chisholm, R.A.; Lim, F.; Yeoh, Y.S.; Seah, W.W.; Condit, R.; Rosindell, J. Species-area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 2018, 21, 804–813. [Google Scholar] [CrossRef]
- Hu, G.; Wu, J.; Feeley, K.J.; Xu, G.; Yu, M. The effects of landscape variables on the species-area relationship during late-stage habitat fragmentation. PLoS ONE 2012, 7, e43894. [Google Scholar] [CrossRef]
- Didham, R.K.; Ewers, R.M. Predicting the impacts of edge effects in fragmented habitats: Laurance and Yensen’s core area model revisited. Biol. Conserv. 2012, 155, 104–110. [Google Scholar] [CrossRef]
- Liu, H.Q.; Lv, G.H. Should several large or many small reserves be built in fragmented landscapes? Acta Ecol. Sin. 2018, 38, 3272–3280. [Google Scholar]
- Neigel, J.E. Species–area relationships and marine conservation. Ecol. Appl. 2003, 13 (Suppl. S1), 138–145. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Li, D.; Hu, Y. Impacts of transportation routes on landscape diversity: A comparison of different route types and their combined effects. Environ. Manag. 2014, 53, 636–647. [Google Scholar] [CrossRef]
- Yin, S.Q.; Zhang, W.; Zeng, X.Y.; Shi, D.M. Application of systematic governance of mountains, water, forests, fields, lakes and grasses in ecological restoration of railroad projects. Technol. Soil Water Conserv. 2023, 3, 30–33. [Google Scholar]
- Sha, Q.Q.; Huang, L.; Fan, J.W.; Zhang, L.X.; Zhu, T.; Shen, M.Q. Spatio-temporal dynamics and their driving mechanisms of the landscape ecological risk along the Golmud-Lhasa section of Qinghai-Tibet Railway. Acta Ecologica Sinica 2024, 19, 1–11. [Google Scholar] [CrossRef]
- Popp, J.N.; Boyle, S.P. Railway ecology: Underrepresented in science? Basic Appl. Ecol. 2017, 19, 84–93. [Google Scholar] [CrossRef]
- Barrientos, R.; Ascensão, F.; Beja, P.; Pereira, H.M.; Borda-de-Água, L. Railway ecology vs. road ecology: Similarities and differences. Eur. J. Wildl. Res. 2019, 65, 12. [Google Scholar] [CrossRef]
- Temjanovski, R.; Dimitrova, J.; Arsova, M. The roads as civilization symbol or brain drain booster: Culture changes in spirit of global challenges. ”J. Econ.” Fac. Econ. Univ. Goce Delcev Stip Maced. 2017, 2, 11–23. [Google Scholar]
- Barber, C.P.; Cochrane, M.A.; Souza, J.R.C.M.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Laurance, W.F.; Cochrane, M.A.; Bergen, S.; Fearnside, P.M.; Delamônica, P.; Barber, C.; D’angelo, S.; Fernandes, T. The future of the Brazilian Amazon. Science 2001, 291, 438–439. [Google Scholar] [CrossRef]
- Laporte, N.T.; Stabach, J.A.; Grosch, R.; Lin, T.S.; Goetz, S.J. Expansion of industrial logging in Central Africa. Science 2007, 316, 1451. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.Y.; Zang, Z.H.; Xu, W.H. Research progress on the concepts, identification and protection value of roadless areas. Environ. Prot. Sci. 2022, 48, 7–12. [Google Scholar]
- Kati, V.; Petridou, M.; Tzortzakaki, O.; Papantonious, E.; Galani, A.; Psaralexi, M.; Gotsis, D.; Papaioannou, H.; Kassara, C. How much wilderness is left? A roadless approach under the Global and the European Biodiversity Strategy focusing on Greece. Biol. Conserv. 2023, 281, 110015–110024. [Google Scholar] [CrossRef]
- Laurance, W.F.; Clements, G.R.; Sloan, S.; O’Connell, C.S.; Mueller, N.D.; Goosem, M.; Venter, O.; Edwards, D.P.; Phalan, B.; Balmford, A.; et al. A global strategy for road building. Nature 2014, 513, 229–232. [Google Scholar] [CrossRef]
- Şakar, D.; Aydin, A.; Akay, A.E. Essential issues related to construction phases of road networks in protected areas: A review. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2022, 43, 219–237. [Google Scholar] [CrossRef]
- Plutzar, C.; Enzenhofer, K.; Hoser, F.; Zika, M.; Kohler, B. Is there something wild in Austria. In Mapping Wilderness: Concepts, Techniques and Applications; Springer: Dordrecht, The Netherlands, 2016; pp. 177–189. [Google Scholar]
- Liu, H.C.; Ren, C.Y.; Wang, Z.M.; Zhang, B. Dynamics of ecosystem service functions and their tradeoff and synergetic relationships in Great Xing’an Mountains ecological function Zone. J. Ecol. Rural Environ. 2022, 38, 587–598. [Google Scholar]
- Li, Y.H.; Hu, Z.B.; Chang, Y.; Hu, Y.M. Change of forest landscape service function under timber harvest. J. Nat. Resour. 2006, 21, 100–108. [Google Scholar]
- Zheng, S.F.; Wang, L.P.; Zang, S.Y. The change of ecosystem services of Natural Forest Protection Project Regions in the Da Hinggan Mountains. Sci. Geogr. Sin. 2021, 41, 1295–1302. [Google Scholar]
- Cehn, K.Y.; Lin, T.M.; Wang, J.J.; He, Y.J.; Zhang, L.W. Effects of Natural Forest Conservation Project on forest carbon pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the past 20 Years. Ecol. Environ. Sci. 2023, 32, 1016–1025. [Google Scholar]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef]
- Tang, X.P.; Luan, X.F. Developing a nature protected area system composed mainly of national parks. For. Grassl. Resour. Res. 2017, 06, 1–8. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, R. Nature needs half: A new vision for global protected areas. Landsc. Archit. 2019, 26, 39–44. [Google Scholar]
- Wilson, E.O. Half-Earth: Our Planet’s Fight for Life; WW Norton & Company: New York, NY, USA, 2016. [Google Scholar]
- Wu, R.; Zhang, S.; Yu, D.W.; Zhao, P.; Li, X.; Wang, L.; Yu, Q.; Ma, J.; Chen, A.; Long, Y. Effectiveness of China’s nature reserves in representing ecological diversity. Front. Ecol. Environ. 2011, 9, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.N.; Landres, P.B. Threats to wilderness ecosystems: Impacts and research needs. Ecol. Appl. 1996, 6, 168–184. [Google Scholar] [CrossRef]
- Perino, A.; Pereira, H.M.; Navarro, L.M.; Fernández, N.; Bullock, J.M.; Ceaușu, S.; Cortes-avizanda, A.; Klink, R.V.; Kuemmerle, T.; Lomba, A.; et al. Rewilding complex ecosystems. Science 2019, 364, eaav5570. [Google Scholar]
- Kormos, C.F.; Bertzky, B.; Jaeger, T.; Shi, Y.; Badman, T.; Hilty, J.A.; Mackey, B.G.; Mittermeier, R.A.; Locke, H.; Osipova, E.; et al. A wilderness approach under the World Heritage Convention. Conserv. Lett. 2016, 9, 228–235. [Google Scholar] [CrossRef]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic host diversity increases in human- dominated ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Van Den Berg, A.E.; Koole, S.L. New wilderness in the Netherlands: An investigation of visual preferences for nature development landscapes. Landsc. Urban Plan. 2006, 78, 362–372. [Google Scholar] [CrossRef]
- Zoderer, B.M.; Carver, S.; Tappeiner, U.; Tasser, E. Ordering ‘wilderness’: Variations in public representations of wilderness and their spatial distributions. Landsc. Urban Plan. 2020, 202, 103875–103887. [Google Scholar] [CrossRef]
Layer | Resolution | Year | Data Source |
---|---|---|---|
Land use | 1 km | 2020 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (www.resdc.cn) |
Settlements | Vector | 2015 | National Catalogue Service for Geographic Information (NCSFGI) (www.webmap.cn) |
Railway | Vector | 2015 | NCSFGI |
Roads | Vector | 2015 | NCSFGI |
Population density | 1 km | 2010 | Global Change Research Data Publishing and Repository (geodoi.ac.cn) |
Digital surface model (DSM) | 30 m | 2023 | Advanced Land Observing Satellite (www.eorc.jaxa.jp, accessed on 21 February 2024) |
Ecosystem service values | 1 km | 2020 | RESDC |
Protected areas | Vector | -- | RESDC |
Land-Use Type (Land-Use Code) | Biophysical Naturalness |
---|---|
Woodland (0101) | 7.20 |
Shrubbery (0102) | 7.16 |
Other woodland (0103) | 4.72 |
High coverage grassland (0201) | 7.56 |
Medium coverage grassland (0202) | 7.48 |
Low coverage grassland (0203) | 7.44 |
River canal (0301) | 4.36 |
Intertidal zone (0302) | 8.76 |
Wetland (0303) | 8.84 |
Bare land (0401) | 7.48 |
Cost Type | Cost Rule | |
---|---|---|
Cost Factor | Walking Speed | |
Land use | Cultivated land, Grassland | 3.50 km/h |
Forest land | 3.00 km/h | |
Other land | 4.00 km/h | |
Water area | -- | |
Slope | 0°–5° | corresponding speed × 1.00 |
5°–10° | corresponding speed × 0.80 | |
10°–25° | corresponding speed × 0.40 | |
25°–45° | corresponding speed × 0.20 | |
>45° | -- |
BN | AN | RS | RA | PD | TR | |
---|---|---|---|---|---|---|
BN | 1.0000 | |||||
AN | −0.0038 | 1.0000 | ||||
RS | 0.0008 | −0.1702 | 1.0000 | |||
RA | 0.0106 | −0.0015 | 0.1978 | 1.0000 | ||
PD | −0.0392 | 0.0894 | −0.1713 | −0.1115 | 1.0000 | |
TR | −0.0116 | 0.0013 | 0.1411 | 0.0983 | −0.0207 | 1.0000 |
Wilderness Quality Level | Ecosystem Service Value Level | Priority Conservation Level | Area (km2) | ||||
---|---|---|---|---|---|---|---|
High | Medium | Low | High | Medium | Low | ||
√ | √ | 1 | 135.94 | ||||
√ | √ | 2 | 4712.17 | ||||
√ | √ | ||||||
√ | √ | 3 | 38,560.02 | ||||
√ | √ | ||||||
√ | √ | ||||||
√ | √ | 4 | 21,719.74 | ||||
√ | √ | ||||||
√ | √ | 5 | 12,543.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Fu, A.; Yan, C.; Hou, P.; Luan, X. Spatial Identification and Conservation Gaps of Wilderness Areas in the State-Owned Forest Region of Daxing’anling. Diversity 2024, 16, 594. https://doi.org/10.3390/d16100594
Wang Q, Fu A, Yan C, Hou P, Luan X. Spatial Identification and Conservation Gaps of Wilderness Areas in the State-Owned Forest Region of Daxing’anling. Diversity. 2024; 16(10):594. https://doi.org/10.3390/d16100594
Chicago/Turabian StyleWang, Qingyi, Aihua Fu, Cuicui Yan, Peng Hou, and Xiaofeng Luan. 2024. "Spatial Identification and Conservation Gaps of Wilderness Areas in the State-Owned Forest Region of Daxing’anling" Diversity 16, no. 10: 594. https://doi.org/10.3390/d16100594
APA StyleWang, Q., Fu, A., Yan, C., Hou, P., & Luan, X. (2024). Spatial Identification and Conservation Gaps of Wilderness Areas in the State-Owned Forest Region of Daxing’anling. Diversity, 16(10), 594. https://doi.org/10.3390/d16100594