Predation Risk, Foraging and Reproduction of an Insectivore Fish Species Associated with Two Estuarine Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Abundance and Spatial Distribution of Common Halfbeak
2.3. Reproductive Data and Condition Factor (K)
2.4. Gut Content and Diet Analysis
2.5. Predatory Fishes
3. Results
3.1. Abundance and Spatial Distribution
3.2. Reproductive Data and Condition Factor (K)
3.3. Diet
3.4. Effect of Presence of Predatory Fish Species
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honda, K.; Nakamura, Y.; Nakaoka, M.; Uy, W.H.; Fortes, M.D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 2013, 8, e65735. [Google Scholar] [CrossRef] [PubMed]
- Pessanha, A.L.M.; Sales, N.S.; da Silva Lima, C.S.; Clark, F.J.K.; Lima, L.G.; Lima, D.E.P.C.; Brito, G.J.S. The occurrence of fish species in multiple habitat types in a tropical estuary: Environmental drivers and the importance of connectivity. Estuar. Coast. Shelf Sci. 2021, 262, 107604. [Google Scholar] [CrossRef]
- Marley, G.S.; Deacon, A.E.; Phillip, D.A.; Lawrence, A.J. Mangrove or mudflat: Prioritising fish habitat for conservation in a turbid tropical estuary. Estuar. Coast. Shelf Sci. 2020, 240, 106788. [Google Scholar] [CrossRef]
- Neves, L.M.; Teixeira, T.P.; Franco, T.P.P.; Pereira, H.H.; Araújo, F.G. Fish composition and assemblage structure in the estuarine mixing zone of a tropical estuary: Comparisons between the main channel and an adjacent lagoon. Mar. Biol. Res. 2013, 9, 661–675. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Z.; Shi, F.; Wang, W. Are vegetated areas of mangroves attractive to juvenile and small fish? The case of Dongzhaigang Bay, Hainan Island, China. Estuar. Coast. Shelf Sci. 2009, 85, 208–216. [Google Scholar] [CrossRef]
- James, N.C.; Leslie, T.D.; Potts, W.M.; Whitfield, A.K.; Rajkaran, A. The importance of different juvenile habitats as nursery areas for a ubiquitous estuarine-dependent marine fish species. Estuar. Coast. Shelf Sci. 2019, 226, 106270. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Hughes, B.B.; Johnson, A.J.; Pfirrmann, B.W.; Rasher, D.B.; Smyth, A.R.; Williams, B.L.; Beck, M.W.; Orth, R.J. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 2019, 12, e12645. [Google Scholar] [CrossRef]
- Hamm, M.; Drossel, B. Habitat heterogeneity hypothesis and edge effects in model. J.Theor. Biol. 2017, 426, 40–48. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.G.; Serviere-Zaragoza, E.; Lluch-Cota, D.B.; Rivera-Monroy, V.H.; Oechel, W.; Troyo-Diéguez, E.; Lluch-Costa, S.E. Structural complexity and biomass of arid zone mangroves in the Southwestern Gulf of California: Key factors that influence fish assemblages. J. Coast. Res. 2018, 34, 979–986. [Google Scholar] [CrossRef]
- Ley, J.A.; McIvor, C.C.; Montague, C.L. Fishes in mangrove prop-root habitats of Northeastern Florida Bay: Distinct assemblages across an estuarine gradient. Estuar. Coast. Shelf Sci. 1999, 48, 701–723. [Google Scholar] [CrossRef]
- Silva, R.S.; Baeta, A.S.B.V.; Pessanha, A.L.M. Are vegetated areas more attractive for juvenile fish in estuaries? A comparison in a tropical estuary. Environ. Biol. Fishes 2018, 101, 1427–1442. [Google Scholar] [CrossRef]
- Jaxion-Harm, J.; Saunders, J.; Speight, M.R. Distribution of fish in seagrass, mangroves and coral reefs: Life-stage dependent habitat use in Honduras. Rev. Biol. Trop. 2012, 60, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.; Ooi, J.L.S.; Affendi, Y.A.; Chong, V.C. Influence of habitat complexity on fish density and species richness in structurally simple forereef seagrass meadows. Bot. Mar. 2018, 61, 547–557. [Google Scholar] [CrossRef]
- Vaslet, A.; Philips, D.L.; France, C.; Feller, I.C.; Baldwin, C.C. The relative importance of mangroves and seagrass beds as feeding areas for resident and transient fishes among different mangrove habitats in Florida and Belize: Evidence from dietary and stable-isotope analyses. J. Exp. Mar. Biol. Ecol. 2012, 434–435, 81–93. [Google Scholar] [CrossRef]
- Sheaves, M.; Baker, R.; Nagelkerken, I.; Connolly, R.M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries Coasts 2015, 38, 401–414. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Glover, T.; Weis, J.S. The impact of mangrove prop-root epibionts on juvenile reef fishes: A field experiment using artificial roots and epifauna. Estuaries Coasts 2008, 31, 981–993. [Google Scholar] [CrossRef]
- Muzaki, F.K.; Giffari, A.; Saptarini, D. Community structure of fish larvae in mangroves with different root types in Labuhan coastal area, Sepulu–Madura. Proc. Int. Biol. Conf. 2017, 1854, 1–6. [Google Scholar]
- Beck, M.W.; Heck, K.L.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J.; et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 2001, 51, 633–641. [Google Scholar]
- Nanjo, K.; Kohno, H.; Nakamura, Y.; Horinouchi, M.; Sano, M. Effects of mangrove structure on fish distribution patterns and predation risks. J. Exp. Mar. Biol. Ecol. 2014, 61, 216–225. [Google Scholar] [CrossRef]
- Hughes, J.M.; Stewart, J. Reproductive Biology of Three Commercially Important Hemiramphid Species in South-eastern Australia. Environ. Biol. Fishes 2006, 75, 237–256. [Google Scholar] [CrossRef]
- Favero, F.L.T.; Araújo, I.M.S.; Severi, W. Structure of the fish assemblage and functional guilds in the estuary of Maracaípe, northeast coast of Brazil. Bol. Inst. Pesca 2019, 45, 1–14. [Google Scholar]
- Passos, A.C.; Contente, R.F.; Abbatepaulo, F.V.; Spach, H.L.; Vilar, C.C.; Joyeux, J.C.; Cartagena, B.F.C.; Fávaro, L.F. Analysis of fish assemblages in sectors along a salinity gradient based on species, families and functional groups. Braz. J. Oceanogr. 2013, 61, 251–264. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. Fish Base. World Wide Web Electronic Publication. 2011. Available online: www.fishbase.org (accessed on 1 October 2024).
- Meisner, A.D. Phylogenetic systematics of the viviparous halfbeak genera Dermogenys and Nomorhamphus (Teleostei: Hemiramphidae). Zool. J. Linn. Soc. 2001, 133, 199–283. [Google Scholar] [CrossRef]
- Banford, H.M.; Collette, B. A new species of halfbeak, Hyporhamphus naos (Beloniformes: Hemiramphidae), from the tropical eastern Pacific. Rev. Biol. Trop. 2001, 49 (Suppl. 1), 39–49. [Google Scholar]
- Banford, H.M. Hyporhamphus collettei, a new species of inshore halfbeak (Hemiramphidae) endemic to Bermuda, with comments on the biogeography of the Hyporhamphus unifasciatus species group. Proc. Biol. Soc. Wash. 2010, 123, 345–358. [Google Scholar] [CrossRef]
- Mourão, J.S.; Nordi, N. Etnoictiologia de pescadores artesanais do estuário do Rio Mamanguape, Paraíba, Brasil. Bol. Inst. Pesca 2003, 29, 9–17. [Google Scholar]
- Medeiros, M.C.; Barboza, R.R.D.; Martel, G.; Mourão, J.S. Combining local fishers’ and scientific ecological knowledge: Implications for comanagement. Ocean. Coast. Manag. 2018, 158, 1–10. [Google Scholar] [CrossRef]
- Verba, J.T.; Pennino, M.G.; Coll, M.; Lopes, P.F.M. Assessing drivers of tropical and subtropical marine fish collapses of Brazilian Exclusive Economic Zone. Sci. Total Environ. 2020, 702, 134940. [Google Scholar] [CrossRef]
- Rocha, M.S.P.; Mourão, J.S.; Souto, W.D.M.S.; Barboza, R.R.D.; Alves, R.R.D.N. O uso dos recursos pesqueiros no estuário do Rio Mamanguape, estado da Paraíba, Brazil. Interciencia 2008, 33, 903–909. [Google Scholar]
- Souza, A.D.S.; Furrier, M. Caracterização geomorfológica e ocupação antrópica de zonas costeiras: O caso da Ponta do Seixas, litoral da Paraíba-Brasil. Rev. Dep. Geogr. 2015, 30, 166–178. [Google Scholar] [CrossRef]
- Alvares, C.A.; Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.J.H.; Guedes, R.V.S.; Souza, F.S.A.; Dantas, F.R.C. Análise do índice padronizado de pluviosidade para o estado da Paraíba, Brasil. Rev. Ambient. Água 2010, 5, 201–214. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2006. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods; PRIMER–E. Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Vazzoler, A.E.A.M. Manual de Métodos para Estudos Biológicos de Populações de Peixes; Reprodução e crescimento: Brasília, Brazil, 1982. [Google Scholar]
- Vazzoler, A.E.A.M. Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática; EDUEM: Maringá, Brazil, 1996. [Google Scholar]
- Froese, R. Cube law, condition factor and weight-length relationship: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Kawakami, E.; Vazzoler, G. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Bol. Inst. Oceanogr. 1980, 29, 205–207. [Google Scholar] [CrossRef]
- Bemvenuti, M.A. Hábitos alimentares de peixes-rei (Atherinidae) na região estuarina da Lagoa dos Patos, Brasil. Atlântica 1990, 12, 79–102. [Google Scholar]
- Campos, D.M.A.R.; Silva, A.F.; Sales, N.S.; Oliveira, R.E.M.C.C.; Pessanha, A.L.M. Trophic relationships among fish assemblages in a mudflat within Brazilian marine protected area. Braz. J. Oceanogr. 2015, 63, 135–146. [Google Scholar] [CrossRef]
- Palomares, M.L.; Pauly, D. A multiple regression model for predicting the food consumption of marine fish population. Aust. J. Mar. Freshw. Res. 1989, 40, 259–284. [Google Scholar] [CrossRef]
- Green, B.C.; Smith, D.J.; Underwood, G.J.C. Habitat connectivity and spatial complexity differentially affect mangrove and salt marsh fish assemblages. Mar. Ecol. Prog. Ser. 2012, 466, 177–192. [Google Scholar] [CrossRef]
- MacKenzie, R.A.; Cormier, N. Stand structure influences nekton community composition and provides protection from natural disturbance in Micronesian mangroves. Hydrobiologia 2012, 685, 155–171. [Google Scholar] [CrossRef]
- Cocheret de la Moriniére, E.; Nagelkerken, I.; van der Meij, H.; van der Velde, G. What attracts juvenile coral reef fish to mangroves: Habitat complexity or shade? Mar. Biol. 2004, 144, 139–145. [Google Scholar] [CrossRef]
- Verweij, M.C.; Nagelkerken, I.; Graaff, D.; Peeters, M.; Bakker, E.J.; van der Velde, G. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment. Mar. Ecol. Prog. Ser. 2006, 306, 257–268. [Google Scholar] [CrossRef]
- Kamal, S.; Lee, S.Y.; Warnken, J. Investigating three-dimensional mesoscale habitat complexity and its ecological implications using low-cost RGB-D sensor technology. Methods Ecol. Evol. 2014, 5, 845–853. [Google Scholar] [CrossRef]
- Rilov, G.; Figueira, W.F.; Lyman, S.J.; Crowder, L.B. Complex habitats may not always benefit prey: Linking visual field with reef fish behavior and distribution. Mar. Ecol. Prog. Ser. 2007, 329, 225–238. [Google Scholar] [CrossRef]
- Ory, N.C.; Dudgeon, D.; Dumont, C.P.; Miranda, L.; Thiel, M. Effects of predation and habitat structure on the abundance and population structure of the rock shrimp Rhynchocinetes typus (Caridea) on temperate rocky reefs. Mar. Biol. 2012, 159, 2075–2089. [Google Scholar] [CrossRef]
- Lucas, J.R.; Benkert, K.A. Variable foraging and cleaning behavior by juvenile Leather jackets, Oligoplites saurus (Carangidae). Estuaries Coasts 1983, 6, 247–250. [Google Scholar] [CrossRef]
- Juanes, F.; Conover, D.O. Piscivory and prey size selection in young-of-the-year bluefish: Predator preference or size-dependent capture success? Mar. Ecol. Prog. Ser. 1994, 114, 59–69. [Google Scholar] [CrossRef]
- Sancho, G. Predatory behaviors of Caranx melampygus (Carangidae) feeding on spawning reef fishes: A novel ambushing strategy. Bull. Mar. Sci. 2000, 66, 487–496. [Google Scholar]
- Vasconcelos Filho, A.L.; Neumann-Leitão, S.; Eskinazi-Leça, E.; Schwamborn, R.; Oliveira, A.M.E.; Paranaguá, M.N. trophic interactions between fish and other compartment communities in a tropical estuary in Brazil as indicator of environmental quality. WIT Trans. Ecol. Environ. 2003, 63, 173–183. [Google Scholar]
- Paiva, A.C.G.; Chaves, P.T.C.; Araújo, M.E. Estrutura e organização trófica da ictiofauna de águas rasas em um estuário tropical. Rev. Bras. Zool. 2008, 25, 647–661. [Google Scholar] [CrossRef]
- Kanai, T.; Nanjo, K.; Kohno, H.; Sano, M. Ontogenetic and seasonal changes in the diet of the halfbeak Zenarchopterus dunckeri at Iriomote Island, southern Japan. Ichthyol. Res. 2017, 64, 470–474. [Google Scholar] [CrossRef]
- Abidin, D.A.Z.; Das, S.K.; Ghaffar, M.A. Length-weight relationship, condition factors and trophic level of Buffon’s river-garfish Zenarchopterus buffonis from the coastal waters of Malaysia. Songklamakarin J. Sci. Technol. 2019, 41, 1162–1170. [Google Scholar]
- Pinnegar, J.K.; Trenkel, V.M.; Tidd, A.N.; Dawson, W.A.; Dubuit, M.H. Does diet in Celtic Sea fishes reflect prey availability? J. Fish Biol. 2003, 63, 197–212. [Google Scholar] [CrossRef]
- Delabiel, J.H.C.; Paim, V.R.L.M.; Nascimento, I.C.; Campiolo, S.; Mariano, C.S.F. As formigas como indicadores biológicos do impacto humano em manguezais da costa sudeste da Bahia. Neotrop. Entomol. 2006, 35, 602–615. [Google Scholar] [CrossRef]
- Nielsen, M.G. Ants (Hymenoptera: Formicidae) of mangrove and other regularly inundated habitats: Life in physiological extreme. Myrmecol. News 2010, 14, 113–121. [Google Scholar]
- Tabassum, S.; Yousuf, F.; Elahi, N.; Hossain, M.Y.; Hossen, M.A.; Nawer, F.; Khatun, D.; Parvin, M.F. Diet and feeding ecology of black-barred halfbeak Hemiramphus far (Forsskal, 1775) (Hemiramphidae) from Karachi coast of Pakistan. J. Coast. Life Med. 2017, 5, 4–6. [Google Scholar]
- Fowler, A.J.; Steer, M.A.; Jackson, W.B.; Lloyd, M.T. Population characteristics of southern sea garfish (Hyporhamphus melanochir, Hemirhamphidae) in South Australia. Mar. Freshw. Res. 2008, 59, 429–443. [Google Scholar] [CrossRef]
- Oya, F.; Tsuji, T.; Fujiwara, S. Relative growth and feeding habits of Halfbeak, Hyporhamphus sajori, larvae and juveniles in Toyama Bay of the Japan Sea. Aquacult. Sci. 2002, 50, 47–54. [Google Scholar]
- Nuttall, A.M.; Stewart, J.; Hughes, J.M. Spawning frequency in the eastern Australian river garfish, Hyporhamphus regularis ardelio (Hemiramphidae). Environ. Biol. Fishes 2012, 94, 681–687. [Google Scholar] [CrossRef]
- van der Meulen, D.E.; Walsh, C.T.; Taylor, M.D.; Gray, C.A. Habitat requirements and spawning strategy of an estuarine-dependent fish, Percalates colonorum. Mar. Freshw. Res. 2014, 65, 218–227. [Google Scholar] [CrossRef]
- Döring, J.; Neumann, S.I.; Sloterdijk, I.; Ekau, W. Seasonal growth differences of larval Hyporhamphus picarti (Hemiramphidae) in the Sine Saloum estuary, Senegal. J. Appl. Ichthyol. 2017, 34, 97–102. [Google Scholar] [CrossRef]
- Islam, M.S.; Hibino, M.; Tanaka, M. Distribution and diets of larval and juvenile fishes: Influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan. Estuar. Coast. Shelf Sci. 2006, 68, 62–74. [Google Scholar] [CrossRef]
- Mareea, R.C.; Whitfield, A.K.; Booth, A.J. Effect of water temperature on the biogeography of South African estuarine fishes associated with the subtropical/warm temperate subtraction zone. S. Afr. J. Sci. 2000, 96, 184–188. [Google Scholar]
- Pankhurst, N.W.; Munday, P.L. Effect of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011, 62, 1015–1026. [Google Scholar] [CrossRef]
- Mogensen, S.; Post, J.R. Energy allocation strategy modifies growth-survival trade-offs in juvenile fish across ecological and environmental gradients. Oecologia 2012, 168, 923–933. [Google Scholar] [CrossRef]
- Júnior, A.D.G.F.V.; Lima, D.E.P.C.; Santos, N.S.; Terra, B.F.; Pessanha, A.L.M. Trade-offs between ontogenetic changes and food consumption in Brazilian silverside Atherinella brasiliensis from two tropical estuaries. J. Fish Biol. 2020, 98, 196–207. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywoodf, M.; Kirton, L.G.; Meynecke, J.O.; Pawlik, J.; Penrose, M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef]
Mudflat | Pneumatophore Fringes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Juvenile (n = 39) | Adult (n = 33) | Juvenile (n = 96) | Adult (n = 143) | |||||||||
Food Items | O% | V% | IAi% | O% | V% | IAi% | O% | V% | IAi% | O% | V% | IAi% |
Foraminifera | 1.20 | 0.02 | 0.01 | |||||||||
Diatoms | 1.20 | 0.02 | 0.01 | 0.83 | 3.20 | 0.06 | ||||||
Trematoda | 5.6 | 0.2 | 0.01 | 6.67 | 0.12 | 0.03 | 8.43 | 0.22 | 0.03 | 7.44 | 0.30 | 0.05 |
Sipuncula | 6.02 | 0.37 | 0.04 | 4.13 | 0.22 | 0.02 | ||||||
Errantia Polychaeta | 1.20 | 0.43 | 0.01 | 7.44 | 3.32 | 0.55 | ||||||
Sedentary Polychaeta | 0.83 | 0.29 | 0.01 | |||||||||
Copepods | 8.3 | 0.4 | 0.05 | 16.67 | 0.61 | 0.42 | 9.64 | 0.47 | 0.08 | 6.61 | 0.13 | 0.02 |
Gammaridae | 1.65 | 0.11 | ||||||||||
Cyprid larvae | 1.20 | 0.02 | 0.01 | 0.83 | 0.01 | |||||||
Brachyura larvae | 6.67 | 0.20 | 0.06 | 1.20 | 1.87 | 0.04 | 0.83 | 0.01 | ||||
Brachyura | 3.33 | 0.98 | 0.14 | 0.83 | 0.10 | |||||||
Tanaidacea | 1.20 | 0.02 | 0.01 | |||||||||
Hymenoptera | 88.9 | 70.5 | 99.8 | 56.67 | 41.89 | 98.08 | 84.34 | 67.17 | 97.74 | 77.69 | 56.13 | 97.33 |
Coleoptera | 2.8 | 0.3 | 0.01 | 1.20 | 0.02 | 0.01 | 1.65 | 0.12 | 0.01 | |||
Diptera | 13.33 | 0.16 | 0.09 | 2.41 | 0.95 | 0.04 | 4.96 | 1.01 | 0.11 | |||
Hemiptera | 6.02 | 1.34 | 0.14 | 2.48 | 0.16 | 0.01 | ||||||
Plant material | 13.9 | 0.5 | 0.10 | 20.00 | 1.39 | 1.15 | 19.28 | 5.65 | 1.88 | 9.92 | 8.28 | 1.83 |
Number of Individuals | Biomass | |||
---|---|---|---|---|
Predictor Variables | Model 1(β) | Model 2(β) | Model 1(β) | Model 2(β) |
Predatory fishes (abundance) | −0.554 ** | −0.526 ** | −0.462 ** | −0.423 ** |
Pneumatophore complexity | ||||
Density | 0.228 ** | 0.287 ** | ||
R2 | 0.307 | 0.347 | 0.214 | 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes, É.H.L.; Pereira, J.A.; Brito, G.J.S.; Júnior, A.d.G.F.V.; Pessanha, A.L.M. Predation Risk, Foraging and Reproduction of an Insectivore Fish Species Associated with Two Estuarine Habitats. Diversity 2024, 16, 707. https://doi.org/10.3390/d16110707
Guedes ÉHL, Pereira JA, Brito GJS, Júnior AdGFV, Pessanha ALM. Predation Risk, Foraging and Reproduction of an Insectivore Fish Species Associated with Two Estuarine Habitats. Diversity. 2024; 16(11):707. https://doi.org/10.3390/d16110707
Chicago/Turabian StyleGuedes, Éden Hávila Lima, Juan Alves Pereira, Gitá Juan Soterorudá Brito, Alexandre da Gama Fernandes Vieira Júnior, and André Luiz Machado Pessanha. 2024. "Predation Risk, Foraging and Reproduction of an Insectivore Fish Species Associated with Two Estuarine Habitats" Diversity 16, no. 11: 707. https://doi.org/10.3390/d16110707
APA StyleGuedes, É. H. L., Pereira, J. A., Brito, G. J. S., Júnior, A. d. G. F. V., & Pessanha, A. L. M. (2024). Predation Risk, Foraging and Reproduction of an Insectivore Fish Species Associated with Two Estuarine Habitats. Diversity, 16(11), 707. https://doi.org/10.3390/d16110707