Different Selection Levels of Mitogenomes: New Insights into Species Differentiation of the Triops longicaudatus (LeConte, 1846) Complex (Branchiopoda: Notostraca)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. PCR Amplification and Sequencing, Sequence Assembly, and Gene Annotation
2.3. Analysis of Genetic Diversity
2.4. Phylogenetic Analysis
2.5. Signs of Selection
3. Results
3.1. Mitogenome Features
3.2. Genetic Diversity
3.3. Phylogenetic Analyses
3.4. Selection Analyses
4. Discussion
4.1. Phylogenetic Implications for the T. longicaudatus Complex
4.2. Selective Pressure in the Evolutionary Processes of the T. longicaudatus Complex
4.3. Selection Pressure Comparison of the T. longicaudatus Complex in Different Reproductive Modes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schranck, F.V.P. Favna Boica. Durchgedachte Geschichte der in Baiern Einheimischen und Zahmen Tiere; Philipp Krüll Universitätsbuchhändler: Landshut, Germany, 1803; Volume 3, p. 251. [Google Scholar]
- Korn, M.; Rabet, N.; Ghate, H.V.; Marrone, F.; Hundsdoerfer, A. Molecular phylogeny of the Notostraca. Mol. Phylogenet. Evol. 2013, 69, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.C.; Schwentner, M.; Dalu, T.; Wasserman, R.J. A review of Triops granarius (Lucas, 1864) sensu lato (Notostraca: Triopsidae) of southern Africa and Madagascar, with comments on the group. J. Crustac. Biol. 2021, 41, ruaa089. [Google Scholar] [CrossRef]
- Tasch, P. Evolution of the Branchiopoda. In Phylogeny and Evolution of Crustacea; Whittington, H.B., Rolfe, W.D.I., Eds.; Harvard University Press: Cambridge, MA, USA, 1963; pp. 145–157. [Google Scholar]
- Voigt, S.; Hauschke, N.; Schneider, J.W. On the occurences of fossil notostracans in Germany—an overview. Abh. Ber. Naturkunde 2008, 31, 7–24. [Google Scholar]
- Garrouste, R.; Nel, A.; Gand, G. New fossil arthropods (Notostraca and Insecta: Syntonopterida) in the Continental Middle Permian of Provence (Bas-Argens Basin, France). C. R. Palevol. 2009, 8, 49–57. [Google Scholar] [CrossRef]
- Horn, R.L.; Kuehn, R.; Drechsel, V.; Cowley, D.E. Discriminating between the effects of founding events and reproductive mode on the genetic structure of Triops populations (Branchiopoda: Notostraca). PLoS ONE 2014, 9, e97473. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, H. First record of Triops strenuus Wolf, 1911 (Branchiopoda, Notostraca), a tadpole shrimp of Australian origin, from Japan. Crustaceana 2018, 91, 425–438. [Google Scholar] [CrossRef]
- Naganawa, H. Invasive alien species Triops (Branchiopoda, Notostraca) in Japan and its ecological and economic impact. Rev. Agric. Sci. 2020, 8, 138–157. [Google Scholar] [CrossRef]
- Sassaman, C.; Simovich, M.; Fugate, M. Reproductive isolation and genetic differentiation in North American species of Triops (Crustacea: Branchiopoda: Notostraca). Hydrobiologia 1997, 359, 125–147. [Google Scholar] [CrossRef]
- Suno-Uchi, N.; Sasaki, F.; Chiba, S.; Kawata, M. Morphological stasis and phylogenetic relationships in Tadpole shrimps, Triops (Crustacea: Notostraca). Biol. J. Linn. Soc. Lond. 2008, 61, 439–457. [Google Scholar]
- Macdonald, K.S., III; Sallenave, R.M.; Cowley, D.E. Morphologic and genetic variation in Triops (Branchiopoda: Notostraca) from ephemeral waters of the northern Chihuahuan Desert of North America. J. Crustac. Biol. 2011, 31, 468–484. [Google Scholar] [CrossRef]
- Vanschoenwinkel, B.; Pinceel, T.; Vanhove, M.P.M.; Denis, C.; Jocqué, M.; Timms, B.V.; Brendonck, L. Toward a global phylogeny of the “living fossil” crustacean order of the Notostraca. PLoS ONE 2012, 7, e34998. [Google Scholar] [CrossRef] [PubMed]
- Mathers, T.C.; Hammond, R.L.; Jenner, R.A.; Hänfling, B.; Gómez, A. Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’. PeerJ 2013, 1, e62. [Google Scholar] [CrossRef] [PubMed]
- Mathers, T.C.; Hammond, R.L.; Jenner, R.A.; Zierold, T.; Hänfling, B.; Gómez, A. High lability of sexual system over 250 million years of evolution in morphologically conservative tadpole shrimps. BMC Evol. Biol. 2013, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- LeConte, J.F.L.S. A new species of Apus, A. longicaudatus. J. Nat. Hist. 1846, 18, 358. [Google Scholar] [CrossRef]
- Linder, F. Contributions to the morphology and taxonomy of the Branchiopoda Notostraca, with special reference to the North American species. Proc. U. S. Natl. Mus. 1952, 102, 1–69. [Google Scholar] [CrossRef]
- Longhurst, A.R. A review of the Notostraca. Bull. Br. Mus. Natl. Hist. Zool. 1955, 3, 3–57. [Google Scholar] [CrossRef]
- Packard, A.S. Preliminary Notice of North American Phyllopoda; Kessinger Publishing, LLC: Whitefish, MT, USA, 1871; Volume 2, pp. 108–113. [Google Scholar]
- Baek, S.Y.; Kim, S.K.; Ryu, S.H.; Suk, H.Y.; Choi, E.H.; Jang, K.H.; Kwak, M.; Jun, J.; Kim, S.G.; Hwang, U.W. Population genetic structure and phylogenetic origin of Triops longicaudatus (Branchiopoda: Notostraca) on the Korean Peninsula. J. Crustac. Biol. 2013, 33, 382–391. [Google Scholar] [CrossRef]
- Maeda-Martínez, A.M.; Obregón-Barboza, H.; García-Velazco, H.; Murugan, G. A proposal on the phylogeny and the historical biogeography of the tadpole shrimp Triops. Anostrac. News 2000, 8, 1–4. [Google Scholar]
- Murugan, G.; Maeda-Martínez, A.M.; Obregón-Barboza, H.; Hernández-Saavedra, N.Y. Molecular characterization of the tadpole shrimp Triops (Branchiopoda: Notostraca) from the Baja California Peninsula, Mexico: New insights on species diversity and phylogeny of the genus. Hydrobiologia 2002, 486, 101–113. [Google Scholar] [CrossRef]
- Tladi, M.; Wasserman, R.J.; Cuthbert, R.N.; Dalu, T.; Nyamukondiwa, C. Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca and Spinicaudata) from temporary wetland arid zone systems. J. Therm. Biol. 2021, 99, 102997. [Google Scholar] [CrossRef]
- Brendonck, L. Diapause, quiescence, hatching requirements: What we can learn from large freshwater branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca). Hydrobiologia 1996, 320, 85–97. [Google Scholar] [CrossRef]
- Sun, X.Y.; Cheng, J.H. Characterization of the complete mitochondrial genome of Chinese Triops granarius and implications for species delimitation. Int. J. Biol. Macromol. 2019, 135, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Cheng, J.H. Comparative Mitogenomic Analyses and New Insights into the Phylogeny of Thamnocephalidae (Branchiopoda: Anostraca). Genes 2022, 13, 1765. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.H. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 2017, 108, 431–437. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Pond, S.L.K.; Poon, A.F.Y.; Velazquez, R.; Weaver, S.; Hepler, N.L.; Murrell, B.; Shank, S.D.; Magalis, B.R.; Bouvier, D.; Nekrutenko, A.; et al. HyPhy 2.5—A customizable platform for evolutionary hypothesis testing using phylogenies. Mol. Biol. Evol. 2020, 37, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Pond, S.L.K.; Frost, S.D.W.; Muse, S.V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics 2005, 21, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Pond, S.L.K.; Scheffler, K. FUBAR: A fast, unconstrained Bayesian AppRoximation for inferring selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Pond, S.L.K. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Pond, S.L.K. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef]
- Horn, R.L.; Cowley, D.E. Evolutionary relationships within Triops (Branchiopoda: Notostraca) using complete mitochondrial genomes. J. Crustac. Biol. 2014, 34, 795–800. [Google Scholar] [CrossRef]
- Gan, H.M.; Wasserman, R.J.; Dalu, T.; Rogers, D.C. The complete mitogenome of a South African cryptic species of tadpole shrimp within the Triops granarius (Lucas, 1864) species group. Mitochondrial DNA Part B 2019, 4, 455–456. [Google Scholar] [CrossRef]
- Adamowicz, S.J.; Purvis, A. How many branchiopod crustacean species are there? Quantifying the components of underestimation. Global Ecol. Biogeogr. 2005, 14, 455–468. [Google Scholar] [CrossRef]
- Murugan, G.; Obregón-Barboza, H.; Maeda-Martínez, A.M.; Timms, B.V. Co-occurrence of two tadpole shrimp, Triops cf. australiensis (Branchiopoda: Notostraca), lineages in middle Paroo, north-western New South Wales, with the first record of Triops hermaphrodites for the Australian continent. Aust. J. Zool. 2009, 57, 77–84. [Google Scholar] [CrossRef]
- Stoeckle, B.C.; Cowley, D.E.; Schaack, Y.; Macdonald, K.S., III; Sallenave, R.; Kuehn, R. Microsatellites for North American species of Triops (Branchiopoda: Notostraca). J. Crustac. Biol. 2013, 33, 48–55. [Google Scholar] [CrossRef]
- Horn, R.L.; Cowley, D.E. Self-fertilization and the role of males in populations of tadpole shrimp (Branchiopoda: Notostraca: Triops). J. Hered. 2016, 107, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Melo-Ferreira, J.; Vilela, J.; Fonseca, M.M.; da Fonseca, R.R.; Boursot, P.; Alves, P.C. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol. Evol. 2014, 6, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, R.R.; Johnson, W.E.; O’Brien, S.J.; Ramos, M.; Antunes, A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 2008, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Stier, A.; Massemin, S.; Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B. 2014, 184, 1021–1029. [Google Scholar] [CrossRef]
- Guo, H.; Yang, H.; Tao, Y.; Tang, D.; Wu, Q.; Wang, Z.; Tang, B. Mitochondrial OXPHOS genes provides insights into genetics basis of hypoxia adaptation in anchialine cave shrimps. Genes Genom. 2018, 40, 1169–1180. [Google Scholar] [CrossRef]
- Palozzi, J.M.; Jeedigunta, S.P.; Hurd, T.R. Mitochondrial DNA Purifying Selection in Mammals and Invertebrates. J. Mol. Biol. 2018, 430, 4834–4848. [Google Scholar] [CrossRef]
- Tieleman, B.I.; Versteegh, M.A.; Fries, A.; Helm, B.; Dingemanse, N.J.; Gibbs, H.L.; Williams, J.B. Genetic modulation of energy metabolism in birds through mitochondrial function. Proc. Biol. Sci. 2009, 276, 1685–1693. [Google Scholar] [CrossRef]
- Noll, D.; Leon, F.; Brandt, D.; Pistorius, P.; Le Bohec, C.; Bonadonna, F.; Trathan, P.N.; Barbosa, A.; Rey, A.R.; Dantas, G.P.M.; et al. Positive selection over the mitochondrial genome and its role in the diversification of gentoo penguins in response to adaptation in isolation. Sci. Rep. 2022, 12, 3767. [Google Scholar] [CrossRef]
- Pavlova, A.; Gan, H.M.; Lee, Y.; Austin, C.M.; Gilligan, D.M.; Lintermans, M.; Sunnucks, P. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish. Heredity 2017, 118, 466–476. [Google Scholar] [CrossRef]
- Awadi, A.; Ben Slimen, H.; Schaschl, H.; Knauer, F.; Suchentrunk, F. Positive selection on two mitochondrial coding genes and adaptation signals in hares (genus Lepus) from China. BMC Ecol. Evol. 2021, 21, 100. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Y.; Liang, L.; Zhu, Z.H.; Zhou, W.P.; Irwin, D.M.; Zhang, Y.P. Adaptive Evolution of Energy Metabolism Genes and the Origin of Flight in Bats. Proc. Natl. Acad. Sci. USA 2010, 107, 8666–8671. [Google Scholar] [CrossRef] [PubMed]
- Consuegra, S.; John, E.; Verspoor, E.; De Leaniz, C.G. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet. Sel. Evol. 2015, 47, 58. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hu, R.; Costa, C.; Li, J. Genetic drift and purifying selection shaped mitochondrial genome variation in the high royal jelly-producing honeybee strain (Apis mellifera ligustica). Front. Genet. 2022, 13, 835967. [Google Scholar] [CrossRef] [PubMed]
- Paland, S.; Lynch, M. Transitions to asexuality result in excess amino acid substitutions. Science 2006, 311, 990–992. [Google Scholar] [CrossRef]
- Meiklejohn, C.D.; Montooth, K.L.; Rand, D.M. Positive and negative selection on the mitochondrial genome. Trends Genet. 2007, 23, 259–263. [Google Scholar] [CrossRef]
- Crease, T.J. The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene 1999, 233, 89–99. [Google Scholar] [CrossRef]
- Geng, X.; Cheng, R.; Deng, D.; Zhang, H. The complete mitochondrial DNA genome of Chinese Daphnia carinata (Cladocera: Daphniidae). Mitochondrial DNA Part B 2016, 1, 323–325. [Google Scholar] [CrossRef]
- Cheng, R.; Deng, B.; Wang, Y.; Geng, X.; Li, J.; Zhang, X.; Peng, S.; Deng, D.; Zhang, H. Complete mitochondrial genome sequence of Daphnia magna (Crustacea: Cladocera) from Huaihe in China. J. Lake Sci. 2016, 28, 414–420. [Google Scholar]
- Perez, M.L.; Valverde, J.R.; Batuecas, B.; Amat, F.; Marco, R.; Garesse, R. Speciation in the Artemia genus: Mitochondrial DNA analysis of bisexual and parthenogenetic brine shrimps. J. Mol. Evol. 1994, 38, 156–168. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Q.; Sun, J.; Liu, F.; Wu, G.; Yu, J.; Wang, W. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: Assessing molecular changes for high plateau adaptation. Sci. China Life Sci. 2013, 56, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Luchetti, A.; Forni, G.; Skaist, A.M.; Wheelan, S.J.; Mantovani, B. Mitochondrial genome diversity and evolution in Branchiopoda (Crustacea). Zool. Lett. 2019, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Umetsu, K.; Iwabuchi, N.; Yuasa, I.; Saitou, N.; Clark, P.F.; Boxshall, G.; Osawa, M.; Igarashi, K. Complete mitochondrial DNA sequence of a tadpole shrimp (Triops cancriformis) and analysis of museum samples. Electrophoresis. 2002, 23, 4080–4084. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.M.; Tan, M.H.; Lee, Y.P.; Austin, C.M. The complete mitogenome of the Australian tadpole shrimp Triops australiensis (Spencer and Hall, 1895) (Crustacea: Branchiopoda: Notostraca). Mitochondrial DNA Part A 2016, 27, 2028–2029. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.E.; Yue, Q.; Akam, M. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc. Biol. Sci. 2005, 272, 1295–1304. [Google Scholar] [CrossRef]
- Ryu, J.S.; Hwang, U.W. Complete mitochondrial genome of the longtail tadpole shrimp Triops longicaudatus (Crustacea, Branchiopoda, Notostraca). Mitochondrial DNA 2010, 21, 170–172. [Google Scholar] [CrossRef]
- Castellucci, F.; Luchetti, A.; Mantovani, B. Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera. Sci. Rep. 2022, 12, 4931. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
OXPHOS Complex | Pervasive Positive Selection (FUBAR) | Episodic Positive Selection (MEME) | ||||
---|---|---|---|---|---|---|
Gene | Codon | Aa a | Gene | Codon | Aa a | |
V | atp8 | 4 | V | - | - | - |
IV | - | - | - | cox1 | 97 | N |
I | nad1 | 303 | L | nad1 | 303 | L |
nad5 | 441 | M | nad5 | - | - | |
543 | L | 543 | L | |||
545 | I | 545 | I |
Foreground | CodeML SM | FEL (p < 0.05) | |||||||
---|---|---|---|---|---|---|---|---|---|
gonochoric TL | Gene | 2ΔlnL | LRT p-value | Codon | Aa a | BEB | Codon | Aa a | p-value |
atp6 | 12 | T | 0.022 | ||||||
22 | S | 0.023 | |||||||
atp8 | 7.2 | 0.027 | 4 | V | 0.951 * | ||||
nad1 | 8.268 | 0.016 | 303 | L | 0.997 ** | ||||
nad2 | 199 | T | 0.030 | ||||||
nad3 | 6 | V | 0.0153 | ||||||
nad5 | 15.410 | 0.000 | 441 | M | 0.967 * | ||||
445 | M | 0.029 | |||||||
477 | G | 0.038 | |||||||
480 | F | 0.032 | |||||||
15.410 | 0.000 | 543 | L | 0.991 ** | |||||
562 | M | 0.030 | |||||||
hermaphroditic TL | atp8 | 7.2 | 0.027 | 4 | V | 0.951 * | 4 | V | 0.040 |
nad1 | 8.268 | 0.016 | 303 | L | 0.997 ** | ||||
nad2 | 309 | N | 0.039 | ||||||
nad5 | 15.410 | 0.000 | 441 | M | 0.967 * | ||||
15.410 | 0.000 | 543 | L | 0.991 ** | 543 | L | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Kozai, T. Different Selection Levels of Mitogenomes: New Insights into Species Differentiation of the Triops longicaudatus (LeConte, 1846) Complex (Branchiopoda: Notostraca). Diversity 2024, 16, 715. https://doi.org/10.3390/d16120715
Sun X, Kozai T. Different Selection Levels of Mitogenomes: New Insights into Species Differentiation of the Triops longicaudatus (LeConte, 1846) Complex (Branchiopoda: Notostraca). Diversity. 2024; 16(12):715. https://doi.org/10.3390/d16120715
Chicago/Turabian StyleSun, Xiaoyan, and Takeshi Kozai. 2024. "Different Selection Levels of Mitogenomes: New Insights into Species Differentiation of the Triops longicaudatus (LeConte, 1846) Complex (Branchiopoda: Notostraca)" Diversity 16, no. 12: 715. https://doi.org/10.3390/d16120715
APA StyleSun, X., & Kozai, T. (2024). Different Selection Levels of Mitogenomes: New Insights into Species Differentiation of the Triops longicaudatus (LeConte, 1846) Complex (Branchiopoda: Notostraca). Diversity, 16(12), 715. https://doi.org/10.3390/d16120715