Population Reinforcement of the Endangered Freshwater Pearl Mussel (Margaritifera margaritifera): Lessons Learned
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Release Sites
2.2. Captive Breeding and Tagging
2.3. Conservation Translocations and Monitoring
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldridge, D.C.; Ollard, I.S.; Bespalaya, Y.V.; Bolotov, I.N.; Douda, K.; Geist, J.; Haag, W.R.; Klunzinger, M.W.; Lopes-Lima, M.; Mlambo, M.C.; et al. Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities. Glob. Chang. Biol. 2023, 29, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Zając, T.; Halabowski, D.; Aksenova, O.V.; Bespalaya, Y.V.; Carvalho, F.; Castro, P.; Douda, K.; da Silva, J.P.; Ferreira-Rodríguez, N.; et al. A roadmap for the conservation of freshwater mussels in Europe. Conserv. Biol. 2023, 37, e13994. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G. Threats to the freshwater pearl mussel Margaritifera margaritifera L. in central Europe. Biol. Conserv. 1988, 45, 239–253. [Google Scholar] [CrossRef]
- Bogan, A.E. Freshwater bivalve extinctions (Mollusca: Unionoida): A search for causes. Am. Zool. 1993, 33, 599–609. [Google Scholar] [CrossRef]
- Young, M.R.; Cosgrove, P.J.; Hastie, L.C. The extent of, and causes for, the decline of a highly threatened naiad: Margaritifera margaritifera. In Ecology and Evolutionary Biology of the Freshwater Mussels Unionoidea; Bauer, G., Wächtler, K., Eds.; Springer: Berlin, Germany, 2001; pp. 337–357. [Google Scholar]
- Geist, J.; Auerswald, K. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshw. Biol. 2007, 52, 2299–2316. [Google Scholar] [CrossRef]
- Moorkens, E.; Cordeiro, J.; Seddon, M.B.; von Proschwitz, T.; Woolnough, D. Margaritifera Margaritifera. The IUCN Red List of Threatened Species 2017: E.T12799A508865. Available online: https://www.iucnredlist.org/species/12799/128686456 (accessed on 13 October 2023).
- Geist, J.; Thielen, F.; Lavictoire, L. Captive breeding of European freshwater mussels as a conservation tool: A review. Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 1321–1359. [Google Scholar] [CrossRef]
- IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0; IUCN Species Survival Commission: Gland, Switzerland, 2013; viii + 57pp. [Google Scholar]
- Hastie, L.C.; Young, M.R. Conservation of the Freshwater Pearl Mussel 2: Relationship with Salmonids; Life in UK Rivers: Peterborough, ON, Canada, 2003; pp. 5–40. [Google Scholar]
- Simon, O.P.; Vaníčková, I.; Bilý, M.; Douda, K.; Patzenhauerová, H.; Hruška, J.; Peltánová, A. The status of freshwater pearl mussel in the Czech Republic: Several successfully rejuvenated populations but the absence of natural reproduction. Limnol. Ecol. Manag. Inl. Waters 2015, 50, 11–20. [Google Scholar] [CrossRef]
- Zając, K.; Florek, J.; Zając, T.; Adamski, P.; Bielański, W.; Ćmiel, A.M.; Klich, M.; Lipińska, A.M. On the reintroduction of the endangered thick-shelled river mussel Unio Crassus: The importance of the river’s longitudinal profile. Sci. Total Environ. 2018, 624, 273–282. [Google Scholar] [CrossRef]
- Cope, W.G.; Waller, D.L. Evaluation of freshwater mussel relocation as a conservation and management strategy. Regul. Rivers Res. Manag. 1995, 11, 147–155. [Google Scholar] [CrossRef]
- Killeen, I.; Moorkens, E. Mapping juvenile habitat for the freshwater pearl mussel (Margaritifera margaritifera). J. Conchol. 2020, 43, 427–448. [Google Scholar]
- Kurth, J.; Loftin, C.; Zydlewski, J.; Rhymer, J. PIT tags increase effectiveness of freshwater mussel recaptures. J. N. Am. Benthol. Soc. 2007, 26, 253–260. [Google Scholar] [CrossRef]
- Gibson, C.; Lavictoire, L.; West, C. Reintroduction of Irt 2008 Cohort (May 2017); Freshwater Biological Association: Ambleside, UK, 2017. [Google Scholar]
- Killeen, I.; Moorkens, E. The Translocation of Freshwater Pearl Mussels: A Review of Reasons, Methods and Success and a New Protocol for England; Natural England Commissioned Reports: Peterborough, ON, Canada, 2016; Number 229; 56p. [Google Scholar]
- National River Flow Archive 2024. Available online: https://nrfa.ceh.ac.uk/data/station/spatial/74002 (accessed on 31 January 2024).
- BS EN 16859:2017; British Standards Institution Water Quality—Guidance Standard on Monitoring Freshwater Pearl Mussel (Margaritifera margaritifera) Populations and Their Environment. London BSI: London, UK, 2017.
- Boon, P.J.; Cooksley, S.L.; Geist, J.; Killeen, I.J.; Moorkens, E.A.; Sime, I. Developing a standard approach for monitoring freshwater pearl mussel (Margaritifera margaritifera) populations in European rivers. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1365–1379. [Google Scholar] [CrossRef]
- Montesanto, F.; Ohlman, L.M.; Pegg, M.A. Survival and growth assessment after reintroduction of the pocketbook mussel, Lampsilis Cardium Rafinesque, 1820 among three streams in Nebraska (USA). Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 535–548. [Google Scholar] [CrossRef]
- Lavictoire, L.; Marples, H. Freshwater Pearl Mussel Ark Project Report (April 2019–March 2020). Freshwater Biological Association: Ambleside, UK, 2020. [Google Scholar]
- Carey, C.S.; Jones, J.W.; Butler, R.S.; Hallerman, E.M. Restoring the endangered oyster mussel (Epioblasma capsaeformis) to the upper Clinch River, Virginia: An evaluation of population restoration techniques. Restor. Ecol. 2015, 23, 447–454. [Google Scholar] [CrossRef]
- Kyle, R.; Reid, N.; O’Connor, N.; Roberts, D. Development of release methods for captive-bred freshwater pearl mussels (Margaritifera margaritifera). Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 492–501. [Google Scholar] [CrossRef]
- Jones, J.W.; Neves, R.J.; Hallerman, E.M. Population Performance Criteria to Evaluate Reintroduction and Recovery of Two Endangered Mussel Species, Epioblasma Brevidens and Epioblasma Capsaeformis (Bivalvia: Unionidae). Freshw. Mollusk Biol. Conserv. 2012, 15, 27–44. [Google Scholar] [CrossRef]
- Moorkens, E.A. Short-term breeding: Releasing post-parasitic juvenile Margaritifera into ideal small-scale receptor sites: A new technique for the augmentation of declining populations. Hydrobiologia 2018, 810, 145–155. [Google Scholar] [CrossRef]
- McMurray, S.E.; Roe, K.J. Perspectives on the controlled propagation, augmentation, and reintroduction of freshwater mussels (Mollusca: Bivalvia: Unionoida). Freshw. Mollusk Biol. Conserv. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Randklev, C.; Hart, M.; Inoue, K. Sampling, survey and relocation methodology. In Proceedings of the Texas Freshwater Mussel Conservation and Stakeholder Summit, Austin, TX, USA, 14–15 November 2017. [Google Scholar]
- Sarrazin, F.; Barbault, R. Reintroduction: Challenges and lessons for basic ecology. Trends Ecol. Evol. 1996, 11, 474–478. [Google Scholar] [CrossRef]
- Strayer, D.L.; Geist, J.; Haag, W.R.; Jackson, J.K.; Newbold, J.D. Essay: Making the most of recent advances in freshwater mussel propagation and restoration. Conserv. Sci. Pract. 2019, 1, e53. [Google Scholar] [CrossRef]
- Carey, C.S. An Evaluation of Population Restoration and Monitoring Techniques for Freshwater Mussels in the Upper Clinch River, Virginia, and Refinement of Culture Methods for Laboratory-Propagated Juveniles. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2013. [Google Scholar]
- Tang, M. Bayesian Population Dynamics Modeling to Guide Population Restoration and Recovery of Endangered Mussels in the Clinch River, Tennessee and Virginia. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2012. [Google Scholar]
- Hua, D.; Jiao, Y.; Neves, R.; Jones, J. Use of PIT tags to assess individual heterogeneity of laboratory-reared juveniles of the endangered Cumberlandian combshell (Epioblasma brevidens) in a mark—Recapture study. Ecol. Evol. 2015, 5, 1076–1087. [Google Scholar] [CrossRef]
- Hoftyzer, E.; Ackerman, J.D.; Morris, T.J.; Mackie, G.L. Genetic and environmental implications of reintroducing laboratory-raised unionid mussels to the wild. Can. J. Fish. Aquat. Sci. 2008, 65, 1217–1229. [Google Scholar] [CrossRef]
- Geist, J.; Stoeckle, B.C. Genetic Characterization of Captive-Bred Pearl Mussel Juveniles (Margaritifera margaritifera) and Their Parent Broodstock (Cumbria, Great Britain); Unpublished Report; Technical University of Munich for the Freshwater Biological Association: Munich, Germany, 2021. [Google Scholar]
- Stodola, K.W.; Stodola, A.P.; Tiemann, J.S. Survival of translocated clubshell and Northern riffleshell in Illinois. Freshw. Mollusk Biol. Conserv. 2017, 20, 89–102. [Google Scholar] [CrossRef]
- Černá, M.; Simon, O.P.; Bílý, M.; Douda, K.; Dort, B.; Galová, M.; Volfová, M. Within-river variation in growth and survival of juvenile freshwater pearl mussels assessed by in situ exposure methods. Hydrobiologia 2018, 810, 393–414. [Google Scholar] [CrossRef]
- Wacker, S.; Larsen, B.M.; Jakobsen, P.; Karlsson, S. Multiple paternity promotes genetic diversity in captive breeding of a freshwater mussel. Glob. Ecol. Conserv. 2019, 17, e00564. [Google Scholar] [CrossRef]
- Ashton, M.; Sullivan, K.; Brinker, D.; McCann, J. Monitoring Freshwater Mussel Relocation in Deer Creek, Rocks State Park, Maryland: Year 2 Results; Maryland Department of Natural Resources: Annapolis, MD, USA, 2016. [Google Scholar]
- Patterson, M.A.; Mair, R.A.; Eckert, N.L.; Gatenby, C.M.; Brady, T.; Jones, J.W.; Simmons, B.R.; Devers, J.L. Freshwater Mussel Propagation for Restoration; Cambridge University Press: Cambridge UK, 2018. [Google Scholar]
- Tsakiris, E.T.; Randklev, C.R.; Blair, A.; Fisher, M.; Conway, K.W. Effects of translocation on survival and growth of freshwater mussels within a West Gulf Coastal Plain river system. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 1240–1250. [Google Scholar] [CrossRef]
Site Code | Historic/Current Mussel Presence? | Result of Slope Analysis | Notes on Site |
---|---|---|---|
BD | Anecdotal evidence of historic presence near this location | Potentially suitable | Newly reconnected historical side channel of main stem. Riparian habitat running through wet woodland, which protects channel from low and high flows through good hydrological and riparian connections. Varied sizes of substrate clasts with good depths of fine gravel. |
PW | Currently low density on site | Potentially suitable | Site dominated by larger substrate clasts with lots of coarse gravel. Substrate very clean. Reach slope steeper than other sites. Woodland riparian habitat. River connection to floodplain limited. |
FG | Currently low density but suspected high density area historically | Potentially suitable | Stable cobble layer overlying deep coarse sand and gravel substrates. Woodland riparian habitat, but river unable to connect with floodplain due to embankment and subsequent incised riverbed. Some minor bed armouring due to high flows being confined to the channel (unable to spread over floodplain). |
HB | Currently low-density region, but suspected high-density area historically | Likely to be suitable | Stable cobble and pebble layer overlying coarse sand and gravel substrates. Patchy clay pockets interrupt areas of good mussel habitat. Woodland riparian habitat. Riverbed incised. but can connect with floodplain during highest flows. Some minor bed armouring due to high flows being confined to the channel. |
Site Code | Release Date | Number Released | Cohort | Mean Shell Length (Range) mm | No. Monitoring Instances | Estimated Retention at Site (%) |
---|---|---|---|---|---|---|
BD1 | 16 June 2021 | 49 | 2014 | 18.1 (16.5–20.3) | 4 | 82% |
BD2 | 5 July 2023 | 76 | 2014 | 23.3 (17.0–30.0) | 1 | 70% * |
5 July 2023 | 23 | 2017 | 20.2 (14.0–25.0) | |||
PW | 23 June 2021 | 47 | 2014 | 18.8 (15.3–21.0) | 4 | 13% |
15 July 2021 | 501 | 2014 | 14.6 (20.2–27.9) | |||
19 August 2021 | 27 | 2008 | 58.4 (44.7–65.3) | |||
19 August 2021 | 21 | 2013 | 28.6 (18.8–57.0) | |||
FG | 23 June 2021 | 50 | 2014 | 19.7 (15.9–22.2) | 5 | 52% |
19 August 2021 | 29 | 2008 | 58.7 (46.8–70.7) | |||
19 August 2021 | 22 | 2013 | 27.5 (20.0–36.7) | |||
19 August 2021 | 244 | 2014 | 20.0 (15.0–27.1) | |||
11 July 2023 | 160 | 2014 | 24.0 (18.0–34.0) | |||
11 July 2023 | 38 | 2017 | 21.2 (17.0–26.0) | |||
10 August 2023 | 430 | 2014 | 25.6 (17.0–40.0) | |||
10 August 2023 | 76 | 2017 | 21.7 (15.0–29.0) | |||
6 September 2023 | 75 | 2014 | 25.6 (17.0–32.0) | |||
6 September 2023 | 5 | 2017 | 23.8 (20.0–27.0) | |||
HB | 23 June 2021 | 48 | 2014 | 19.3 (15.4–21.9) | 3 | 60% |
18 August 2021 | 249 | 2014 | 20.2 (15.6–27.8) | |||
6 September 2023 | 182 | 2014 | 24.5 (16.0–35.0) | |||
6 September 2023 | 38 | 2017 | 20.9 (16.0–28.0) | |||
Total | 2390 |
Sonde Site | Parameter | Mean (SD) | Min | Max |
---|---|---|---|---|
PW | Chlorophyll-a (μg/L) | 1.05 (0.8) | 0.01 | 11.67 |
Conductivity (μS/cm) | 2.11 (9.41) | 35.05 | 108.21 | |
Dissolved oxygen (mg/L) | 11.18 (1.09) | 8.54 | 14.45 | |
Dissolved oxygen (%) | 101.30 (3.37) | 91.80 | 118.56 | |
Temperature (°C) | 11.28 (4.05) | 1.67 | 22.22 | |
Turbidity (NTU) | 2.11 (3.4) | 0.01 | 87.52 | |
FG | Chlorophyll-a (μg/L) | 1.41 (0.95) | 0.02 | 20.68 |
Conductivity (μS/cm) | 93.32 (39.28) | 22.37 | 309.46 | |
Dissolved oxygen (mg/L) | 10.87 (1.17) | 7.09 | 13.47 | |
Dissolved oxygen (%) | 99.14 (5.42) | 74.34 | 125.65 | |
Temperature (°C) | 11.55 (3.87) | 2.25 | 20.81 | |
Turbidity (NTU) | 3.49 (5.50) | 0.67 | 197.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavictoire, L.; West, C. Population Reinforcement of the Endangered Freshwater Pearl Mussel (Margaritifera margaritifera): Lessons Learned. Diversity 2024, 16, 187. https://doi.org/10.3390/d16030187
Lavictoire L, West C. Population Reinforcement of the Endangered Freshwater Pearl Mussel (Margaritifera margaritifera): Lessons Learned. Diversity. 2024; 16(3):187. https://doi.org/10.3390/d16030187
Chicago/Turabian StyleLavictoire, Louise, and Christopher West. 2024. "Population Reinforcement of the Endangered Freshwater Pearl Mussel (Margaritifera margaritifera): Lessons Learned" Diversity 16, no. 3: 187. https://doi.org/10.3390/d16030187
APA StyleLavictoire, L., & West, C. (2024). Population Reinforcement of the Endangered Freshwater Pearl Mussel (Margaritifera margaritifera): Lessons Learned. Diversity, 16(3), 187. https://doi.org/10.3390/d16030187