Genetic Diversity and Population Structure among Arabian Horse Genealogical Lineages in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Welfare and Ethical Statement
2.2. Sample Collection
2.3. DNA Extraction and Microsatellite Genotyping
2.4. Statistical Analyses
3. Results
3.1. Polymorphism of Microsatellite Markers
3.2. Genetic Variability between and within the Arabian Horse Lineages
3.3. Admixture Analysis and Genetic Differentiation
4. Discussion
4.1. Genetic Diversity within and among the Arabian Horse Sire Lines
4.2. Relationships and Genetic Differentiation among the Arabian Horse Sire Lines
4.3. Population Structure and Assignment of the Arabian Sire Lines
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Librado, P.; Fages, A.; Gaunitz, C.; Leonardi, M.; Wagner, S.; Khan, N.; Hanghøj, K.; Alquraishi, S.A.; Alfarhan, A.H.; Al-Rasheid, K.A.; et al. The evolutionary origin and genetic makeup of domestic horses. Genetics 2016, 204, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Gans, P.J. The medieval horse harness: Revolution or evolution? A case study in technological change. In Villard’s Legacy; Routledge: England, UK, 2017; pp. 175–188. [Google Scholar]
- Brownrigg, G. The origin of the horse collar. In Echoing Hooves: Studies on Horses and Their Effects on Medieval Societies; Brill: Leiden, The Netherlands, 2022; pp. 249–266. [Google Scholar]
- Anthony, D.W. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World; Princeton University Press: Princeton, NJ, USA, 2008; p. 568. [Google Scholar]
- Kelekna, P. The Horse in Human History, 1st ed.; Cambridge University Press: Cambridge, UK, 2009; p. 460. [Google Scholar]
- Kelly, K.J.; McDuffee, L.A.; Mears, K. The effect of human-horse interactions on equine behaviour, physiology, and welfare: A scoping review. Animals 2021, 11, 2782. [Google Scholar] [CrossRef] [PubMed]
- Scopa, C.; Contalbrigo, L.; Greco, A.; Lanatà, A.; Scilingo, E.P.; Baragli, P. Emotional transfer in human-horse interaction: New perspectives on equine assisted interventions. Animals 2019, 9, 1030. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P.; et al. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE 2013, 8, e54997. [Google Scholar] [CrossRef] [PubMed]
- Schiettecatte, J.; Zouache, A. The horse in Arabia and the Arabian horse: Origins, myths and realities. Arabian Humanities. Revue internationale d’archéologie et de sciences sociales sur la péninsule Arabique. Arab. Humanit. 2017, 8, 10.4000/cy.328. [Google Scholar]
- Cosgrove, E.J.; Sadeghi, R.; Schlamp, F.; Holl, H.M.; Moradi-Shahrbabak, M.; Miraei-Ashtiani, S.R.; Abdalla, S.; Shykind, B.; Troedsson, M.; Stefaniuk-Szmukier, M.; et al. Genome diversity and the origin of the Arabian horse. Sci. Rep. 2020, 10, 9702. [Google Scholar] [CrossRef] [PubMed]
- Machmoum, M.; Boujenane, I.; Azelhak, R.; Badaoui, B.; Petit, D.; Piro, M. Genetic diversity and population structure of Arabian horse populations using microsatellite markers. J. Equine Vet. Sci. 2020, 93, 103200. [Google Scholar] [CrossRef] [PubMed]
- Roche, C. Appropriating and re-appropriating the Arabian horse for equestrian sport: The complexities of cultural transfer. Sport Ethics Philos. 2020, 14, 320–338. [Google Scholar] [CrossRef]
- Delpeut, L.; Hettema, H. Ancient Arabian horses? Revisiting ancient Egyptian equine imagery. In Current Research in Egyptology 2019, Proceedings of the Twentieth Annual Symposium, Alcalá de Henares, Madrid, 17–21 June 2019; Cárcamo, M.A., Casado, R.S., Orozco, A.P., Robledo, S.A., García, J.O., Riudavets, P.M., Eds.; Archaeopress Publishing: Oxford, UK, 2021; pp. 168–182. ISBN 9781789699081. [Google Scholar]
- Fages, A.; Hanghøj, K.; Khan, N.; Gaunitz, C.; Seguin-Orlando, A.; Leonardi, M.; McCrory Constantz, C.; Gamba, C.; Al-Rasheid, K.A.S.; Albizuri, S.; et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell 2019, 177, 1419–1435. [Google Scholar] [CrossRef]
- Brooks, S.A. Genomics in the horse industry: Discovering new questions at every turn. J. Equine Vet. Sci. 2021, 100, 103456. [Google Scholar] [CrossRef]
- Düring, B.S.; Visser, E.; Akkermans, P.M.M.G. Skeletons in the Fortress: The Late Bronze Age burials of Tell Sabi Abyad, Syria. Levant 2015, 47, 30–50. [Google Scholar] [CrossRef]
- Ingman, T.; Eisenmann, S.; Skourtanioti, E.; Akar, M.; Ilgner, J.; Gnecchi Ruscone, G.A.; le Roux, P.; Shafiq, R.; Neumann, G.U.; Keller, M.; et al. Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC: Integration of isotopic and genomic evidence. PLoS ONE 2021, 16, e0241883. [Google Scholar] [CrossRef]
- Oates, J. A note on the early evidence for horse and the riding of equids in Western Asia. In Prehistoric Steppe Adaptation and the Horse; Levine, M., Renfrew, C., Boyle, K., Eds.; McDonald Institute for Archaeological Research: Cambridge, UK, 2003; pp. 115–125. [Google Scholar]
- Vila, E. Data on equids from late fourth millennium and third millennium sites in Northern Syria. In Equids in Time and Space, Papers in Honor of Vera Eisenmann; Mashkour, M., Ed.; Oxbow Books: Oxford, UK, 2006; pp. 101–123. [Google Scholar]
- Kuiper, K. Ancient Egypt: From Prehistory to the Islamic Conquest; The Rosen Publishing Group Inc.: New York, NY, USA, 2010; p. 352. ISBN 978-1615301485. [Google Scholar]
- Warmuth, V. On the Origin and Spread of Horse Domestication. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2012; p. 143. [Google Scholar]
- Willekes, C. From Steppe to Stable: Horses and Horsemanship in the Ancient World. Doctoral Thesis, University of Calgary, Calgary, AB, Canada, 2013. Available online: https://prism.ucalgary.ca (accessed on 22 February 2019). [CrossRef]
- Suwaed, M. Historical Dictionary of the Bedouins; Rowman & Littlefield Publishers: Lanham, MD, USA, 2015; p. 304. ISBN 978-1442254503. [Google Scholar]
- Shamsuddin, S.M.; Ahmad, S.S.B.H. Ancient history of Arabian Peninsula and Semitic Arab tribes. Adv. Soc. Sci. Res. J. 2020, 7, 270–282. [Google Scholar]
- Olsen, S.L.; Culbertson, C. A Gift from the Desert: The Art, History, and Culture of the Arabian Horse; International Museum of the Horse, Kentucky Horse Park: Lexington, KY, USA, 2010. [Google Scholar]
- Guest, K.; Mattfeld, M. Horse breeds: Introduction; In Horse Breeds and Human Society, 1st ed.; Routledge: Oxfordshire, UK, 2019; pp. 1–9. ISBN 9781032084428. [Google Scholar]
- Zechner, P.; Sölkner, J.; Bodo, I.; Druml, T.; Baumung, R.; Achmann, R.; Marti, E.; Habe, F.; Brem, G. Analysis of diversity and population structure in the Lipizzan horse breed based on pedigree information. Livest. Prod. Sci. 2002, 77, 137–146. [Google Scholar] [CrossRef]
- Al Abri, M.A.; König Von Borstel, U.; Strecker, V.; Brooks, S.A. Application of genomic estimation methods of inbreeding and population structure in an Arabian horse herd. J. Hered. 2017, 108, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Orlando, L. The evolutionary and historical foundation of the modern horse: Lessons from ancient genomics. Annu. Rev. Genet. 2020, 54, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Ivanković, A.; Bittante, G.; Konjačić, M.; Kelava Ugarković, N.; Pećina, M.; Ramljak, J. Evaluation of the conservation status of the Croatian Posavina horse breed based on pedigree and microsatellite data. Animals 2021, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Remer, V.; Bozlak, E.; Felkel, S.; Radovic, L.; Rigler, D.; Grilz-Seger, G.; Stefaniuk-Szmukier, M.; Bugno-Poniewierska, M.; Brooks, S.; Miller, D.C.; et al. Y-Chromosomal insights into breeding history and sire line genealogies of Arabian horses. Genes 2022, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- World Arabian Horse Organization (WAHO). 2020. Available online: http://www.waho.org (accessed on 21 April 2020).
- Roh, H.-J.; Kim, S.-C.; Cho, C.-Y.; Lee, J.; Jeon, D.; Kim, D.; Kim, K.-W.; Afrin, F.; Ko, Y.-G.; Lee, J.-H.; et al. Estimating genetic diversity and population structure of 22 chicken breeds in Asia using microsatellite markers. Asian-Australas J. Anim. Sci. 2020, 33, 1896–1904. [Google Scholar] [CrossRef]
- Sharma, R.; Ahlawat, S.; Sharma, H.; Sharma, P.; Panchal, P.; Arora, R.; Tantia, M.S. Microsatellite and mitochondrial DNA analyses unveil the genetic structure of native sheep breeds from three major agro-ecological regions of India. Sci. Rep. 2020, 10, 20422. [Google Scholar] [CrossRef]
- Cortes, O.; Cañon, J.; Gama, L.T. Applications of microsatellites and single nucleotide polymorphisms for the genetic characterization of cattle and small ruminants: An overview. Ruminants 2022, 2, 456–470. [Google Scholar] [CrossRef]
- FAO. Measurement of Domestic Animal Diversity (MoDAD): Original Working Group Report; FAO: Rome, Italy, 1998. [Google Scholar]
- Hoffmann, I.; Ajmone Marsan, P.; Barker, J.S.F.; Cothran, E.G.; Hanotte, O.; Lenstra, J.A.; Milan, D.; Weigend, S.; Simianer, H. New MoDAD marker sets to be used in diversity studies for the major farm animal species: Recommendations of a joint ISAG/FAO working group. In Proceedings of the 29th International Conference on Animal Genetics, Tokyo, Japan, 11–16 September 2004; pp. 123–7149. [Google Scholar]
- Khanshour, A.; Conant, E.; Juras, R.; Cothran, E.G. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J. Hered. 2013, 104, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Almarzook, S.; Abdel-Shafy, H.; Said Ahmed, A.; Reissmann, M.; Brockmann, G. Genetic diversity of Arabian horses using microsatellite markers. Egypt. J. Agric. Prod. 2022, 59, 19–27. [Google Scholar] [CrossRef]
- Jlassi, M.; Jemmali, B.; Ahmed, H.O.; Lasfer, F.; Gara, A.B. Genotypic study of Tunisian Arabian stallions. Acta Biol. Szeged. 2022, 66, 17–22. [Google Scholar] [CrossRef]
- Głażewska, I.; Gralak, B.; Naczk, A.M.; Prusak, B. Genetic diversity and population structure of Polish Arabian horses assessed through breeding and microsatellite data. Anim. Sci. J. 2018, 89, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Wallner, B.; Palmieri, N.; Vogl, C.; Rigler, D.; Bozlak, E.; Druml, T.; Jagannathan, V.; Leeb, T.; Fries, R.; Tetens, J.; et al. Y chromosome uncovers the recent oriental origin of modern stallions. Curr. Biol. 2017, 27, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, I.; Giontella, A.; Tommasi, A.; Silvestrelli, M.; Lancioni, H. Unlocking horse Y chromosome diversity. Genes 2022, 13, 2272. [Google Scholar] [CrossRef] [PubMed]
- Felkel, S.; Vogl, C.; Rigler, D.; Dobretsberger, V.; Chowdhary, B.P.; Distl, O.; Fries, R.; Jagannathan, V.; Janečka, J.E.; Leeb, T.; et al. The horse Y chromosome as an informative marker for tracing sire lines. Sci. Rep. 2019, 9, 6095. [Google Scholar] [CrossRef]
- Sargious, M.A.N.; El-Shawarby, R.M.; Abo-Salem, M.E.; EL-Shewy, E.A.; Ahmed, H.A.; Hagag, N.M.; Ramadan, S.I. Genetic characterization and parentage assignment of Egyptian Arabian horses based on two microsatellite panels. Gene Rep. 2021, 23, 101117. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983, 19, 19153–19170. [Google Scholar] [CrossRef]
- Kalinowski, S.T. HP-Rare: A computer program for performing rarefaction on measures of allelic diversity. Mol. Ecol. Notes 2005, 5, 187–189. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358. [Google Scholar]
- Yeh, F.C.; Yang, R.; Boyle, T.J.; Ye, Z.; Xiyan, J.M. PopGene 32: Microsof Window-Based Freeware for Population Genetic Analysis, Version 1.32; Molecular Biology and Biotechnology Centre, University of Alberta: Edmonton, AB, Canada, 2000. [Google Scholar]
- Goudet, J. FSTAT (version 2.9. 4), a Program (for Windows 95 and above) to Estimate and Test Population Genetics Parameters; Department of Ecology & Evolution, Lausanne University: Lausanne, Switzerland, 2003; p. 53. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [PubMed]
- Yaralı, C.; Köseman, A.; Özşensoy, Y.; Şeker, İ.; Toprak, B.; Zengin, K. Parentage verification and genetic diversity of the Arabian and Thoroughbred horse populations in Türkiye using microsatellite analysis. Überprüfung der Abstammung und genetischen Vielfalt der Araber- und Vollblutpferde in der Türkei mittels Mikrosatellitenanalyse. Arch. Tierheilkd. 2023, 165, 716–725. [Google Scholar]
- Onogi, A.; Shirai, K.; Amano, T. Investigation of genetic diversity and inbreeding in a Japanese native horse breed for suggestions on its conservation. Anim. Sci. J. 2017, 88, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Ablondi, M.; Vasini, M.; Beretti, V.; Superchi, P.; Sabbioni, A. Exploring genetic diversity in an Italian horse native breed to develop strategies for preservation and management. J. Anim. Breed. Genet. 2018, 135, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Duru, S. Pedigree analysis of the Turkish Arab horse population: Structure, inbreeding and genetic variability. Animal 2017, 11, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, M.C.; Valiati, P.; Longeri, M.; Ferreira, C.; Abreu Ferreira, S. Genetic variability trend of Lusitano horse breed reared in Italy. Animals 2022, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.F.; Razmkabir, M.; Rostamzadeh, J.; Seyedabadi, H.R.; Naboulsi, R.; Petersen, J.L.; Lindgren, G. Genetic diversity and signatures of selection in four indigenous horse breeds of Iran. Heredity 2023, 131, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, F.; Stift, M.; Vergilino, R.; Mable, B.K. Recent progress and challenges in population genetics of polyploid organisms: An overview of current state-of-the-art molecular and statistical tools. Mol. Ecol. 2014, 23, 40–69. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Winkler, F.M.; Velasco, L.A. Assessing the genetic diversity in Argopecten nucleus (Bivalvia: Pectinidae), a functional hermaphrodite species with extremely low population density and self-fertilization: Effect of null alleles. Ecol. Evol. 2020, 10, 3919–3931. [Google Scholar] [CrossRef]
- Kvist, L.; Niskanen, M.; Mannermaa, K.; Wutke, S.; Aspi, J. Genetic variability and history of a native Finnish horse breed. Genet. Sel. Evol. 2019, 51, 35. [Google Scholar] [CrossRef]
- Ablondi, M.; Dadousis, C.; Vasini, M.; Eriksson, S.; Mikko, S.; Sabbioni, A. Genetic diversity and signatures of selection in a native Italian horse breed based on SNP data. Animals 2020, 10, 1005. [Google Scholar] [CrossRef]
- Kalashnikov, V.; Khrabrova, L.; Blohina, N.; Zaitcev, A.; Kalashnikova, T. Dynamics of the Inbreeding Coefficient and Homozygosity in Thoroughbred Horses in Russia. Animals 2020, 10, 1217. [Google Scholar] [CrossRef]
- Charlesworth, B. Molecular population genomics: A short history. Genet. Res. 2010, 92, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.A. comparison of single-sample estimators of effective population sizes from genetic marker data. Mol. Ecol. 2016, 25, 4692–4711. [Google Scholar] [CrossRef] [PubMed]
- Mackowski, M.; Mucha, S.; Cholewinski, G.; Cieslak, J. Genetic diversity in Hucul and Polish primitive horse breeds. Arch. Anim. Breed. 2015, 58, 23–31. [Google Scholar] [CrossRef]
- Park, S.T.; Kim, J. Trends in next-generation sequencing and a new era for whole genome sequencing. Int. Neurourol. J. 2016, 20 (Suppl. 2), S76. [Google Scholar] [CrossRef] [PubMed]
- Negi, A.; Shukla, A.; Jaiswar, A.; Shrinet, J.; Jasrotia, R.S. Applications and challenges of microarray and RNA-sequencing. In Applications and Challenges of Microarray and RNA-Sequencing; Singh, D.B., Pathak, R.K., Eds.; Bioinformatics, Academic Press: Cambridge, MA, USA, 2022; pp. 91–103. [Google Scholar]
- Melville, J.; Haines, M.L.; Boysen, K.; Hodkinson, L.; Kilian, A.; Smith Date, K.L.; Potvin, D.A.; Parris, K.M. Identifying hybridization and admixture using SNPs: Application of the DArTseq platform in phylogeographic research on vertebrates. R. Soc. Open Sci. 2017, 4, 161061. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, Z.; Zhao, W.; Guo, L.; Sun, H.; Zhu, K.; Liu, G.; Shen, X.; Zhao, X.; Wang, Q.; et al. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC genomics 2021, 22, 747. [Google Scholar] [CrossRef] [PubMed]
- Vostrá-Vydrová, H.; Vostrý, L.; Hofmanová, B.; Krupa, E.; Veselá, Z.; Schmidová, J. Genetic diversity within and gene flow between three draught horse breeds using genealogical information. Czech J. Anim. Sci. 2016, 61, 462–472. [Google Scholar] [CrossRef]
- Hedrick, P.W. A standardized genetic differentiation measure. Evolution 2005, 59, 1633–1638. [Google Scholar] [PubMed]
- Jakobsson, M.; Edge, M.D.; Rosenberg, N.A. The relationship between F(ST) and the frequency of the most frequent allele. Genetics 2013, 193, 51–528. [Google Scholar] [CrossRef]
- Cervantes, I.; Molina, A.; Goyache, F.; Gutiérrez, J.P.; Valera, M. Population history and genetic variability in the Spanish Arab horse assessed via pedigree analysis. Livest. Sci. 2008, 113, 24–33. [Google Scholar] [CrossRef]
- Głażewska, I.; Jezierski, T. Pedigree analysis of Polish Arabian horses based on founder contributions. Livest. Prod. Sci. 2004, 90, 293–298. [Google Scholar] [CrossRef]
- Torres-Morales, B.; Rocandio-Rodríguez, M.; Santacruz-Varela, A.; Córdova-Téllez, L.; Coutiño Estrada, B.; López Sánchez, H. Estimation of coancestry in Iberian pigs using molecular markers. Conserv. Genet. 2002, 3, 309–320. [Google Scholar]
- Ladyka, V.; Skliarenko, Y.; Pavlenko, Y.; Metlytska, O.; Ivankova, I. Molecular-genetic analysis of cows genetic structure and determination of gene-alogical relatedness level of bulls of modern dairy breeds. Adv. Anim. Vet. Sci. 2019, 7, 405–411. [Google Scholar] [CrossRef]
Breed | Acronym | N | Number of Alleles | Na | Ne | Ho | uHe | AR | FIS | LDFIS |
---|---|---|---|---|---|---|---|---|---|---|
SAKLAWI I | SAK I | 144 | 72 | 5.54 | 3.31 | 0.69 | 0.67 | 3.51 | −0.041 | 4.3 (3.8–4.7) |
LATIF | LAT | 44 | 72 | 5.54 | 3.18 | 0.73 | 0.67 | 3.02 | −0.109 | 3.3 (3.2–3.4) |
SEANDERICH | SEA | 37 | 69 | 5.31 | 2.42 | 0.63 | 0.55 | 2.62 | −0.159 | 4.4 (4.0–4.7) |
IBRAHIM | IBR | 91 | 70 | 5.38 | 2.86 | 0.64 | 0.61 | 2.79 | −0.060 | 8.3 (7.3–9.1) |
SHABAB | SHA | 36 | 68 | 5.23 | 3.07 | 0.78 | 0.66 | 2.97 | −0.204 | 3.4 (3.2–3.5) |
DJEBEL MOUSA | DJE | 16 | 67 | 5.15 | 2.93 | 0.67 | 0.64 | 2.94 | −0.074 | 6.5 (5.9–6.8) |
KUHAILAN AFAS | KUH | 131 | 70 | 5.38 | 3.00 | 0.66 | 0.62 | 2.85 | −0.075 | 7.0 (6.4–7.5) |
BAIRACTAR | BAI | 27 | 66 | 5.08 | 2.87 | 0.70 | 0.64 | 2.87 | −0.112 | 5.1 (4.8–5.3) |
SARHAN | SAR | 11 | 54 | 4.15 | 2.79 | 0.71 | 0.64 | 2.88 | −0.143 | 3.8 (3.5–3.9) |
Mean | 67.5 | 5.19 | 2.94 | 0.69 | 0.63 | 2.94 | −0.109 | 5.1 | ||
SE | 5.48 | 0.37 | 0.44 | 0.01 | 0.04 | 0.24 | 0.011 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristov, P.; Radoslavov, G.; Mehandjyiski, I.; Salkova, D.; Yordanov, G. Genetic Diversity and Population Structure among Arabian Horse Genealogical Lineages in Bulgaria. Diversity 2024, 16, 281. https://doi.org/10.3390/d16050281
Hristov P, Radoslavov G, Mehandjyiski I, Salkova D, Yordanov G. Genetic Diversity and Population Structure among Arabian Horse Genealogical Lineages in Bulgaria. Diversity. 2024; 16(5):281. https://doi.org/10.3390/d16050281
Chicago/Turabian StyleHristov, Peter, Georgi Radoslavov, Ivan Mehandjyiski, Delka Salkova, and Georgi Yordanov. 2024. "Genetic Diversity and Population Structure among Arabian Horse Genealogical Lineages in Bulgaria" Diversity 16, no. 5: 281. https://doi.org/10.3390/d16050281
APA StyleHristov, P., Radoslavov, G., Mehandjyiski, I., Salkova, D., & Yordanov, G. (2024). Genetic Diversity and Population Structure among Arabian Horse Genealogical Lineages in Bulgaria. Diversity, 16(5), 281. https://doi.org/10.3390/d16050281