The Relationship between Grinnellian and Eltonian Niche Characteristics and Passerine Distribution across a Latitudinal Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomes
2.2. eBird Data
2.3. Grinnellian Niche
2.4. Eltonian Niche
2.5. Statistical Analyses
3. Results
3.1. Distribution
3.2. Grinnellian Niche Characteristics
3.3. Eltonian Niche Characteristics
3.4. Spatial Structure
3.5. Niche Relationships with Distribution
3.6. Phylogenetic Structure with Niche Characteristics
4. Discussion
4.1. Eltonian Niche Characteristics
4.2. Grinnellian Niche Characteristics
4.3. Niche Conservatism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Pedruski, M.T.; Fussmann, G.F.; Gonzalez, A. A network approach reveals surprises about the history of the niche. Ecosphere 2016, 7, e01266. [Google Scholar] [CrossRef]
- Grinnell, J. The niche-relationships of the California Thrasher. Auk 1917, 34, 427–433. [Google Scholar] [CrossRef]
- Elton, C. Animal Ecology; Sedgwick and Jackson: London, UK, 1927. [Google Scholar]
- Schemske, D.W. Ecological and evolutionary perspectives on the origins of tropical diversity. In Foundations of Tropical Forest Biology; Chazdon, R.L., Whitmore, T.C., Eds.; University Chicago Press: Chicago, IL, USA, 2002; pp. 163–173. [Google Scholar]
- Kissling, W.D.; Sekercioglu, C.H.; Jetz, W. Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr. 2012, 21, 328–340. [Google Scholar] [CrossRef]
- Dobzhansky, T. Evolution in the tropics. Am. Sci. 1950, 38, 209–221. [Google Scholar]
- MacArthur, R.H. Geographical Ecology: Patterns in the Distribution of Species; Princeton University Press: Princeton, NJ, USA, 1972. [Google Scholar]
- Freestone, A.L.; Osman, R.W.; Ruiz, G.M.; Torchin, M.E. Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology 2011, 92, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Remeš, V.; Matysiokova, B.; Cockburn, A. Long-term and large-scale analyses of nest predation patterns in Australian songbirds and a global comparison of nest predation rates. J. Avian Biol. 2012, 43, 435–444. [Google Scholar] [CrossRef]
- Becerra, J.X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl. Acad. Sci. USA 2015, 112, 6098–6103. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Genney, D.R.; Thurlow, M.; Hartley, S.E. The geographical range structure of the holly leaf-miner. IV. Effects of variation in host-plant quality. J. Anim. Ecol. 2004, 73, 911–924. [Google Scholar] [CrossRef]
- Adams, J.M.; Zhang, Y. Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J. Ecol. 2009, 97, 933–940. [Google Scholar] [CrossRef]
- Anderson, M.J.; Tolimieri, N.; Millar, R.B. Beta diversity of demersal fish assemblages in the North-Eastern Pacific: Interactions of latitude and depth. PLoS ONE 2013, 8, e57918. [Google Scholar] [CrossRef] [PubMed]
- Moles, A.T.; Ollerton, J. Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? Biotropica 2016, 48, 141–145. [Google Scholar] [CrossRef]
- Gilliam, J.F.; Fraser, D.F.; Alkins-Koo, M. Structure of a tropical stream fish community: A role for biotic interactions. Ecology 1993, 74, 1856–1870. [Google Scholar] [CrossRef]
- Boyce, A.J.; Shakya, S.; Sheldon, F.H.; Moyle, R.G.; Martin, T.E. Biotic interactions are the dominant drivers of phylogenetic and functional structure in bird communities along a tropical elevational gradient. Auk 2019, 136, ukz054. [Google Scholar] [CrossRef]
- Burner, R.C.; Boyce, A.J.; Bernasconi, D.; Styring, A.R.; Shakya, S.B.; Boer, C.; Rahman, M.A.; Martin, T.E.; Sheldon, F.H. Biotic interactions help explain variation in elevational range limits of birds among Bornean mountains. J. Biogeogr. 2020, 47, 760–771. [Google Scholar] [CrossRef]
- Sherry, T.W.; Kent, C.M.; Sánchez, N.V.; Şekercioğlu, Ç.H. Insectivorous birds in the Neotropics: Ecological radiations, specialization, and coexistence in species-rich communities. Auk 2020, 137, ukaa049. [Google Scholar] [CrossRef]
- Pianka, E.R. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 1966, 100, 33–46. [Google Scholar] [CrossRef]
- Willig, M.R. Latitude, common trends within. Encycl. Biodivers. 2001, 3, 701–714. [Google Scholar]
- Harvey, P.H.; Pagel, M.D. The Comparative Method in Evolutionary Biology; Oxford University Press: Oxford, UK, 1991; Volume 239. [Google Scholar]
- Stevens, R.D. Relative effects of time for speciation and tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. Proc. R. Soc. B 2011, 278, 2528–2536. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- Romdal, T.S.; Araújo, M.B.; Rahbek, C. Life on a tropical planet: Niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 2013, 22, 344–350. [Google Scholar] [CrossRef]
- Kennedy, J.D.; Wang, Z.; Weir, J.T.; Rahbek, C.; Fjeldså, J.; Price, T.D. Into and out of the tropics: The generation of the latitudinal gradient among New World passerine birds. J. Biogeogr. 2014, 41, 1746–1757. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Species richness and morphological diversity of passerine birds. Proc. Natl. Acad. Sci. USA 2012, 109, 14482–14487. [Google Scholar] [CrossRef] [PubMed]
- Olalla-Tárraga, M.Á.; Amado, T.F.; Bini, L.M.; Martínez, P.A.; Morales-Castilla, I.; Torres-Romero, E.J.; Villalobos, F. Biological traits, phylogeny and human footprint signatures on the geographical range size of passerines (Order Passeriformes) worldwide. Glob. Ecol. Biogeogr. 2019, 28, 1183–1194. [Google Scholar] [CrossRef]
- Clements, J.F.; Schulenberg, T.S.; Iliff, M.J.; Billerman, S.M.; Fredericks, T.A.; Gerbracht, J.A.; Lepage, D.; Sullivan, B.L.; Wood, C.L. The eBird/Clements Checklist of Birds of the World: v2021. 2021. Available online: https://www.birds.cornell.edu/clementschecklist/download/ (accessed on 16 August 2021).
- Boles, W.J. The world’s oldest songbird. Nature 1995, 374, 21–22. [Google Scholar] [CrossRef]
- Barker, F.K.; Cibois, A.; Schikler, P.; Feinstein, J.; Cracraft, J. Phylogeny and diversification of the largest avian radiation. Proc. Natl. Acad. Sci. USA 2004, 101, 11040–11045. [Google Scholar] [CrossRef] [PubMed]
- Claramunt, S.; Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 2015, 1, e1501005. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.T. Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution 2006, 60, 842–855. [Google Scholar] [PubMed]
- Barker, F.K.; Burns, K.J.; Klicka, J.; Lanyon, S.M.; Lovette, I.J. Going to extremes: Contrasting rates of diversification in a recent radiation of new world passerine birds. Syst. Biol. 2013, 62, 298–320. [Google Scholar] [CrossRef]
- Ericson, P.G.P.; Irestedt, M.; Johansson, U. Evolution, biogeography and patterns of diversification in passerine birds. J. Avian Biol. 2003, 34, 3–15. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; Strand, H.E.; Morrison, J.C.; Loucks, C.J.; Allnutt, T.F.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Dinerstein, E.; Bookbinder, M.P.; Graham, D.J.; Ledec, G.; Olson, D.M.; Primm, S.A.; Webster, A.L. A Conservation Assessment of the Terrestrial Ecorregions of Latin America and the Caribbean; International Bank: Washington, DC, USA, 1995. [Google Scholar]
- Ricketts, T.H. Terrestrial Ecoregions of North America; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Keast, A.; Morton, E.S. Migrant birds in the neotropics: Ecology, behavior, distribution, and conservation: A symposium held at the Conservation and Research Center, National Zoological Park, Smithsonian Institution. In The Symposia of the National Zoological Park; Smithsonian Institution Press: Washington, DC, USA, 1977. [Google Scholar]
- Johnston, D.W.; Hagan, J.M., III. An Analysis of Long-Term Breeding Bird Censuses from Eastern Deciduous Forests; USDA: Hutchinson, KS, USA, 1992; pp. 1–332.
- Gill, F.B. Ornithology, 3rd ed.; Macmillan Publishers: New York, NY, USA, 2007. [Google Scholar]
- Singh, R.K.; Svystun, T.; AlDahmash, B.; Jönsson, A.M.; Bhalerao, R.P. Photoperiod-and temperature-mediated control of phenology in trees–a molecular perspective. New Phytol. 2017, 213, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.H.; Meléndez-Fernández, O.H.; Nelson, R.J.; Reiter, R.J. Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness. Ecol. Evol. 2019, 9, 10044–10054. [Google Scholar] [CrossRef] [PubMed]
- Coppack, T.; Pulido, F. Photoperiodic response and the adaptability of avian life cycles to environmental change. Adv. Ecol. Res. 2004, 35, 131–150. [Google Scholar]
- Shackelford, C.E.; Rozenburg, E.R.; Hunter, W.C.; Lockwood, M.W. Migration and of Texas; TPWD: Austin, TX, USA, 2005. [Google Scholar]
- Skutch, A.F. The nesting seasons of Central American birds in relation to climate and food supply. Ibis 1950, 92, 185–222. [Google Scholar] [CrossRef]
- Climate—Costa Rica. Costa Rica Climate: Average Weather, Temperature, Precipitation, When to Go. 2020. Available online: https://www.climatestotravel.com/climate/costa-rica (accessed on 30 March 2022).
- Jara, R.F.; Crego, R.D.; Samuel, M.D.; Rozzi, R.; Jiménez, J.E. Nest-site selection and breeding success of passerines in the world’s southernmost forests. PeerJ 2020, 8, e9892. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.L.; Wood, C.L.; Iliff, M.J.; Bonney, R.E.; Fink, D.; Kelling, S. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 2009, 142, 2282–2292. [Google Scholar] [CrossRef]
- Surasinghe, T.; Courter, J. Using eBird to Integrate Citizen Science into an Undergraduate Ecology Field Laboratory. Bioscene J. Coll. Biol. Teach. 2012, 38, 16–20. [Google Scholar]
- Callaghan, C.; Lyons, M.; Martin, J.; Major, R.; Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 2017, 12, 12. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Bino, G.; Major, R.E.; Martin, J.M.; Lyons, M.B.; Kingsford, R.T. Heterogeneous urban green areas are bird diversity hotspots: Insights using continental-scale citizen science data. Landsc. Ecol. 2019, 34, 1231–1246. [Google Scholar] [CrossRef]
- Johnston, A.; Hochachka, W.M.; Strimas-Mackey, M.; Gutierrez, V.R.; Robinson, O.; Miller, E.; Auer, T.; Kelling, S.T.; Fink, D. Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species’ distribution. bioRxiv 2019. bioRxiv:574392. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Martin, J.M.; Major, R.E.; Kingsford, R.T. Avian monitoring–comparing structured and unstructured citizen science. Wildl. Res. 2018, 45, 176–184. [Google Scholar] [CrossRef]
- ESRI. ArcGIS ArcMap 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of Global Actual Evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data. 2020, 13, 447–480. [Google Scholar] [CrossRef]
- Keys, P.W.; Barnes, E.A.; Carter, N. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ. Res. Lett. 2021, 16, 044061. [Google Scholar] [CrossRef]
- U.S. Geological Survey. 3D Elevation Program 1-Meter Resolution Digital Elevation Model (Published 20200606), 2019. Available online: https://www.usgs.gov/the-national-map-data-delivery (accessed on 30 September 2021).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Gentry, A.H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Species diversity gradients: We know more and less than we thought. J. Mammal. 1992, 73, 715–730. [Google Scholar] [CrossRef]
- Rahbek, C. The elevational gradient of species richness—A uniform pattern. Ecography 1995, 18, 200–205. [Google Scholar] [CrossRef]
- Sánchez-Cordero, V. Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Glob. Ecol. Biogeogr. 2001, 10, 63–76. [Google Scholar] [CrossRef]
- Sanders, N.J.; Lessard, J.P.; Fitzpatrick, M.C.; Dunn, R.R. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 2007, 16, 640–649. [Google Scholar] [CrossRef]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2011, 20, 1–18. [Google Scholar] [CrossRef]
- Hawkins, B.A.; Field, R.; Cornell, H.V.; Currie, D.J.; Guégan, J.F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.; Oberdorff, T.; O’Brien, E.M.; et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 2003, 84, 3105–3117. [Google Scholar] [CrossRef]
- Shochat, E.; Warren, P.S.; Faeth, S.H.; McIntyre, N.E.; Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.D. Reflections of Grinnellian and Eltonian niches on the distribution of phyllostomid bats in the Atlantic Forest. J. Biogeogr. 2021, 49, 94–103. [Google Scholar] [CrossRef]
- Wilman, H.; Belmaker, J.; Simpson, J.; de la Rosa, C.; Rivadeneira, M.; Jetz, W. Elton Traits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 2014, 95, 2027. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.; Cushman, S.A.; Stafford, S. Multivariate Statistics for Wildlife and Ecology Research; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Dray, S.; Siberchicot, M.A. Package ‘ade4’. J. Stat. Softw. 2021, 1, 1–17. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. Package ‘vegan’. Community Ecol. Package 2013, 2, 1–295. [Google Scholar]
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis. Ecology 2003, 84, 2347–2363. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 2002, 153, 51–68. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 2004, 85, 1826–1832. [Google Scholar] [CrossRef]
- ter Braak, C.J.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.-L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763–1768. [Google Scholar] [CrossRef]
- Jetz, W.; Thomas, G.H.; Joy, J.B.; Hartmann, K.; Mooers, A.O. The global diversity of birds in space and time. Nature 2012, 491, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Abeyrama, D.; Seneviratne, S. Evolutionary distinctiveness of Sri Lankan avifauna. WILDLANKA J. Dep. Wildl. Conserv. Sri Lanka 2017, 5, 1–10. [Google Scholar]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Diniz-Filho, J.A.F.; de Sant’Ana, C.E.R.; Bini, L.M. An eigenvector method for estimating phylogenetic inertia. Evolution 1998, 52, 1247–1262. [Google Scholar] [CrossRef]
- Paradis, E.; Blomberg, S.; Bolker, B.; Brown, J.; Claude, J.; Cuong, H.S.; Desper, R.; Didier, G.; Durand, B.; Dutheil, J.; et al. Package ‘ape’. Analyses of phylogenetics and evolution analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Sánchez-Barradas, A.; Villalobos, F. Species geographical co-occurrence and the effect of Grinnellian and Eltonian niche partitioning: The case of a Neotropical felid assemblage. Ecol. Res. 2020, 35, 382–393. [Google Scholar] [CrossRef]
- Rosado, B.H.; Figueiredo, M.S.; de Mattos, E.A.; Grelle, C.E. Eltonian shortfall due to the Grinnellian view: Functional ecology between the mismatch of niche concepts. Ecography 2016, 39, 1034–1041. [Google Scholar] [CrossRef]
- Marshall, K.E.; Baltzer, J.L. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests. Ecology 2015, 96, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Mottl, O.; Fibich, P.; Klimes, P.; Volf, M.; Tropek, R.; Anderson-Teixeira, K.; Auga, J.; Blair, T.; Butterill, P.; Carscallen, G.; et al. Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient. Ecol. Lett. 2020, 23, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Conway, C.J.; Martin, T.E. Evolution of passerine incubation behavior: Influence of food, temperature, and nest predation. Evolution 2000, 54, 670–685. [Google Scholar] [PubMed]
- Robinson, W.D.; Robinson, T.R.; Robinson, S.K.; Brawn, J.D. Nesting success of understory forest birds in central Panama. J. Avian Biol. 2000, 31, 151–164. [Google Scholar] [CrossRef]
- Schemske, D.W.; Mittelbach, G.G.; Cornell, H.V.; Sobel, J.M.; Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst 2009, 40, 245–269. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Stevens, R.D. The latitudinal gradient in niche breadth: Concepts and evidence. Am. Nat. 2004, 164, E1–E19. [Google Scholar] [CrossRef] [PubMed]
- Armesto, J.J.; Rozzi, R.; Miranda, P.; Sabag, C. Plant/frugivore interactions in South American temperate forests. Rev. Chil. Hist. Nat. 1987, 60, 321–336. [Google Scholar]
- Armesto, J.J.; Rozzi, R. Seed dispersal syndromes in the rain forest of Chilé: Evidence for the importance of biotic dispersal in a temperate rain forest. J. Biogeogr. 1989, 16, 219–226. [Google Scholar] [CrossRef]
- Corlett, R.T.; Primack, R.B. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 2006, 21, 104–110. [Google Scholar] [CrossRef]
- French, N.R.; Maza, B.G.; Hill, H.O.; Aschwanden, A.P.; Kaaz, H.W. A population study of irradiated desert rodents. Ecoll. Monogr. 1974, 44, 45–72. [Google Scholar] [CrossRef]
- Reichman, O.J. Spatial and temporal variation of seed distributions in Sonoran Desert soils. J. Biogeogr. 1984, 38, 1–11. [Google Scholar] [CrossRef]
- Brown, J.H.; Ojeda, R.A. Granivory: Patterns, processes, and consequences of seed consumption on two continents. Rev. Chil. Hist. Nat. 1987, 60, 337–349. [Google Scholar]
- Rubio de Casas, R.; Willis, C.G.; Pearse, W.D.; Baskin, C.C.; Baskin, J.M.; Cavender-Bares, J. Global biogeography of seed dormancy is determined by seasonality and seed size: A case study in the legumes. New Phytol. 2017, 214, 1527–1536. [Google Scholar] [CrossRef]
- Hulme, P.E.; Benkman, C.W. Granivory. In Plant–Animal Interactions: An Evolutionary Approach; Wiley Publisher: Hoonoken, NJ, USA, 2002; pp. 185–208. [Google Scholar]
- Mainwaring, M.C.; Hartley, I.R. The energetic costs of nest building in birds. Avian Biol. Res. 2013, 6, 12–17. [Google Scholar] [CrossRef]
- Levins, R.; Culver, D. Regional coexistence of species and competition between rare species. Proc. Natl. Acad. Sci. USA 1971, 68, 1246–1248. [Google Scholar] [CrossRef]
- Tingley, M.W.; Monahan, W.B.; Beissinger, S.R.; Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 19637–19643. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 1961, 42, 710–723. [Google Scholar] [CrossRef]
- Momota, K.; Nakaoka, M. Seasonal change in spatial variability of eelgrass epifaunal community in relation to gradients of abiotic and biotic factors. Mar. Ecol. 2018, 39, e12522. [Google Scholar] [CrossRef]
- Montaño-Centellas, F.A.; Loiselle, B.A.; Tingley, M.W. Ecological drivers of avian community assembly along a tropical elevation gradient. Ecography 2021, 44, 574–588. [Google Scholar] [CrossRef]
- Fahr, J.; Kalko, E.K. Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography 2011, 34, 177–195. [Google Scholar] [CrossRef]
- Cramer, M.J.; Willig, M.R. Habitat heterogeneity, habitat associations, and rodent species diversity in a sand–shinnery-oak landscape. J. Mammal. 2002, 83, 743–753. [Google Scholar] [CrossRef]
- Hovick, T.J.; Elmore, R.D.; Fuhlendorf, S.D.; Engle, D.M.; Hamilton, R.G. Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecol. Appl. 2015, 25, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Trammell, E.J.; Weisberg, P.J.; Bassett, S. Avian response to urbanization in the arid riparian context of Reno, USA. Landsc. Urban Plann. 2011, 102, 93–101. [Google Scholar] [CrossRef]
- Weir, J.T.; Bermingham, E.; Schluter, D. The great American biotic interchange in birds. Proc. Natl. Acad. Sci. USA 2009, 106, 21737–21742. [Google Scholar] [CrossRef] [PubMed]
- Somveille, M.; Rodrigues, A.S.; Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 2015, 24, 664–674. [Google Scholar] [CrossRef]
- Gómez, C.; Tenorio, E.A.; Montoya, P.; Cadena, C.D. Niche-tracking migrants and niche-switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. B Biol. Sci. 2016, 283, 20152458. [Google Scholar] [CrossRef] [PubMed]
- Böhning-Gaese, K.; Oberrath, R. Phylogenetic effects on morphological, life-history, behavioural and ecological traits of birds. Evol. Ecol. Res. 1999, 1, 347–364. [Google Scholar]
- Brändle, M.; Prinzing, A.; Pfeifer, R.; Brandl, R. Dietary niche breadth for Central European birds: Correlations with species-specific traits. Evol. Ecol. Res. 2002, 4, 643–657. [Google Scholar]
- Pearman, P.B.; Lavergne, S.; Roquet, C.; Wüest, R.; Zimmermann, N.E.; Thuiller, W. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Glob. Ecol. Biogeogr. 2014, 23, 414–424. [Google Scholar] [CrossRef]
- Ruelas Inzunza, E.; Cockle, K.L.; Núñez Montellano, M.G.; Fontana, C.S.; Cuatianquiz Lima, C.; Echeverry-Galvis, M.A.; Fernández, R.A.; Montaño-Centellas, F.A.; Bonaccorso, E.; Lambertucci, S.A.; et al. How to include and recognize the work of ornithologists based in the Neotropics: Fourteen actions for Ornithological Applications, Ornithology, and other global-scope journals. Ornithol. Appl. 2023, 125, duac047. [Google Scholar] [CrossRef]
# | Nearctic Biomes | R | Area (km2) | AET (mm) | Elevation (m) | Human (0–1) | Precip (mm) | Tmax (°C) | Tmin (°C) | Latitude | Longitude | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | Tundra | 87 | 271,663,882 | 3645.00 | 386.76 | 0.02 | 33.54 | 8.17 | 0.49 | 67.40466 | −110.99 | |
Northern Hemisphere | 6 | Boreal Forests | 140 | 49,903,944 | 7152.00 | 398.45 | 0.04 | 65.43 | 17.16 | 5.47 | 57.80348 | −103.865 |
5 west | West Temperate Conifer Forests | 224 | 23,759,410 | 8321.00 | 1384.91 | 0.14 | 52.98 | 20.23 | 5.36 | 48.19165 | −119.473 | |
4 west | Temperate Broadleaf & Mixed Forests | 78 | 14,883 | 8120 | 142.74267 | 0.63 | 31.96 | 25.54 | 10.05 | 44.86379 | −122.981 | |
8 | Temperate Grasslands, Savannas & Shrublands | 245 | 4,734,502 | 9357.00 | 669.08 | 0.32 | 65.58 | 27.36 | 12.02 | 43.77383 | −102.673 | |
4 east | Temperate Broadleaf & Mixed Forests | 189 | 25,307,930 | 10,211.83 | 279.43679 | 0.58 | 125.1 | 25.21 | 13.76 | 41.34244 | −82.5103 | |
12 | Mediterranean Forests, Woodlands & Scrub | 157 | 423,811 | 5768.00 | 594.52 | 0.35 | 6.11 | 29.41 | 13.18 | 35.52935 | −119.397 | |
5 east | East Temperate Conifer Forests | 151 | 9,064,846 | 13,177.00 | 45.65 | 0.33 | 181.51 | 30.78 | 19.79 | 32.20068 | −84.9705 | |
13 | Deserts & Xeric Shrublands | 271 | 10,865,373 | 5418.00 | 1311.73 | 0.23 | 29.39 | 31.3 | 13.95 | 34.2914 | −109.93 | |
2 | Tropical & Subtropical Dry Broadleaf Forests | 77 | 356,321 | 9062.00 | 402.36 | 0.22 | 99.67 | 36.78 | 20.97 | 28.12188 | −109.692 | |
7 | Tropical & Subtropical Grasslands, Savannas & Shrublands | 152 | 2,334,935 | 12,462.00 | 12.34 | 0.34 | 146.93 | 32.04 | 22.6 | 29.03471 | −94.5135 | |
3 | Tropical & Subtropical Coniferous Forests | 226 | 31,426,924 | 9549.00 | 1882.62 | 0.15 | 103.11 | 29.22 | 13.44 | 26.03234 | −105.109 | |
Neotropic Biomes | ||||||||||||
3 | Tropical & Subtropical Coniferous Forests | 326 | 12,001,989 | 10,777.72 | 1457.58 | 0.25 | 219.04 | 27.66 | 16.13 | 17.02859 | −94.3459 | |
Equator | 13 north | North Deserts & Xeric Shrublands | 222 | 271,032 | 10,068.95 | 391.8 | 0.31 | 132.91 | 31.41 | 21.67 | 11.40241 | −72.2085 |
2 north | North Tropical & Subtropical Dry Broadleaf Forests | 388 | 2,847,807 | 883.96 | 510.29 | 0.28 | 165.03 | 32.11 | 20.61 | 13.39755 | −89.0349 | |
7 north | North Tropical & Subtropical Grasslands, Savannas & Shrublands | 168 | 3,217,561 | 848.86 | 187.98 | 0.21 | 271.91 | 31.02 | 22.62 | 5.93031 | −66.2061 | |
14 | Mangroves | 282 | 7,916,251 | 11,567.51 | 12.25 | 0.22 | 178.43 | 31.68 | 22.86 | 3.416023 | −64.7089 | |
1 | Tropical & Subtropical Moist Broadleaf Forests | 862 | 119,022,002 | 9899.31 | 400.29 | 0.13 | 141.86 | 29.88 | 19.28 | −4.932322 | −63.0036 | |
13 east | East Deserts & Xeric Shrublands | 155 | 2,925,280 | 5676.83 | 422.87 | 0.26 | 29.58 | 28.9 | 18.37 | −8.639252 | −39.8674 | |
2 east | Southeast Tropical & Subtropical Dry Broadleaf Forests | 92 | 1,198,761 | 798.85 | 547.18 | 0.24 | 133.41 | 31.01 | 19.51 | −12.49221 | −43.2687 | |
9 | Flooded Grasslands & Savannas | 163 | 2,274,986 | 7117.79 | 104.72 | 0.16 | 66.54 | 28.21 | 16.64 | −21.55915 | −57.5349 | |
Southern Hemisphere | 10 | Montane Grasslands & Shrublands | 223 | 6,005,435 | 1293.01 | 3619.09 | 0.21 | 12.62 | 12.42 | −3.41 | −21.80844 | −69.0883 |
13 west | West Deserts & Xeric Shrublands | 98 | 289,116 | 819.98 | 1803.8 | 0.22 | 1.21 | 20.02 | 7.05 | −16.65466 | −73.0378 | |
7 south | South Tropical & Subtropical Grasslands, Savannas & Shrublands | 375 | 62,827,392 | 730.84 | 382.57 | 0.21 | 170.99 | 31.16 | 19.58 | −20.16100 | −54.6077 | |
2 west | Southwest Tropical & Subtropical Dry Broadleaf Forests | 175 | 1,031,940 | 1011.18 | 857.86 | 0.17 | 167.21 | 29.65 | 19.05 | −16.83261 | −61.6999 | |
12 | Mediterranean Forests, Woodlands & Scrub | 55 | 148,381 | 1380.01 | 981.99 | 0.27 | 61.29 | 14.49 | 4.83 | −31.15619 | −71.0188 | |
8 | Temperate Grasslands, Savannas & Shrublands | 164 | 6,659,747 | 1560.23 | 395.4 | 0.23 | 33.69 | 13.53 | 2.64 | −39.72482 | −39.7248 | |
4 | Temperate Broadleaf & Mixed Forests | 67 | 37,615,866 | 1225.11 | 646.3 | 0.13 | 163.97 | 7.08 | 0.22 | −45.35145 | −72.0871 |
# | Distribution | PCNM | ||
---|---|---|---|---|
Axes | % | Axes | % | |
11 | 4 | 22.24 | 0 | 0.00 |
6 | 5 | 17.58 | 0 | 0.00 |
5 west | 6 | 18.05 | 0 | 0.00 |
4 west | 2 | 20.56 | 0 | 0.00 |
8 | 8 | 22.13 | 22 | 26.09 |
4 east | 4 | 13.24 | 3 | 18.78 |
12 | 9 | 25.59 | 2 | 15.03 |
5 east | 4 | 12.98 | 1 | 7.59 |
13 | 7 | 20.35 | 13 | 18.65 |
2 | 1 | 18.65 | 9 | 23.19 |
7 | 5 | 23.07 | 0 | 0.00 |
3 | 5 | 35.32 | 0 | 0.00 |
3 | 8 | 27.35 | 16 | 72.74 |
13 north | 4 | 32.60 | 5 | 7.86 |
2 north | 3 | 19.28 | 28 | 20.50 |
7 north | 5 | 34.76 | 15 | 16.35 |
14 | 5 | 26.89 | 32 | 18.87 |
1 | 3 | 29.22 | 45 | 20.86 |
13 east | 4 | 27.55 | 20 | 17.34 |
2 east | 3 | 46.29 | 11 | 35.53 |
9 | 3 | 19.58 | 10 | 19.11 |
10 | 3 | 22.46 | 44 | 31.63 |
13 west | 4 | 27.42 | 4 | 5.90 |
7 south | 6 | 22.35 | 21 | 21.18 |
2 west | 2 | 23.25 | 15 | 18.63 |
12 | 3 | 27.40 | 0 | 0.00 |
8 | 6 | 25.95 | 7 | 15.83 |
4 | 3 | 17.40 | 0 | 0.00 |
Biomes | AET | Elevation | Human Index | Precipitation | Temp. | % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nearctic | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Min | |
11 | 0.86 | 0.75 | 0.68 | 0.62 | 0.18 | −0.13 | 0.94 | 0.88 | 0.45 | 0.83 | 0.83 | 0.82 | 0.96 | 0.91 | 56.26 |
6 | 0.3 | 0.57 | 0.65 | 0.84 | 0.89 | 0.85 | −0.65 | −0.56 | −0.48 | −0.71 | −0.7 | −0.7 | 0.32 | −0.5 | 41.91 |
5 west | 0.37 | 0.73 | 0.84 | 0.85 | 0.85 | 0.83 | −0.76 | −0.86 | −0.83 | 0.56 | 0.56 | 0.56 | 0.03 | −0.32 | 47.07 |
4 west | 0.83 | 0.79 | 0.46 | −0.57 | −0.71 | −0.9 | −0.11 | −0.66 | −0.8 | −0.78 | −0.79 | −0.77 | −0.45 | 0.56 | 47.2 |
8 | 0.77 | 0.75 | 0.69 | −0.72 | −0.7 | −0.69 | 0.53 | 0.6 | 0.67 | 0.83 | 0.83 | 0.83 | −0.02 | 0.59 | 47.4 |
4 east | 0.52 | 0.63 | 0.61 | −0.3 | −0.51 | −0.47 | −0.29 | −0.21 | −0.35 | −0.53 | −0.52 | −0.51 | 0.91 | 0.9 | 30.74 |
12 | 0.53 | 0.78 | 0.87 | 0.97 | 0.97 | 0.95 | −0.84 | −0.88 | −0.85 | 0.84 | 0.84 | 0.82 | 0.01 | −0.81 | 67.09 |
5 east | 0.05 | 0.41 | 0.48 | 0.91 | 0.9 | 0.89 | 0 | −0.09 | −0.14 | −0.72 | −0.72 | −0.72 | −0.06 | −0.24 | 31.88 |
13 | −0.11 | 0 | 0.17 | 0.97 | 0.96 | 0.94 | −0.51 | −0.57 | −0.55 | 0.17 | 0.16 | 0.14 | −0.81 | −0.9 | 37.43 |
2 | 0.79 | 0.88 | 0.97 | 0.98 | 0.99 | 0.97 | −0.95 | −0.88 | −0.82 | 0.99 | 0.99 | 0.99 | −0.83 | −0.96 | 86.69 |
7 | −0.61 | 0.04 | 0.45 | 0.87 | 0.85 | 0.8 | 0.37 | 0.45 | 0.47 | −0.7 | −0.7 | −0.71 | 0.87 | −0.19 | 39.44 |
3 | 0.21 | 0.14 | 0.06 | −0.95 | −0.97 | −0.93 | 0.45 | 0.7 | 0.49 | 0.05 | 0.07 | 0.09 | 0.82 | 0.95 | 37.82 |
Neotropic | |||||||||||||||
3 | −0.73 | −0.74 | −0.6 | 0.82 | 0.88 | 0.92 | 0.66 | 0.63 | 0.48 | −0.28 | −0.32 | −0.35 | −0.83 | −0.87 | 46.87 |
13 north | −0.54 | 0.23 | 0.53 | 0.79 | 0.88 | 0.86 | −0.25 | −0.35 | −0.48 | 0.79 | 0.76 | 0.73 | −0.84 | −0.82 | 44.78 |
2 north | −0.68 | −0.64 | −0.46 | 0.77 | 0.75 | 0.69 | −0.14 | −0.04 | −0.16 | −0.28 | −0.31 | −0.34 | −0.8 | −0.89 | 32.21 |
7 north | 0.91 | 0.93 | 0.92 | 0.24 | 0.26 | 0.48 | −0.61 | −0.66 | −0.69 | 0.28 | 0.25 | 0.27 | −0.76 | −0.94 | 41.93 |
14 | −0.83 | −0.88 | −0.5 | 0.18 | 0.4 | 0.57 | 0.76 | 0.79 | 0.77 | −0.4 | −0.39 | −0.39 | −0.68 | −0.75 | 39.37 |
9 | 0.85 | 0.9 | 0.91 | 0.78 | 0.91 | 0.97 | −0.52 | −0.36 | −0.26 | 0.96 | 0.96 | 0.96 | 0.81 | 0.96 | 68.33 |
1 | −0.63 | −0.66 | −0.67 | 0.86 | 0.87 | 0.88 | 0.48 | 0.46 | 0.38 | −0.89 | −0.91 | −0.92 | −0.9 | −0.93 | 59.1 |
13 east | −0.75 | −0.67 | −0.61 | 0.9 | 0.94 | 0.93 | −0.64 | −0.77 | −0.67 | −0.21 | −0.24 | −0.23 | −0.84 | −0.93 | 50.58 |
2 east | −0.61 | −0.24 | −0.09 | 0.89 | 0.93 | 0.93 | 0.45 | 0.4 | 0.42 | 0.8 | 0.8 | 0.78 | −0.85 | −0.69 | 46.92 |
10 | 0.83 | 0.81 | 0.78 | 0.73 | 0.72 | 0.77 | −0.27 | −0.18 | −0.13 | 0.65 | 0.65 | 0.63 | −0.78 | −0.48 | 41.67 |
13 west | −0.07 | 0.49 | 0.81 | 0.95 | 0.97 | 0.97 | −0.7 | −0.71 | −0.7 | 0.96 | 0.97 | 0.96 | −0.87 | −0.97 | 68.89 |
7 south | 0.87 | 0.91 | 0.8 | 0.47 | 0.51 | 0.53 | −0.73 | −0.77 | −0.71 | 0.9 | 0.89 | 0.86 | −0.29 | −0.02 | 50.34 |
2 west | −0.25 | −0.19 | −0.36 | 0.89 | 0.9 | 0.89 | −0.68 | −0.66 | −0.51 | −0.74 | −0.74 | −0.76 | −0.87 | −0.91 | 50.47 |
12 | −0.77 | −0.76 | −0.33 | 0.96 | 0.96 | 0.96 | −0.95 | −0.92 | −0.89 | −0.07 | −0.1 | −0.11 | −0.95 | −0.93 | 59.92 |
8 | −0.82 | −0.9 | −0.79 | 0.87 | 0.9 | 0.88 | −0.7 | −0.69 | −0.62 | −0.92 | −0.92 | −0.92 | −0.85 | −0.95 | 71.35 |
4 | −0.5 | −0.61 | −0.55 | 0.86 | 0.87 | 0.86 | −0.7 | −0.76 | −0.69 | −0.41 | −0.43 | −0.44 | −0.1 | −0.88 | 43.13 |
Biomes | Inv | Seed | Fruit | Vend | Vect | Fish | Vunk | Scav | Nect | Plant | % |
---|---|---|---|---|---|---|---|---|---|---|---|
Nearctic | |||||||||||
11 | 0.20 | −0.25 | 0.00 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.00 | −0.15 | 45.60 |
6 | 0.20 | −0.29 | 0.05 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.01 | −0.10 | 48.19 |
5 west | 0.19 | −0.30 | 0.05 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.01 | −0.07 | 47.49 |
4 west | 0.21 | −0.30 | −0.02 | −0.01 | −0.01 | −0.01 | 0.00 | −0.01 | 0.00 | −0.10 | 50.18 |
8 | 0.18 | −0.30 | 0.05 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.01 | −0.06 | 46.45 |
4 east | 0.18 | −0.30 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | −0.01 | 0.02 | −0.07 | 46.94 |
12 | 0.19 | −0.31 | 0.03 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.01 | −0.08 | 48.66 |
5 east | 0.18 | −0.29 | 0.05 | −0.01 | 0.00 | −0.01 | 0.00 | −0.01 | 0.01 | −0.04 | 46.30 |
13 | 0.18 | −0.30 | 0.05 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.01 | −0.06 | 45.84 |
2 | 0.16 | −0.30 | 0.07 | 0.00 | 0.01 | 0.00 | 0.00 | −0.01 | 0.01 | −0.03 | 44.53 |
7 | 0.17 | −0.29 | 0.06 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | 0.02 | −0.03 | 47.04 |
3 | 0.18 | −0.30 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | −0.05 | 44.41 |
Neotropic | |||||||||||
3 | 0.20 | −0.14 | −0.22 | −0.01 | 0.01 | 0.00 | 0.00 | 0.00 | −0.01 | −0.04 | 40.41 |
13 north | 0.21 | −0.01 | −0.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.02 | −0.02 | 43.00 |
2 north | 0.19 | −0.01 | −0.31 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | −0.01 | −0.01 | 44.55 |
7 north | 0.22 | −0.01 | −0.32 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | −0.02 | −0.01 | 53.64 |
14 | 0.22 | −0.04 | −0.30 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | −0.02 | −0.01 | 47.11 |
1 | 0.24 | −0.04 | −0.33 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | −0.01 | −0.01 | 61.10 |
13 east | 0.24 | −0.22 | −0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.01 | −0.01 | 45.22 |
2 east | 0.23 | −0.19 | −0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.01 | 44.36 |
9 | 0.24 | −0.20 | −0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.02 | −0.04 | 50.11 |
10 | 0.28 | −0.25 | −0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | −0.07 | 50.19 |
13 west | 0.27 | −0.33 | −0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | −0.03 | 52.59 |
7 south | 0.23 | −0.14 | −0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.01 | −0.03 | 49.93 |
2 west | 0.25 | −0.11 | −0.28 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | −0.01 | −0.03 | 50.39 |
12 | 0.29 | −0.36 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | −0.02 | 69.78 |
8 | 0.27 | −0.30 | −0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.08 | 57.22 |
4 | 0.28 | −0.32 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | −0.08 | 65.32 |
Biomes | Grinnellian | Eltonian | Spatial | ||||||
---|---|---|---|---|---|---|---|---|---|
Nearctic | F | R2adj. | P | F | R2adj. | P | F | R2adj. | P |
11 | 27.2 | 38.7 | 0.002 | 2.1 | 3.7 | 0.006 | NA | NA | NA |
6 | 11.9 | 13.8 | 0.002 | 1.6 | 1.4 | 0.162 | NA | NA | NA |
4 west | 39.2 | 50.5 | 0.002 | 7.6 | 15.1 | 0.002 | NA | NA | NA |
5 west | 8.6 | 6.4 | 0.004 | 2 | 0.9 | 0.152 | NA | NA | NA |
8 | 41.2 | 35.4 | 0.002 | 1.4 | 0.4 | 0.180 | 5.6 | 29.9 | 0.002 |
4 east | 106 | 69.7 | 0.002 | 0.1 | <0.1 | 0.922 | 13.9 | 17.5 | 0.002 |
12 | 8.8 | 4.9 | 0.002 | 0.8 | <0.1 | 0.600 | 1 | 0 | 0.478 |
5 east | 39.1 | 43.7 | 0.002 | 1.1 | 0.1 | 0.348 | 5.6 | 3.1 | 0.002 |
13 | 13.4 | 16.3 | 0.002 | 0.5 | 1.6 | 0.176 | 1.4 | 1.9 | 0.126 |
2 | 984 | 93.8 | 0.002 | 1 | <0.1 | 0.358 | 2.9 | 19.3 | 0.004 |
7 | 11.1 | 21.3 | 0.002 | 0.9 | <0.1 | 0.462 | NA | NA | NA |
3 | 70.2 | 48.2 | 0.002 | 1.9 | 0.8 | 0.088 | NA | NA | NA |
Neotropic | |||||||||
3 | 26.2 | 19.8 | 0.002 | 1.3 | 0.2 | 0.216 | 4.6 | 15.4 | 0.002 |
13 north | 52.9 | 42.1 | 0.002 | 0.6 | <0.1 | 0.684 | 23.5 | 34.3 | 0.002 |
2 north | 135 | 60.1 | 0.002 | 0.8 | <0.1 | 0.512 | 63.4 | 24.5 | 0.002 |
7 north | 24.9 | 38.9 | 0.002 | 1.2 | 0.2 | 0.304 | 5 | 27.8 | 0.002 |
14 | 36.4 | 30 | 0.002 | 1.8 | 0.6 | 0.124 | 18.5 | 67 | 0.002 |
1 | 158 | 36.7 | 0.002 | 1.1 | <0.1 | 0.316 | 27.4 | 58.1 | 0.002 |
13 east | 12.6 | 15.1 | 0.002 | 2.1 | 1.7 | 0.052 | 2.1 | 13.2 | 0.002 |
2 east | 29.3 | 42.1 | 0.002 | 2 | 2.5 | 0.100 | 8.6 | 48.9 | 0.002 |
9 | 13.2 | 14 | 0.002 | 2.5 | 2 | 0.048 | 2.9 | 11 | 0.002 |
10 | 49.3 | 45.2 | 0.002 | 1.2 | 0.2 | 0.330 | 11.2 | 67.4 | 0.002 |
7 south | 61.9 | 25.8 | 0.002 | 0.7 | <0.1 | 0.658 | 24.3 | 56.9 | 0.002 |
2 west | 76.3 | 59 | 0.002 | 3 | 2.5 | 0.032 | 13 | 51.6 | 0.002 |
13 west | 21.3 | 18.3 | 0.002 | 0.9 | <0.1 | 0.434 | 3.5 | 9.6 | 0.006 |
12 | 11.7 | 28.7 | 0.002 | 0.5 | 0 | 0.634 | NA | NA | NA |
8 | 31.4 | 16.5 | 0.002 | 3.6 | 3.2 | 0.002 | 4.7 | 13.8 | 0.002 |
4 | 33.2 | 49.8 | 0.002 | 0.7 | <0.1 | 0.496 | NA | NA | NA |
Biomes | Grinnellian | Eltonian | ||||||
---|---|---|---|---|---|---|---|---|
Nearctic | F | R2adj. | P | F | R2adj. | P | Axes | % |
11 | 1 | 0 | 0.472 | 5.4 | 20.9 | 0.002 | 4 | 53.06 |
6 | 0.9 | 0 | 0.534 | 8.3 | 22.1 | 0.002 | 4 | 51.79 |
4 west | 1.7 | 4.5 | 0.114 | 5.2 | 22.3 | 0.002 | 4 | 53.18 |
5 west | 1.8 | 4.7 | 0.026 | 9.5 | 34.6 | 0.002 | 11 | 65.79 |
8 | 1.3 | 1.5 | 0.134 | 9.9 | 32.4 | 0.002 | 10 | 63.5 |
4 east | 0 | 0.6 | 0.954 | 10.8 | 35.9 | 0.002 | 8 | 60.01 |
12 | 1.6 | 3 | 0.176 | 26.2 | 7.5 | 0.002 | 7 | 57.13 |
5 east | 0.5 | 0 | 0.904 | 6.9 | 21.6 | 0.002 | 5 | 56.89 |
13 | 2.6 | 8.2 | 0.002 | 11.2 | 36.4 | 0.002 | 12 | 67.33 |
2 | 1.7 | 3.1 | 0.174 | 3.6 | 10.8 | 0.004 | 3 | 52.54 |
7 | 1.9 | 4.5 | 0.012 | 7.7 | 26.2 | 0.002 | 6 | 58.82 |
3 | 1.5 | 2.4 | 0.052 | 10.7 | 32.4 | 0.002 | 9 | 61.84 |
Neotropic | ||||||||
3 | 3.8 | 11.8 | 0.002 | 10.7 | 32 | 0.002 | 13 | 68.04 |
13 north | 2.6 | 6.7 | 0.002 | 8.9 | 26.5 | 0.002 | 9 | 63.83 |
2 north | 1.7 | 2.1 | 0.006 | 14.5 | 30.9 | 0.002 | 11 | 66.83 |
7 north | 1.3 | 1.4 | 0.142 | 10.1 | 29.2 | 0.002 | 7 | 63.84 |
14 | 2 | 3.9 | 0.004 | 13.7 | 34.1 | 0.002 | 10 | 67.49 |
1 | 6.2 | 11 | 0.002 | 33 | 43.3 | 0.002 | 18 | 69.92 |
13 east | 1.7 | 2.5 | 0.076 | 12 | 27.7 | 0.002 | 5 | 60.64 |
2 east | 1.6 | 2.8 | 0.148 | 10.6 | 32 | 0.002 | 4 | 60.99 |
9 | 1.7 | 2.7 | 0.058 | 11.2 | 28.6 | 0.002 | 6 | 65.31 |
10 | 2.3 | 5 | 0.004 | 10.4 | 28.4 | 0.002 | 8 | 66.06 |
7 south | 4.2 | 7.8 | 0.002 | 18.9 | 31.9 | 0.002 | 9 | 65.14 |
2 west | 1.6 | 2.5 | 0.06 | 10.8 | 29.5 | 0.002 | 7 | 64.08 |
13 west | 3.3 | 7.5 | 0.02 | 12.2 | 28.3 | 0.002 | 3 | 59.75 |
12 | 3.1 | 15.7 | 0.01 | 64.9 | 22.3 | 0.002 | 4 | 61.74 |
8 | 2.1 | 3.7 | 0.046 | 17.4 | 35.3 | 0.002 | 5 | 62.36 |
4 | 1.2 | 1.5 | 0.294 | 15.8 | 56.1 | 0.002 | 5 | 66.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stukenholtz, E.E.; Stevens, R.D. The Relationship between Grinnellian and Eltonian Niche Characteristics and Passerine Distribution across a Latitudinal Gradient. Diversity 2024, 16, 352. https://doi.org/10.3390/d16060352
Stukenholtz EE, Stevens RD. The Relationship between Grinnellian and Eltonian Niche Characteristics and Passerine Distribution across a Latitudinal Gradient. Diversity. 2024; 16(6):352. https://doi.org/10.3390/d16060352
Chicago/Turabian StyleStukenholtz, Erin E., and Richard D. Stevens. 2024. "The Relationship between Grinnellian and Eltonian Niche Characteristics and Passerine Distribution across a Latitudinal Gradient" Diversity 16, no. 6: 352. https://doi.org/10.3390/d16060352
APA StyleStukenholtz, E. E., & Stevens, R. D. (2024). The Relationship between Grinnellian and Eltonian Niche Characteristics and Passerine Distribution across a Latitudinal Gradient. Diversity, 16(6), 352. https://doi.org/10.3390/d16060352