Rock Surface Colonization by Groundwater Microorganisms in an Aquifer System in Quebec, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Sampling, and Water Geochemical Measurements
2.2. Rock Chip Preparation and Mineralogic Composition
2.3. Bioreactor Incubation Setup
2.4. Subsample Collection during the Incubations in the Bioreactors and DNA Extractions
2.5. DNA Sequencing and Bioinformatics Analysis
2.6. Digital PCR Amplifications (dPCR)
2.7. Statistical Analyses
3. Results
3.1. Geochemical Water Properties and Rock Characteristics
3.2. Rock-Attached Bacterial Absolute Abundance and Correlation with the rock Properties
3.3. 16S and 18S rRNA Gene Taxonomic Composition
3.4. Alpha Diversity Indices
3.5. Beta Diversity Ordination Analyses and Influence of Environmental Variables
3.6. Community Structure Correlation with the Water Geochemical and Rock Properties
3.7. Discriminative Genera Explaining Differences between Community Groups
3.8. Microbial Source Tracking
4. Discussion
4.1. Evolution of Planktonic Communities over Time
4.2. Microbial Colonization of the Rock Surfaces
4.3. Influence of the Rock Properties on Surface-Attached Bacterial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, G.; Krol, M.; Brar, S.K. Unraveling the mystery of subsurface microorganisms in bioremediation. Curr. Res. Biotechnol. 2022, 4, 302–308. [Google Scholar] [CrossRef]
- Purkamo, L.; Bomberg, M.; Nyyssönen, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M. Response of deep subsurface microbial community to different carbon sources and electron acceptors during ~2 months incubation in microcosms. Front. Microbiol. 2017, 8, 232. [Google Scholar] [CrossRef]
- Anantharaman, K.; Brown, C.T.; Hug, L.A.; Sharon, I.; Castelle, C.J.; Probst, A.J.; Thomas, B.C.; Singh, A.; Wilkins, M.J.; Karaoz, U.; et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 2016, 7, 13219. [Google Scholar] [CrossRef]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2003, 358, 1957–1972. [Google Scholar] [CrossRef]
- Smith, H.J.; Zelaya, A.J.; De León, K.B.; Chakraborty, R.; Elias, D.A.; Hazen, T.C.; Arkin, A.P.; Cunningham, A.B.; Fields, M.W. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol. Ecol. 2018, 94, fiy191. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.R.; Bennett, P.C. Mineral stimulation of subsurface microorganisms: Release of limiting nutrients from silicates. Chem. Geol. 2004, 203, 91–108. [Google Scholar] [CrossRef]
- Grösbacher, M.; Spicher, C.; Bayer, A.; Obst, M.; Karwautz, C.; Pilloni, G.; Wachsmann, M.; Scherb, H.; Griebler, C. Organic contamination versus mineral properties: Competing selective forces shaping bacterial community assembly in aquifer sediments. Aquat. Microb. Ecol. 2016, 76, 243–255. [Google Scholar] [CrossRef]
- Uroz, S.; Kelly, L.C.; Turpault, M.P.; Lepleux, C.; Frey-Klett, P. The mineralosphere concept: Mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends Microbiol. 2015, 23, 751–762. [Google Scholar] [CrossRef]
- Jones, A.A.; Bennett, P.C. Mineral ecology: Surface specific colonization and geochemical drivers of biofilm accumulation, composition, and phylogeny. Front. Microbiol. 2017, 8, 491. [Google Scholar] [CrossRef]
- Jones, A.A.; Bennett, P.C. Mineral microniches control the diversity of subsurface microbial populations. Geomicrobiol. J. 2014, 31, 246–261. [Google Scholar] [CrossRef]
- Harvey, R.W.; Harms, H.; Landkamer, L. Transport of microorganisms in the terrestrial subsurface: In situ and laboratory methods. In Manual of Environmental Microbiology, 3rd ed.; American Society of Microbiology: Washington, DC, USA, 2007; pp. 872–897. [Google Scholar]
- Lopez de Victoria, G. Chemotactic Behavior of Deep Subsurface Bacteria toward Carbohydrates, Amino Acids and a Chlorinated Alkene; No. DP-1779; Savannah River Laboratory: Aiken, SC, USA, 1989. [Google Scholar]
- Lazar, C.S.; Lehmann, R.; Stoll, W.; Rosenberger, J.; Totsche, K.U.; Küsel, K. The endolithic bacterial diversity of shallow bedrock ecosystems. Sci. Total Environ. 2019, 679, 35–44. [Google Scholar] [CrossRef]
- Alfreider, A.; Krössbacher, M.; Psenner, R. Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res. 1997, 31, 832–840. [Google Scholar] [CrossRef]
- Flynn, T.M.; Sanford, R.A.; Ryu, H.; Bethke, C.M.; Levine, A.D.; Ashbolt, N.J.; Santo Domingo, J.W. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol. 2013, 13, 146. [Google Scholar] [CrossRef]
- Griebler, C.; Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 2009, 54, 649–677. [Google Scholar] [CrossRef]
- Sharma, A.; Taubert, M.; Perez-Carrascal, O.M.; Lehmann, R.; Ritschel, T.; Totsche, K.U.; Lazar, C.S.; Küsel, K. Iron coatings on carbonate rocks shape the attached bacterial aquifer community. Sci. Total Environ. 2024, 917, 170384. [Google Scholar] [CrossRef] [PubMed]
- Griebler, C.; Mindl, B.; Slezak, D.; Geiger-Kaiser, M. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat. Microb. Ecol. 2002, 28, 117–129. [Google Scholar] [CrossRef]
- Girard, P.; Levison, J.; Parrott, L.; Larocque, M.; Ouellet, M.-A.; Green, D. Modeling cross-scale relationships between climate, hydrology, and individual animals: Generation scenarios for stream salamanders. Front. Environ. Sci. 2015, 3, 51. [Google Scholar]
- Levison, J.; Larocque, M.; Fournier, V.; Gagné, S.; Pellerin, S.; Ouellet, M.A. Dynamics of a headwater system and peatland under current conditions and with climate change. Hydrol. Process. 2014, 28, 4808–4822. [Google Scholar]
- Villeneuve, K.; Violette, M.; Lazar, C.S. From recharge, to groundwater, to discharge areas in aquifer systems in Quebec (Canada): Shaping of microbial diversity and community structure by environmental factors. Genes 2022, 14, 1. [Google Scholar] [CrossRef]
- Jacob, H.L. Inventaire des Gisements de Minéraux Industriels Offrant un Potentiel Pour la Production de Charges Minérales; Ministère de l’énergie et des ressources, Service géologique de Québec: Quebec, QC, Canada, 1987.
- Shenhav, L.; Thompson, M.; Joseph, T.A.; Briscoe, L.; Furman, O.; Bogumil, D.; Halperin, E. FEAST: Fast expectation-maximization for microbial source tracking. Nat. Methods 2019, 16, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Perner, M. The globally widespread genus Sulfurimonas: Versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 2015, 6, 989. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, F.; Takai, K.; Kobayashi, H.; Nealson, K.H.; Horikoshi, K. Sulfurimonas autotrophica gen. nov., sp. Nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 2003, 53, 1801–1805. [Google Scholar] [CrossRef] [PubMed]
- de Boer, W.; Leveau, J.H.J.; Kowalchuk, G.A. Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int. J. Syst. Evol. Microbiol. 2004, 54, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Schmidt, R.; de Jager, V.; Krzyzanowska, D.; Jongedijk, E.; Cankar, K.; Beekwilder, J.; van Veen, A.; de Boer, W.; van Veen, J.A.; et al. Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genom. 2015, 16, 1103. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Rossello-Mora, R.; Hermansson, M.; Persson, F.; Huber, B.; Falsen, E.; Busse, H.-J. Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 2007, 57, 1510–1515. [Google Scholar] [CrossRef] [PubMed]
- Eder, W.; Wanner, G.; Ludwig, W.; Busse, H.-J.; Ziemke-Kägeler, F.; Lang, E. Description of Undibacterium oligocarboniphilum sp. nov., isolated from purified water, and Undibacterium pigrum strain CCUG 49012 as the type strain of Undibacterium parvum sp. nov., and emended descriptions of the genus Undibacterium and the species Undibacterium pigrum. Int. J. Syst. Evol. Microbiol. 2011, 61, 384–391. [Google Scholar]
- Gulay, A.; Çekiç, Y.; Musovic, S.; Albrechtsen, H.-J.; Smets, B.F. Diversity of Iron Oxidizers in Groundwater-Fed Rapid Sand Filters: Evidence of Fe(II)-Dependent Growth by Curvibacter and Undibacterium spp. Front. Microbiol. 2018, 9, 2808. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Coelho, A.; Madjarov, J.; Paquete, C.M.; Gralnick, J.A. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. mBio 2022, 13, e02150-22. [Google Scholar] [CrossRef]
- Cooper, R.E.; Finck, J.; Chan, C.; Küsel, K. Mixotrophy broadens the ecological niche range of the iron oxidizer Sideroxydans sp. CL21 isolated from an iron-rich peatland. FEMS Microbiol. Ecol. 2023, 99, fiac156. [Google Scholar] [CrossRef]
- Högfors-Rönnholm, E.; Lundin, D.; Brambilla, D.; Christel, S. Gallionella and Sulfuricella populations are dominant during the transition of boreal potential to actual acid sulfate soils. Commun. Earth Environ. 2022, 3, 304. [Google Scholar] [CrossRef]
- de Vet, W.W.J.M.; Dinkl, I.J.T.; Rietvel, L.C.; van Loosdrecht, M.C.M. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Water Res. 2011, 45, e5398. [Google Scholar] [CrossRef] [PubMed]
- Eggerichs, T.; Wiegand, M.; Neumann, K.; Opel, O.; Thronicker, O.; Szewzyk, U. Growth of Iron-Oxidizing Bacteria Gallionella ferruginea and Leptothrix cholodnii in Oligotrophic Environments: Ca, Mg, and C as Limiting Factors and G. ferruginea Necromass as C-Source. Geomicrobiol. J. 2020, 37, 190–199. [Google Scholar] [CrossRef]
- Bogan, B.W.; Sullivan, W.R.; Kayser, K.J.; Derr, K.D.; Aldrich, H.C.; Paterek, J.R. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalanedegrading bacterium isolated from oilfield soils. Int. J. Syst. Evol. Microbiol. 2003, 53, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Piñar, G.; Poyntner, C.; Tafer, H.; Sterflinger, K. A time travel story: Metagenomic analyses decipher the unknown geographical shift and the storage history of possibly smuggled antique marble statues. Ann. Microbiol. 2019, 69, 1001–1021. [Google Scholar] [CrossRef]
- Guzman, J.; Vilcinskas, A. Genome analysis suggests the bacterial family Acetobacteraceae is a source of undiscovered specialized metabolites. Antonie Leeuwenhoek 2022, 115, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Wünsche, J.; Schmid, J. Acetobacteraceae as exopolysaccharide producers: Current state of knowledge and further perspectives. Front. Bioeng. Biotechnol. 2023, 11, 1166618. [Google Scholar] [CrossRef] [PubMed]
- Reis, V.M.; dos Santos Teixeira, K.R. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J. Basic Microbiol. 2015, 55, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.P. Acidiphilium cryptum gen. nov., nov., Heterotrophic Bacterium from Acidic Mineral Environments. Int. J. Syst. Bacteriol. 1981, 31, 327–332. [Google Scholar] [CrossRef]
- Glamoclija, M.; Ramirez, S.; Sirisena, K.; Widanagamage, I. Subsurface Microbial Ecology at Sediment-Groundwater Interface in Sulfate-Rich Playa; White Sands National Monument, New Mexico. Front. Microbiol. 2019, 10, 2595. [Google Scholar] [CrossRef]
- Korbel, K.; Chariton, A.; Stephenson, S.; Greenfield, P.; Hose, G.C. Wells provide a distorted view of life in the aquifer: Implications for sampling, monitoring and assessment of groundwater ecosystems. Sci. Rep. 2017, 7, 40702. [Google Scholar] [CrossRef]
- Shen, X.-X.; Zhou, X.; Kominek, J.; Kurtzman, C.P.; Hittinger, C.T.; Rokas, A. Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data. Genes Genomes Genet. 2016, 6, 3927–3939. [Google Scholar] [CrossRef]
- Siver, P.A. The downsizing of gigantic scales and large cells in the genus Mallomonas (Synurales, Chrysophyceae). Sci. Rep. 2022, 12, 4896. [Google Scholar] [CrossRef] [PubMed]
- Kima, E.; Yubukib, N.; Leander, B.S.; Graham, L.A. Ultrastructure and 18S rDNA Phylogeny of Apoikia lindahlii comb. nov.(Chrysophyceae) and its Epibiontic Protists, Filos agilis gen. etsp. nov. (Bicosoecida) and Nanos amicus gen. etsp. nov. (Bicosoecida). Protist 2010, 161, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, L.; Bock, C.; Schweikert, M.; Boenigk, J. Small but Manifold–Hidden Diversity in “Spumella-like Flagellates”. J. Eukaryot. Microbiol. 2016, 63, 419–439. [Google Scholar] [CrossRef] [PubMed]
- Rothhaupt, K.O. Laboratorary experiments with a mixotrophic chrysophyte and obligately phagotrophic and photographic competitors. Ecology 1996, 77, 716–724. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Zhu, P.; Yang, N.; Liang, L.; Yu, T.; Niu, M.; Konhauser, K.; Woodcroft, B.J.; Wang, F. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. Sci. Adv. 2023, 9, eadf5069. [Google Scholar] [CrossRef] [PubMed]
- Blais, M.-A.; Matveev, A.; Lovejoy, C.; Vincent, W.F. Size-Fractionated Microbiome Structure in Subarctic Rivers and a Coastal Plume Across DOC and Salinity Gradients. Front. Microbiol. 2022, 12, 760282. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Zhang, G.; Gao, H.; Chen, X.; Li, L.; Jun, F. Hydrodynamic and anthropogenic disturbances co-shape microbiota rhythmicity and community assembly within intertidal groundwater-surface water continuum. Water Res. 2023, 242, 120236. [Google Scholar] [CrossRef]
- Feng, X.; Li, H.; Zhang, Z.; Xiong, T.; Shi, X.; He, C.; Shi, Q.; Jiao, F.; Zhang, Y. Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration. Ecol. Indic. 2022, 142, 109186. [Google Scholar] [CrossRef]
- Hasanan, K.; Badr, O.A.; El-Meihy, R.; Nasr, M.; Tawfik, A. Biochar-enhanced anaerobic mixed culture for biodegradation of 1,2-dichloroethane: Microbial community, mechanisms, and techno-economics. Chemosphere 2024, 354, 141666. [Google Scholar] [CrossRef]
- Rohrbach, S.; Gkoutselis, G.; Hink, L.; Weig, A.R.; Obst, M.; Diekmann, A.; Ho, A.; Rambold, G.; Horn, M.A. Microplastic polymer properties as deterministic factors driving terrestrial plastisphere microbiome assembly and succession in the field. Environ. Microbiol. 2023, 25, 2681–2697. [Google Scholar] [CrossRef]
- Juottonen, H.; Fontaine, L.; Wurzbacher, C.; Drakare, S.; Peura, S.; Eiler, A. Archaea in boreal Swedish lakes are diverse, dominated by Woesearchaeota and follow deterministic community assembly. Environ. Microbiol. 2020, 22, 3158–3171. [Google Scholar] [CrossRef]
- Mironov, V.; Vanteeva, A.; Merkel, A. Microbiological Activity during Co-Composting of Food and Agricultural Waste for Soil Amendment. Agronomy 2021, 11, 928. [Google Scholar] [CrossRef]
- Ross, N.; Villemur, R.; Marcandella, E.; Deschenes, L. Assessment of changes in biodiversity when a community of ultramicrobacteria isolated from groundwater is stimulated to form a biofilm. Microb. Ecol. 2001, 42, 56–68. [Google Scholar] [CrossRef]
- Scholl, M.A.; Mills, A.L.; Herman, J.S.; Hornberger, G.M. The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials. J. Contam. Hydrol. 1990, 6, 321–336. [Google Scholar] [CrossRef]
- Nuppunen-Puputti, M.; Kietäväinen, R.; Kukkonen, I.; Bomberg, M. Implications of a short carbon pulse on biofilm formation on mica schist in microcosms with deep crystalline bedrock groundwater. Front. Microbiol. 2023, 14, 1054084. [Google Scholar] [CrossRef] [PubMed]
- Dar, R.; Bandh, S.A.; Shafi, S.; Shameem, N. Bacterial diversity of the rock-water interface in freshwater ecosystem. In Freshwater Microbiology; Academic Press: Cambridge, MA, USA, 2019; pp. 73–104. [Google Scholar]
- Finneran, K.T.; Johnsen, C.V.; Lovley, D.R. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int. J. Syst. Evol. Microbiol. 2003, 53, 669–673. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Bowerman, S.; Lara, J.C.; Lidstrom, M.E.; Chistoserdova, L. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. J. Syst. Evol. Microbiol. 2006, 56, 2819–2823. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Beck, D.A.C.; Suciu, D.; Pozhitkov, A.; Lidstrom, M.E.; Chistoserdova, L. Functioning in situ: Gene expression in Methylotenera mobilis in its native environment as assessed through transcriptomics. ISME J. 2010, 4, 388–398. [Google Scholar] [CrossRef]
- Akita, H.; Shinto, Y.; Kimura, Z. Bacterial Community Analysis of Biofilm Formed on Metal Joint. Appl. Biosci. 2022, 1, 221–228. [Google Scholar] [CrossRef]
- Karačić, S.; Palmer, B.; Gee, C.T.; Bierbaum, G. Oxygen-dependent biofilm dynamics in leaf decay: An in vitro analysis. Sci. Rep. 2024, 14, 6728. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Sharpe, R.; Boxall, J. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: Implications for drinking water discolouration. J. Appl. Microbiol. 2014, 117, 286–301. [Google Scholar] [PubMed]
- Morohoshi, T.; Oi, T.; Aiso, H.; Suzuki, T.; Okura, T.; Sato, S. Biofilm Formation and Degradation of Commercially Available Biodegradable Plastic Films by Bacterial Consortiums in Freshwater Environments. Microbes Environ. 2018, 33, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Rummel, C.D.; Lechtenfeld, O.J.; Kallies, R.; Benke, A.; Herzsprung, P.; Rynek, R.; Wagner, S.; Potthoff, A.; Jahnke, A.; Schmitt-Jansen, M. Conditioning Film and Early Biofilm Succession on Plastic Surfaces. Environ. Sci. Technol. 2021, 55, 11006–11018. [Google Scholar] [CrossRef] [PubMed]
- Rajcoomar, S.; Amoah, I.D.; Abunama, T.; Mohlomi, N.; Bux, F.; Kumari, S. Biofilm formation on microplastics in wastewater: Insights into factors, diversity and inactivation strategies. Int. J. Environ. Sci. Technol. 2024, 21, 4429–4444. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, D.; Zhou, X.; Shi, N.; Tian, Y. Microbial diversity and community structure of denitrifying biological filters operated with different carbon sources. SpringerPlus 2016, 5, 1752. [Google Scholar] [CrossRef] [PubMed]
- Exton, B.; Hassard, F.; Medina Vaya, A.; Grabowski, R.C. Polybacterial shift in benthic river biofilms attributed to organic pollution—A prospect of a new biosentinel? Hydrol. Res. 2023, 54, 348. [Google Scholar] [CrossRef]
- Howea, A.T.; Bassa, D.; Vickerman, K.; Chaoa, E.E.; Cavalier-Smith, T. Phylogeny, Taxonomy, and Astounding Genetic Diversity of Glissomonadida ord. nov., The Dominant Gliding Zooflagellates in Soil (Protozoa: Cercozoa). Protist 2009, 160, 159–189. [Google Scholar] [CrossRef]
- Fiore-Donno, A.M.; Richter-Heitmann, T.; Degrune, F.; Dumack, K.; Regan, K.M.; Marhan, S.; Boeddinghaus, R.S.; Rillig, M.C.; Friedrich, M.W.; Kandeler, E.; et al. Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland. Front. Microbiol. 2019, 10, 1332. [Google Scholar]
- Nguyen, T.B.A.; Bonkowski, M.; Dumack, K.; Chen, K.-L.; He, J.-Z.; Hu, H.-W. Protistan predation selects for antibiotic resistance in soil bacterial communities. ISME J. 2023, 17, 2182–2189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, Y.; Qu, Z.; Jiang, M.; Shen, Z.; Li, J.; Lin, X. Taxonomy and phylogeny of Pseudovorticella ciliates (Ciliophora, Peritrichia): Two new and one rare species from the coastal waters of China. Front. Mar. Sci. 2022, 9, 1030519. [Google Scholar] [CrossRef]
- Weber, S.D.; Ludwig, W.; Schleifer, K.-H.; Fried, J. Microbial Composition and Structure of Aerobic Granular Sewage Biofilms. Appl. Environ. Microbiol. 2007, 73, 6233–6240. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Nemergut, D.; Knight, R.; Craine, J.M. Changes through time: Integrating microorganisms into the study of succession. Res. Microbiol. 2010, 161, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Abed, R.M.; Al Fahdi, D.; Muthukrishnan, T. Short-term succession of marine microbial fouling communities and the identification of primary and secondary colonizers. Biofouling 2019, 35, 526–540. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Nam, J.H.; Kim, Y.H.; Lee, K.H.; Lee, D.H. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol. 2008, 46, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.; Kieft, B.; Mueller, R.; Fisk, M.R.; Mason, O.U.; Popa, R.; Colwell, F.S. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J. 2019, 13, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Williams, T.J.; Ye, J.; Charlesworth, J.; Burns, B.P.; Poljak, A.; Raftery, M.J.; Cavicchioli, R. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum Lacusprofundi. Sci. Rep. 2016, 6, 37454. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska-Warych, M.; Tokarz-Deptuła, B.; Czupryńska, P.; Deptuła, W. Biofilm and Quorum Sensing in Archaea. Acta Biol. 2019, 26, 35–44. [Google Scholar] [CrossRef]
- Roberts, J.A. Inhibition and enhancement of microbial surface colonization: The role of silicate composition. Chem. Geol. 2004, 212, 313–327. [Google Scholar] [CrossRef]
- Smith, M.C.; Bowman, J.P.; Scott, F.J.; Line, M.A. Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 2000, 12, 177–184. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Shi, M.; Fang, S. Soil bacterial diversity and its relationship with soil CO2 and mineral composition: A case study of the Laiwu experimental site. Int. J. Environ. Res. Public Health 2020, 17, 5699. [Google Scholar] [CrossRef]
- Dunham, E.C.; Keller, L.M.; Skidmore, M.L.; Mitchell, K.R.; Boyd, E.S. Iron Minerals Influence the Assembly of Microbial Communities in a Basaltic Glacial Catchment. FEMS Microbiol. Ecol. 2023, 99, fiac155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, X.; He, H.; Li, J.; Ma, L.; Tan, W.; Zhong, Y.; Zhu, J.; Zhou, M.-F.; Dong, H. Microorganisms Accelerate REE Mineralization in Supergene Environments. Appl. Environ. Microbiol. 2022, 88, e00632-22. [Google Scholar] [CrossRef] [PubMed]
- Sanjurjo-Sanchez, J.; Alves, C.; Freire-Lista, D.M. Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. Sci. Total Environ. 2024, 912, 168846. [Google Scholar] [CrossRef]
- Byloos, B.; Maan, H.; Van Houdt, R.; Boon, N.; Leys, N. The Ability of Basalt to Leach Nutrients and Support Growth of Cupriavidus metallidurans CH34 Depends on Basalt Composition and Element Release. Geomicrobiol. J. 2018, 35, 438–446. [Google Scholar] [CrossRef]
- Picard, L.; Blanco Nouche, C.; Cochet, C.; Turpault, M.-P.; Uroz, S. Mineral weathering by Collimonas pratensis PMB3(1) as a function of mineral properties, solution chemistry and carbon substrate. Mater. Degrad. 2023, 7, 76. [Google Scholar] [CrossRef]
- Kelly, L.C.; Rivett, D.W.; Pakostov, E.; Creer, S.; Cotterell, T.; Johnson, D.B. Mineralogy affects prokaryotic community composition in an acidic metal mine. Microbiol. Res. 2023, 266, 127257. [Google Scholar] [CrossRef]
Domain | Clusters | Parameters | df | SumOfSqs | R2 | F | p-Value |
---|---|---|---|---|---|---|---|
Bacteria | Lifestyle (sessile/planktonic) | Type | 1 | 2.5533 | 0.29953 | 26.939 | 0.001 |
Residual | 63 | 5.9710 | 0.70047 | ||||
Total | 64 | 8.5243 | 1.00000 | ||||
Sessile | Bioreactor | 2 | 0.72573 | 0.46152 | 13.713 | 0.001 | |
Residual | 32 | 0.84675 | 0.53848 | ||||
Total | 34 | 1.57248 | 1.00000 | ||||
Planktonic | Time group | 2 | 2.5023 | 0.56888 | 21.2485 | 0.001 | |
Bioreactor | 2 | 0.4243 | 0.09646 | 3.6027 | 0.008 | ||
Residuals | 25 | 1.4720 | 0.33466 | ||||
Total | 29 | 4.3985 | 1.00000 | ||||
Eukaryote | Lifestyle (sessile/planktonic) | Type | 1 | 1.2931 | 0.17545 | 8.5111 | 0.001 |
Residual | 40 | 6.0771 | 0.82455 | ||||
Total | 41 | 7.3702 | 1.00000 | ||||
Sessile | Bioreactor | 2 | 0.69439 | 0.38606 | 5.345 | 0.004 | |
Residual | 17 | 1.10427 | 0.61394 | ||||
Total | 19 | 1.79867 | 1.00000 | ||||
Planktonic | Time group | 2 | 2.5194 | 0.58885 | 14.0797 | 0.001 | |
Bioreactor | 2 | 0.2382 | 0.05566 | 1.3309 | 0.219 | ||
Residuals | 17 | 1.5210 | 0.35549 | ||||
Total | 21 | 4.2785 | 1.00000 | ||||
Archaea | Planktonic | Time group | 2 | 0.46131 | 0.28350 | 3.3878 | 0.001 |
Bioreactor | 2 | 0.21270 | 0.13072 | 1.5620 | 0.021 | ||
Residuals | 14 | 0.95318 | 0.58578 | ||||
Total | 18 | 1.62719 | 1.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, D.; Blouin, V.; Kirkpatrick, J.; Lazar, C.S. Rock Surface Colonization by Groundwater Microorganisms in an Aquifer System in Quebec, Canada. Diversity 2024, 16, 374. https://doi.org/10.3390/d16070374
Patel D, Blouin V, Kirkpatrick J, Lazar CS. Rock Surface Colonization by Groundwater Microorganisms in an Aquifer System in Quebec, Canada. Diversity. 2024; 16(7):374. https://doi.org/10.3390/d16070374
Chicago/Turabian StylePatel, Divya, Vincent Blouin, Jamie Kirkpatrick, and Cassandre Sara Lazar. 2024. "Rock Surface Colonization by Groundwater Microorganisms in an Aquifer System in Quebec, Canada" Diversity 16, no. 7: 374. https://doi.org/10.3390/d16070374
APA StylePatel, D., Blouin, V., Kirkpatrick, J., & Lazar, C. S. (2024). Rock Surface Colonization by Groundwater Microorganisms in an Aquifer System in Quebec, Canada. Diversity, 16(7), 374. https://doi.org/10.3390/d16070374