Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Selection
2.2.1. Site Measurements
2.2.2. Stand’s History
2.3. Statistics
2.3.1. Dbh Density Distributions
2.3.2. Height Development Model
2.3.3. Species Proportion during Succession
2.3.4. Categorical Logistic Regression for Species Proportion
3. Results
3.1. Dbh Development
3.2. Height Development of Key Tree Species
3.3. Basal Area Development
3.4. Development of Tree Species Proportion
3.5. Rejuvenation Layer
4. Discussion
4.1. Rejuvenation Layer
4.2. Dbh and Height Development of Key Tree Species
4.3. Basal Area by Age
4.4. Development of Tree Species Proportion
4.5. The Oak–Paradox
4.6. Feasibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Askeyev, O.; Tishin, D.; Sparks, T.; Askeyev, I. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int. J. Biometeorol. 2005, 49, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.; Nosenko, T.; Ghirardo, A.; Fladung, M.; Schnitzler, J.-P.; Kersten, B. Oaks as Beacons of Hope for Threatened Mixed Forests in Central Europe. Front. For. Glob. Change 2021, 4, 670797. [Google Scholar] [CrossRef]
- Albert, M.; Nagel, R.-V.; Nuske, R.; Sutmöller, J.; Spellmann, H. Tree Species Selection in the Face of Drought Risk—Uncertainty in Forest Planning. Forests 2017, 8, 363. [Google Scholar] [CrossRef]
- Pretzsch, H.; Bielak, K.; Block, J.; Bruchwald, A.; Dieler, J.; Ehrhart, H.-P.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zasada, M.; et al. Productivity of mixed versus pure stands of oak (Quercus petraea (MATT.) LIEBL. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur. J. For. Res. 2013, 132, 263–280. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Puettmann, K.; Messier, C. Simple Guidelines to Prepare Forests for Global Change: The Dog and the Frisbee. Northwest Sci. 2020, 93, 209. [Google Scholar] [CrossRef]
- Brändle, M.; Brandl, R. Species richness of insects and mites on trees: Expanding Southwood. J. Anim. Ecol. 2001, 70, 491–504. [Google Scholar] [CrossRef]
- Manos, P.S.; Stanford, A.M. The Historical Biogeography of Fagaceae: Tracking the Tertiary History of Temperate and Subtropical Forests of the Northern Hemisphere. Int. J. Plant Sci. 2001, 162, S77–S93. [Google Scholar] [CrossRef]
- Löf, M.; Brunet, J.; Filyushkina, A.; Lindbladh, M.; Skovsgaard, J.P.; Felton, A. Management of oak forests: Striking a balance between timber production, biodiversity and cultural services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 59–73. [Google Scholar] [CrossRef]
- Attocchi, G. Silviculture of Oak for High-Quality Wood Production; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2015; Available online: https://core.ac.uk/reader/77127980 (accessed on 21 June 2023).
- von Lüpke, B. Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For. Ecol. Manag. 1998, 106, 19–26. [Google Scholar] [CrossRef]
- Rumiantsev, M.; Lukyanets, V.; Musienko, S.; Mostepanyuk, A.; Obolonyk, I. Main problems in natural seed regeneration of pedunculate oak (Quercus robur L.) stands in Ukraine. For. Stud. 2018, 69, 7–23. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H. Karte Der Natürlichen Vegetation Europas. Bundesamt für Naturschutz. 2000/2003. Available online: https://de.scribd.com/doc/14698027/karte-der-naturlichen-vegetation-europas (accessed on 17 April 2023).
- Gavrilov, N. Растительный миръ ср. и н. Пoвoлжья и Завoлжья. Sankt Petersburg. 1901. Available online: http://tat-map.ru/Tematich/Selsk_lesn_hoz/rast_mir-sr-pov.jpg (accessed on 24 August 2023).
- Kapustin, A. Forest map of Tatarstan 1:420 K [Карта лесoв Татарскoй Республики 1:420К]. Kazan. 1927. Available online: http://retromap.ru/1419279 (accessed on 23 August 2023).
- Istomina, E.G. The ship forests of european Russia as a resource for regional development in the eighteenth and nineteenth centuries [Кoрабельные леса еврoпейскoй Рoссии как ресурс региoнальнoгo развития в XVIII-XIX вв]. Вестник Рггу Серия Литературoведение Языкoзнание Культурoлoгия 2016, 10, 106–119. [Google Scholar]
- Puryaev, A.S.; Saripov, I.N.; Petrov, W.A. The oak forests of the Middle Volga region: State, reproduction and conservation [Дубравы Среднегo Пoвoлжья: сoстoяние, вoспрoизвoдствo и сoхранение]. Лесoхoз Инфoрм 2019, 3, 190–198. [Google Scholar]
- Yakowlev, I.A.; Yekowlev, A.S. Oak forests of the middle Volga region (history, causes of degradation and current state) [Дубравы среднегo пoвoлжья (истoрия, причины деградации и сoвременнoе сoстoяние)]. Марийский гoсударственный технический университет, Yoshkar-Ola, Отчет o НИР. 1999. Available online: http://oaks.forest.ru/region/sredvolga/1.html (accessed on 22 January 2024).
- Petrov, V.A. Ecological and silvicultural features of natural regeneration in disturbed oak forests in the Chuvash Republic [Экoлoгo-лесoвoдственные oсoбеннoсти естественнoгo вoзoбнoвления в расстрoенных дубравах Чувашскoй Республики]. Kazan State University, Kazan. 2004. Available online: https://earthpapers.net/ekologo-lesovodstvennye-osobennosti-estestvennogo-vozobnovleniya-v-rasstroennyh-dubravah-chuvashskoy-respubliki (accessed on 29 June 2023).
- Seifert, J.R.; Selig, M.F.; Douglass, J.F.; Morrissey, R.C. Natural Oak Regeneration Following Clearcutting on the Hoosier National Forest. FNR-260; Purdue University: West Lafayette, IN, USA, 2005; 12. Available online: https://www.in.gov/isda/files/FNR-260-Oak-Regen-Following-Clearcut.pdf (accessed on 29 June 2023).
- Kovács, B.; Tinya, F.; Németh, C. Ódor Unfolding the effects of different forestry treatments on microclimate in oak forests: Results of a 4-yr experiment. Ecol. Appl. 2020, 30, e02043. [Google Scholar] [CrossRef] [PubMed]
- Mölder, A.; Sennhenn-Reulen, H.; Fischer, C.; Rumpf, H.; Schönfelder, E.; Stockmann, J.; Nagel, R.-V. Success factors for high-quality oak forest (Quercus robur, Q. petraea) regeneration. For. Ecosyst. 2019, 6, 49. [Google Scholar] [CrossRef]
- Yeagle, J.A.; Groninger, J.W. Long-term effects of clearcutting on tree species composition in an oak-hickory forest. In General Technical Report SRS-92; Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2006; pp. 538–540. Available online: https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs092/gtr_srs092-127-yeagle.pdf (accessed on 29 June 2023).
- Mitchell, R.; Franklin, J.; Palik, B.; Kirkman, L.; Smith, L.; Engstrom, T. Natural Disturbance-Based Silviculture for Restoration and Maintenance of Biological Diversity. In Final report to the National Commission of Science for Sustainable Forestry; 2002; 120. Available online: https://www.nrs.fs.usda.gov/pubs/jrnl/2003/nc_2003_mitchell_001.pdf (accessed on 29 June 2023).
- Hédl, R.; Šipoš, J.; Chudomelová, M.; Utinek, D. Dynamics of herbaceous vegetation during four years of experimental coppice introduction. Folia Geobot. 2017, 52, 83–99. [Google Scholar] [CrossRef]
- Tinya, F.; Kovács, B.; Aszalós, R.; Tóth, B.; Csépányi, P.; Németh, C.; Ódor, P. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 2020, 459, 117810. [Google Scholar] [CrossRef]
- Vild, O.; Roleček, J.; Hédl, R.; Kopecký, M.; Utinek, D. Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective. For. Ecol. Manag. 2013, 310, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Ewald, J.; Hédl, R.; Chudomelová, M.; Petřík, P.; Šipoš, J.; Vild, O. High resilience of plant species composition to coppice restoration—A chronosequence from the oak woodland of Gerolfing (Bavaria). Tuexenia 2018, 38, 61–78. [Google Scholar] [CrossRef]
- Jenny, H. Factors of soil formation: A system of quantitative pedology, First edition. In McGraw-Hill Publications in the Agricultural Sciences; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1941. [Google Scholar]
- Pickett, S.T.A. Space-for-Time Substitution as an Alternative to Long-Term Studies. In Long-Term Studies in Ecology; Springer: New York, NY, USA, 1989; pp. 110–135. [Google Scholar] [CrossRef]
- Mitchell, R. A Comparison of Three Natural Succession Chronosequence Case Studies from the South Island, New Zealand to Select Predictable Indices for Evaluating Restoration Success; University of Canterbury: Christchurch, New Zealand, 2005. [Google Scholar]
- Chernov, V.I. Фoрмирoвание хoзяйственнo-ценных насаждений oсины (Populus tremula L.) в лесах республики Татарстан [Formation of economically useful aspen (Populus tremula L.) Stands in Forests of the Republic of Tatarstan]. Kazan State University, Kazan, Russia. 2015; Available online: https://dissercat.com/content/formirovanie-khozyaistvenno-tsennykh-nasazhdenii-osiny-populus-tremula-l-v-lesakh-respubliki (accessed on 22 June 2022).
- Bemmann, A.; Gasisullin, A.H.; Wagner, S.; Puryaev, A. Wald und Forstwirtschaft in der Republik Tatarstan. Forst Holzwirtsch. 2015, 141, 1022–1023. [Google Scholar]
- Garipov, N.R.; Puryaev, A.S. Structure of aspen forests of Zakamye of the Republic of Tatarstan. For. Inf. 2017, 4, 19–27. [Google Scholar]
- Minnihanov, R.N. Atlas of Territories of the Republic of Tatarstan [Атлас земель Республики Татарстан]. Kazan, Russia: ФГУП ‘Гoсземкадастрсъемка’-ВИСХАГИ. 2005. Available online: https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_979409/ (accessed on 16 May 2023).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Uhl, E.; Ammer, C.; Spellmann, H.; Schoelch, M.; Pretzsch, H. Growth and growth resilience to stress of Silver fir and Norway spruce. Allg. Forst Und Jagdztg. 2013, 184, 278–292. [Google Scholar]
- Zuur, A.; Ieno, E.; Walker, N.; Saveliev, A.; Smith, G. Mixed Effects Models and Extensions in Ecology With R; Springer: New York, NY, USA, 2009; Volume 1. [Google Scholar] [CrossRef]
- Faraway, J.J. Extending the Linear Model with R; Taylor & Francis: Abingdon, UK, 2006; p. 345. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Exploratory Multivariate Analysis. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002; pp. 301–330. [Google Scholar] [CrossRef]
- Neumann, M. MNLpred: Simulated Predicted Probabilities for Multinomial Logit Models. 2021. Available online: https://cran.r-project.org/web/packages/MNLpred/index.html (accessed on 20 November 2023).
- Ripley, B.; Venables, W. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. 2023. Available online: https://cran.r-project.org/web/packages/nnet/index.html (accessed on 20 November 2023).
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D. MASS: Support Functions and Datasets for Venables and Ripley’s MASS. 2023. Available online: https://cran.r-project.org/web/packages/MASS/index.html (accessed on 20 November 2023).
- Wickham, H.; Chang, W.; Henry, L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; van den Brand, T. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.12 October 2023. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 20 November 2023).
- Demakov, Y.P.; Nureeva, T.V.; Puryaev, A.S.; Krasnov, V.G. Economic basis and an experience of plantation forest growing in the central Volga region. Сибирский Леснoй Журнал 2018, 2, 3–14. [Google Scholar] [CrossRef]
- Gigunova, S.N.; Fedorov, N.I.; Mikhaylenko, O.I. Restoration succession in pine and birch deforested areas of the Southern Urals central part [Вoсстанoвительные сукцессии на сплoшных вырубках сoснoвo-березoвых лесoв центральнoй части Южнoгo Урала]. Научные Ведoмoсти 2013, 22, 30–35. [Google Scholar]
- Myking, T.; Bohler, F.; Austrheim, G.; Solberg, E.J. Life history strategies of aspen (Populus tremula L.) and browsing effects: A literature review. Forestry 2011, 84, 61–71. [Google Scholar] [CrossRef]
- Runova, E.M.; Soloveva, A.A. The natural regeneration on the logging territories of pine forests adjacent to the Middle Angara region [Естественнoе вoзoбнoвление на вырубках сoснякoв в райoне среднегo Приангарья]. Успехи Сoвременнoгo Естествoзнания 2017, 6, 67–71. Available online: https://natural-sciences.ru/ru/article/view?id=36501 (accessed on 30 November 2023).
- Ulanova, N.G. Mechanisms of succession of clearcutting vegetation in Southern Taiga spruce forests [Механизмы сукцессий растительнoсти сплoшных вырубoк в ельниках Южнoй Тайги]. In Актуальные прoблемы геoбoтаники. Материалы III Всерoссийскoй шкoлы–кoнференции 24-28 сентября 2007. Лекции; КарНЦРАН: Petrosavodsk, Russia, 2007; pp. 199–211. [Google Scholar]
- Worrell, R. European aspen (Populus tremula L.): A review with particular reference to Scotland I. Distribution, ecology and genetic variation. For. Int. J. For. Res. 1995, 68, 93–105. [Google Scholar] [CrossRef]
- Barker, C.; Davis, M.L.; Ashton, P. Reproductive strategy of a temperate canopy tree Tilia cordata Mill. (Malvaceae) is related to temperature during flowering and density of recent recruits. Tree Genet. Genomes 2022, 18, 22. [Google Scholar] [CrossRef]
- Pigott, C.D. Tilia Cordata Miller. J. Ecol. 1991, 79, 1147–1207. [Google Scholar] [CrossRef]
- Collin, E.; Bilger, I.; Eriksson, G.; Turok, J. The Conservation of Elm Genetic Resources in Europe. In The Elms: Breeding, Conservation, and Disease Management; Dunn, C.P., Ed.; Springer: Boston, MA, USA, 2000; pp. 281–293. [Google Scholar] [CrossRef]
- Nowak, D.; Rowntree, R. History and Range of Norway Maple. J. Arboric. 1990, 16, 291–296. [Google Scholar] [CrossRef]
- Roussy, A.-M. The Sexual and Vegetative Propagation of Sugar Maple and its Threat from Norway Maple; The University of Guelph: Guelph, ON, Canada, 2014. [Google Scholar]
- Dormann, C.F.; Bagnara, M.; Boch, S.; Hinderling, J.; Janeiro-Otero, A.; Schäfer, D.; Schall, P.; Hartig, F. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 2020, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhu, J.; Zhang, G.; Sun, Y.; Sun, Y.; Hu, L.; Wang, G.G. Disentangling regeneration by vertical stratification: A 17-year gap-filling process in a temperate secondary forest. For. Ecol. Manag. 2023, 539, 120994. [Google Scholar] [CrossRef]
- Tripathi, S.; Bhadouria, R.; Srivastava, P.; Devi, R.S.; Chaturvedi, R.; Raghubanshi, A.S. Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecol. Process. 2020, 9, 2. [Google Scholar] [CrossRef]
- Latva-Karjanmaa, T.; Suvanto, L.; Leinonen, K.; Rita, H. Emergence and survival of Populus tremula seedlings under varying moisture conditions. Can. J. For. Res. 2003, 33, 2081–2088. [Google Scholar] [CrossRef]
- Franiel, I.; Kompała-Bąba, A. Reproduction strategies of the silver birch (Betula pendula Roth) at post-industrial sites. Sci. Rep. 2021, 11, 11969. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, O. Effects on Natural Seed Regenerated Silver Birch (Betula pendula Roth) and Downey Birch (Betula pubescens Ehrh) by Mechanical Soil Scarification and Environmental Factors. Master Thesis, Swedish University of Agricultural Sciences, Umea, Sweden, 2022. [Google Scholar]
- Tiebel, K. Which factors influence the density of birch (Betula pendula Roth) seeds in soil seed banks in temperate woodlands? Eur. J. For. Res. 2021, 140, 1441–1455. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Duan, A.G.; He, C. A review of stand basal area growth models. For. Stud. China 2007, 9, 85–94. [Google Scholar] [CrossRef]
- Baranchugov, E.G. Infestation of aspen with core rot and management of healthy aspen stands [Пoражаемoсть oсины сердцевиднoй гнилью и хoзяйствo на выращивание здoрoвых oсинникoв]. Леснoе хoз-вo. 1995, 5, 26–27. [Google Scholar]
- Baranchugov, E.G. Research report for the year 2000 [Научный oтчет за 2000 г.]. In Татарская oпытная лесная станция; All-Russian Research Institute of Silviculture and Mechanization of Forestry: Pushkino, Russia, 2001; p. 49. [Google Scholar]
- Nasibullina, A.; van der Maaten-Theunissen, M.; van der Maaten, E.; Fischer, H.; Wagner, S. Thinning effects on growth and occurrence of rotting in aspen stands. J. For. Sci. 2023, 69, 525–538. [Google Scholar] [CrossRef]
- Henderson, J.; Roberts, S.; Grebner, D.; Munn, I. A Graphical Comparison of Loblolly Pine Growth-and-Yield Models. South. J. Appl. For. 2013, 37, 169–176. [Google Scholar] [CrossRef]
- West, P.W.; Ratkowsky, D.A. Models Relating Individual Tree Basal Area Growth Rates to Tree Basal Areas in Even-Aged, Monoculture Forest Stands. J. For. 2022, 9, 21–38. [Google Scholar] [CrossRef]
- Åström, M.; Dynesius, M.; Hylander, K.; Nilsson, C. Slope Aspect Modifies Community Responses to Clear-Cutting in Boreal Forests. Ecology 2007, 88, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, L.; Kouki, J.; Sverdrup-Thygeson, A. Tree retention as a conservation measure in clear-cut forests of northern Europe: A review of ecological consequences. Scand. J. For. Res. 2010, 25, 295–308. [Google Scholar] [CrossRef]
- Gustienė, D.; Varnagirytė-Kabašinskienė, I.; Stakėnas, V. Ground vegetation, forest floor and mineral topsoil in a clear-cutting and reforested Scots pine stands of different ages: A case study. J. For. Res. 2022, 33, 1247–1257. [Google Scholar] [CrossRef]
- Cleland, D.T.; Avers, P.E.; McNab, W.H.; Jensen, M.E.; Bailey, R.G.; King, T.; Russel, W.E. National Hierarchial Framework of Ecological Units. In Ecosystem Management Applications for Sustainable Forest and Wildlife Resources; Boyce, M.S., Haney, A., Eds.; Yale University Press: New Haven, CT, USA, 1997; pp. 181–200. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamica; update edn; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Morrissey, R.C.; Jacobs, D.F.; Seifert, J.R.; Kershaw, J.A. Overstory species composition of naturally regenerated clearcuts in an ecological classification framework. Plant Ecol. 2010, 208, 21–34. [Google Scholar] [CrossRef]
- Radoglou, K.; Dobrowolska, D.; Spyroglou, G.; Nicolescu, V. A review on the ecology and eilviculture of limes: (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia tomentosa Moench.) in Europe. Die Bodenkultur. 2009, 3, 9–20. [Google Scholar]
- Axer, M.; Schlicht, R.; Wagner, S. Modelling potential density of natural regeneration of European oak species (Quercus robur L., Quercus petraea (Matt.) Liebl.) depending on the distance to the potential seed source: Methodological approach for modelling dispersal from inventory data at forest enterprise level. For. Ecol. Manag. 2021, 482, 118802. [Google Scholar] [CrossRef]
- Wallraf, A.; Wagner, S. Effects of initial plant density, interspecific competition, tending and age on the survival and quality of oak (Quercus robur L.) in young mixed stands in European Russia. For. Ecol. Manag. 2019, 446, 272–284. [Google Scholar] [CrossRef]
- Orman, O.; Wrzesiński, P.; Dobrowolska, D.; Szewczyk, J. Regeneration growth and crown architecture of European beech and silver fir depend on gap characteristics and light gradient in the mixed montane old-growth stands. For. Ecol. Manag. 2020, 482, 118866. [Google Scholar] [CrossRef]
- Martínez-Izquierdo, L.; García, M.M.; Powers, J.S.; Schnitzer, S.A. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest. Ecology 2016, 97, 215–224. [Google Scholar] [CrossRef]
- Roberts, M.W.; D’Amato, A.W.; Kern, C.C.; Palik, B.J. Effects of variable retention harvesting on natural tree regeneration in Pinus resinosa (red pine) forests. For. Ecol. Manag. 2017, 385, 104–115. [Google Scholar] [CrossRef]
- Sabo, A.E.; Forrester, J.A.; Burton, J.I.; Jones, P.D.; Mladenoff, D.J.; Kruger, E.L. Ungulate exclusion accentuates increases in woody species richness and abundance with canopy gap creation in a temperate hardwood forest. For. Ecol. Manag. 2019, 433, 386–395. [Google Scholar] [CrossRef]
- Walters, M.B.; Farinosi, E.J.; Willis, J.L. Deer browsing and shrub competition set sapling recruitment height and interact with light to shape recruitment niches for temperate forest tree species. For. Ecol. Manag. 2020, 467, 118134. [Google Scholar] [CrossRef]
- Askeyev, O.; Askeyev, I. Birdfauna of Тatarstan Republic [Oрнитoфауна республики татарстан]; Birdfauna of tatarstan republic: Kazan, Russia, 1999. [Google Scholar]
- Savin, W.W. Influence of Wild Hoofed Animals on Reforestation in Conditions of Priobsky Water-Protected Pine-Birch Forestry Area [Влияние диких кoпытных живoтных на лесoвoзoбнoвление в услoвиях Приoбскoгo вoдooхраннoгo сoснoвo-березoвoгo лесoхoзяйственнoгo райoна]. ФГБОУ ВО «Уральский гoсударственный лесoтехнический университет», Ekaterinburg. 2020. Available online: https://dissercat.com/content/vliyanie-dikikh-kopytnykh-zhivotnykh-na-lesovozobnovlenie-v-usloviyakh-priobskogo-vodookhran (accessed on 30 August 2023).
- Marukhina, A. Wildlife Is a National Asset [Охoтничьи ресурсы—этo нарoднoе дoстoяние]. KazanFirst. 2022. Available online: https://kazanfirst.ru/articles/591488 (accessed on 30 August 2023).
- Afonina, A.; Starlings are dying out, rotan ‘devouring’ lakes, a disaster with fir: The nature of Tatarstan is transforming right now [Сквoрцы вымирают, рoтан «пoжирает» oзера, с пихтoй катастрoфа: прирoда Татарстана меняется на глазах]. БИЗНЕСONLINE 2022. Available online: https://www.business-gazeta.ru/article/570478 (accessed on 30 August 2023).
- Axer, M.; Martens, S.; Schlicht, R.; Eisenhauer, D.; Wagner, S. Modelling natural regeneration of Oak in Saxony, Germany: Identifying factors influencing the occurrence and density of regeneration. IForest Biogeosci. For. 2023, 16, 47–52. [Google Scholar] [CrossRef]
- Askeyev, A.; Askeyev, O.; Askeyev, I. Spatial distribution and long-term abundance dynamic of a jay and a three-toed woodpecker in forests of the Republic of Tatarstan [Прoстранственнoе распределение и мнoгoлетняя динамика численнoсти сoйки и трехпалoгo дятла в лесах республики Татарстан]. Russ. J. Appl. Ecol. 2017, 3, 9–13. [Google Scholar]
- Heydari, M.; Prévosto, B.; Abdi, T.; Mirzaei, J.; Mirab-Balou, M.; Rostami, N.; Khosravi, M.; Pothier, D. Establishment of oak seedlings in historically disturbed sites: Regeneration success as a function of stand structure and soil characteristics. Ecol. Eng. 2017, 107, 172–182. [Google Scholar] [CrossRef]
- Löf, M.; Castro, J.; Engman, M.; Leverkus, A.B.; Madsen, P.; Reque, J.A.; Villalobos, A.; Gardiner, E.S. Tamm Review: Direct seeding to restore oak (Quercus spp.) forests and woodlands. For. Ecol. Manag. 2019, 448, 474–489. [Google Scholar] [CrossRef]
- Martínez-Baroja, L.; Rey-Benayas, J.M.; Pérez-Camacho, L.; Villar-Salvador, P. Drivers of oak establishment in Mediterranean old fields from 25-year-old woodland islets planted to assist natural regeneration. Eur. J. For. Res. 2022, 141, 17–30. [Google Scholar] [CrossRef]
- Palma, A.C.; Laurance, S.G.W. A review of the use of direct seeding and seedling plantings in restoration: What do we know and where should we go? Appl. Veg. Sci. 2015, 18, 561–568. [Google Scholar] [CrossRef]
- Zadworny, M.; Jagodziński, A.M.; Łakomy, P.; Ufnalski, K.; Oleksyn, J. The silent shareholder in deterioration of oak growth: Common planting practices affect the long-term response of oaks to periodic drought. For. Ecol. Manag. 2014, 318, 133–141. [Google Scholar] [CrossRef]
- Glebov, V.P.; Verhunov, P.M.; Urmakov, G.N. Izd-vo Chuvashiya: Chuvashia, Russia, 1998; p. 199.
- Petrov, V.A.; Balasny, V.I. Growth of English oak and linden in forest plantations created by seedling of acorns and planting of seedlings Chuvash Republic cutover areus. For. Inf. 2016, 4, 66–72. [Google Scholar]
- Rahteenko, I.N. Growth and Interaction of Root Systems of Tree Species [Рoст и взаимoдействие кoрневых систем древесных растений]; AN BSSR: Minsk, Belarus, 1963; p. 254. [Google Scholar]
- Kolesnichenko, M.V. Biochemical Interactions of Trees [Биoхимические взаимoдействия древесных растений]; Lesn. prom-st: Moscow, Russia, 1968; p. 150. [Google Scholar]
- Woziwoda, B.; Dyderski, M.K.; Kobus, S.; Parzych, A.; Jagodziński, A.M. Natural regeneration and recruitment of native Quercus robur and introduced Q. rubra in European oak-pine mixed forests. For. Ecol. Manag. 2019, 449, 117473. [Google Scholar] [CrossRef]
- Petrov, V.A.; Ilyin, F.S.; Kuznetsova, N.F. Combined Restoration Method Oak in the Chuvash Republic. Forestry Information. 2021, 3, 35–44. [Google Scholar] [CrossRef]
- Saha, S.; Kühne, C.; Kohnle, U.; Bauhus, J. Eignung von Nester- und Trupppflanzungen für die Begründung von Eichenbeständen. AFZ Der Wald 2013, 2, 29–37. [Google Scholar]
- 3.03 Trupp-Pflanzung_bf.pdf. Available online: https://www.waldbesitzerportal.de/fileadmin/user_upload/Download/Waldumbau/3.03_Trupp-Pflanzung-bf.pdf (accessed on 6 May 2024).
- Anreichungskulturen_mb46_bf.pdf. Available online: https://www.lwf.bayern.de/mam/cms04/service/dateien/anreicherungskulturen_mb46_bf.pdf (accessed on 6 May 2024).
- Glushko, S.G.; Manukova, I.G.; Prokhorenko, N.B. Restoration of oak forest of Middle Volga region. Вестник Омскoгo Гoсударственнoгo Аграрнoгo Университета 2017, 3, 27. Available online: https://sciup.org/vosstanovlenie-dubrav-srednego-povolzhja-142199376-en (accessed on 20 November 2023).
- Petrov, V.A.; Ilyin, F.S.; Kuznetsova, N.F. Restoration of Oak Forests on the Basis of Natural Oak Renewal in the Middle Volga Region. Forestry informaion. 2022, 1, 35–49. [Google Scholar] [CrossRef]
- Bartsch, N.; Röhrig, E. Waldökologie: Einführung für Mitteleuropa; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Petersen, R.; Schüller, S.; Ammer, C. Early growth of planted pedunculate oak (Quercus petraea) in response to varying competition by birch (Betula pendula) over 8 years. Forstarchiv 2009, 80, 208–214. [Google Scholar]
- Wagner, S.; Röker, B. Birkenanflug in Eichenkulturen: Untersuchungen zur Dynamik der Konkurrenz über 5 Vegetationsperioden. Forst Holz 2000, 55, 18–22. [Google Scholar]
Parametric Coefficients: | Fixed Effect | Parameter | Standard Error | t Value | Pr (>|t|) | |
---|---|---|---|---|---|---|
intercept | 20.167 | 0.333 | 60.635 | <2 × 10−16 *** | ||
maple | −7.086 | 0.597 | −11.872 | <2 × 10−16 *** | ||
elm | −9.411 | 0.986 | −9.546 | <2 × 10−16 *** | ||
birch | 0.844 | 0.794 | 1.063 | 0.288 | ||
lime | −4.257 | 0.497 | −8.574 | <2 × 10−16 *** | ||
Approximate significance of smooth terms: | edf | Ref. df. | F | p-value | ||
age:aspen | 2.998 | 3.498 | 93.390 | <2 × 10−16 *** | ||
age:maple | 2.662 | 3.161 | 8.088 | 2.28 × 10−5 *** | ||
age:elm | 1.000 | 1.000 | 0.160 | 0.690 | ||
age:birch | 1.803 | 2.158 | 24.130 | <2 × 10−16 *** | ||
age:lime | 1.816 | 2.246 | 39.701 | <2 × 10−16 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasibullina, A.; Tiebel, K.; Wagner, S. Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts. Diversity 2024, 16, 376. https://doi.org/10.3390/d16070376
Nasibullina A, Tiebel K, Wagner S. Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts. Diversity. 2024; 16(7):376. https://doi.org/10.3390/d16070376
Chicago/Turabian StyleNasibullina, Alina, Katharina Tiebel, and Sven Wagner. 2024. "Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts" Diversity 16, no. 7: 376. https://doi.org/10.3390/d16070376
APA StyleNasibullina, A., Tiebel, K., & Wagner, S. (2024). Succession as a Natural Tool for Restoration of Oak—Lime Forests on Aspen-Covered Clearcuts. Diversity, 16(7), 376. https://doi.org/10.3390/d16070376