Red Sea Coral Reef Monitoring Site in Sudan after 39 Years Reveals Stagnant Reef Growth, Continuity and Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. History and Methodology of Surveys
Present Study
2.2. Ecological Processing of Large-Scale Image Documentation
2.3. Taxonomic Verification
2.4. Graphical Extraction of Community Data
2.5. Net Reef Accretion Estimate
2.6. Data Analysis
2.7. Multivariate Analysis
3. Results
3.1. General Observations of Test Plots
3.2. Status of the Test Plot TQ4 in 2019
3.2.1. Topographic Description of the Surveyed Area
3.2.2. Net Reef Accretion during Survey Intervals
3.3. Quantitative Evaluation of Coral Biocoenosis in 2019
3.3.1. Changes in the Bottom Cover
3.3.2. Changes in the Coverage of Cnidaria and Non-Cnidaria Taxa
3.3.3. Changes in the Relative Abundance of Hermatypic Coral Growth Forms
3.3.4. Changes at the Genus and Species level
3.4. Comparison over Time 1980–2019 in Test Plot TQ4
3.4.1. Statistical Evaluation
3.4.2. Changes of Coral Biocoenosis on Species Level
3.4.3. Species Turnover Rates after Schoener 1983
3.4.4. Multivariate Analysis
4. Discussion
4.1. Net Vertical Reef Accretion
4.2. The Status of TQ4 in 2019
4.3. Taxonomic Consistency
4.4. Indicator Species and Bio-Physiographic Zone
4.5. Dynamic Process Evaluation
4.6. Long-Term Shifting Community
Intermediate Disturbance Hypothesis
5. Conclusions
6. Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
HYDROZOA HYDROIDEA Milleporidae | Coscinaraeidae |
1 Millepora dichotoma Forskål | 70 Coscinaraea monile (Forskål) |
2 Millepora exaesa Forskål | |
Stylasteridae | Fungiidae |
4 Distichopora violacea (Pallas) | 71 Ctenactis echinata (Pallas) |
ANTHOZOA, OCTOCORALLIA | 74 Fungia (Lobactis) scutaria (Lamarck) |
Xeniidae | 155 Fungia sp. |
135 Ovabunda sp. | Poritidae |
Cladiellidae | 83 Porites sp. |
147 Klyxum sp. | Merulinidae |
Melithaeidae | 87 Dipsastraea pallida (Dana) |
32 Melithaea rubrinodis (Gray) | 89 Dipsastraea speciosa (Dana) |
ANTHOZOA, HEXACORALLIA | 90 Goniastrea stelligera (Dana) |
SCLERACTINIA | 91 Favites complanata (Ehrenberg) |
Psammocoridae | 94 Favites pentagona (Esper) |
156 Psammocora profundacella Gardiner | 96 Goniastrea edwardsi Chevalier |
Astrocoeniidae | 97 Goniastrea pectinata (Ehrenberg) |
35 Stylocoeniella armata (Ehrenberg) | 100 Leptoria phrygia (Ellis and Solander) |
Pocilloporidae | 107 Cyphastrea microphthalma (Lamarck) |
36 Stylophora pistillata (Esper) | 109 Echinopora gemmacea (Lamarck) |
40 Pocillopora verrucosa (Ellis and Solander) | 111 Echinopora lamellosa (Esper) |
Acroporidae | 150 Merulinidae/Faviidae |
43 Acropora cytherea (Dana) | 153 Coelastrea aspera (Verill) |
45 Acropora hemprichii (Ehrenberg) | Euphylliidae |
46 Acropora humilis (Dana) | 113 Galaxea fascicularis (Linnaeus) |
47 Acropora hyacinthus (Dana) | Leptastreidae |
48 Acropora pharaonis (Milne Edwards) | 104 Leptastrea purpurea (Dana) |
49 Acropora squarrosa (Ehrenberg) | Lobophylliidae |
50 Acropora “superba” (Klunzinger) | 118 Acanthastrea echinata (Dana) |
51 Acropora valida (Dana) | 119 Lobophyllia erythraea (Klunzinger) |
52 Acropora sp. | 121 Echinophyllia aspera (Ellis and Solander) |
149 Acropora maryae Veron | ZOANTHARIA |
58 Montipora stilosa (Ehrenberg) | Zoanthidae |
62 Montipora sp. | 123 Palythoa tuberculosa (Esper) |
Agariciidae | 148 Zoanthus sp. |
65 Pavona explanulata (Lamarck) | |
66 Pavona maldivensis (Gardiner) | |
67 Pavona varians (Verrill) | |
140 Pavona decussata (Dana) | |
69 Gardineroseris planulata (Dana) | |
152 Leptoseris sp. |
References
- Wang, Y.; Raitsos, D.E.; Krokos, G.; Zhan, P.; Hoteit, I. A Lagrangian model-based physical connectivity atlas of the Red Sea coral reefs. Front. Mar. Sci. 2022, 9, 925491. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef]
- Kotb, M.M.; Abdulaziz, M.; Al-Agwan, Z.A.; Al-Shaikh, K.A.; Al-Yami, H.; Banajah, A.; Devantier, L.M.; Eisinger, M.; Eltayeb, M.; Hassan, M.D.; et al. Status of coral reefs in the Red Sea and Gulf of Aden in 2004. In Status of coral reefs of the World, 2004; Wilkinson, C.R., Ed.; Global Coral Reef Monitoring Network and Australian Institute of Marine Science: Townsville, Australia, 2004; pp. 137–154. [Google Scholar]
- WCGA. Nomination of Sanganeb Marine National Park and Dungonab Bay/Mukkawar Island Marine National Park (Sudan–Red Sea) for Inscription on the World Heritage List 2016. Document; xix+117p. Available online: https://whc.unesco.org/document/169155 (accessed on 26 January 2024).
- Mergner, H.; Schuhmacher, H. Quantitative Analyse von Korallengemeinschaften des Sanganeb-Atolls (mittleres Rotes Meer). I. Die Besiedlungsstruktur hydrodynamisch unterschiedlich exponierter Außen- und Innenriffe. Helgol. Meeresunters. 1985, 39, 375–417. [Google Scholar] [CrossRef]
- UNESCO WHC (United Nations Educational Scientific and Cultural Organization World Heritage Centre). Sanganeb Marine National Park and Dungonab Bay-Mukkawar Island Marine National Park. [Internet]. 2017. Available online: http://whc.unesco.org/en/list/262 (accessed on 17 February 2023).
- IUCN (International Union for Conservation of Nature). Sanganeb Marine National Park and Dungonab Bay—Mukkawar Island Conservation Outlook. 2017. Available online: https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/555622045 (accessed on 17 February 2023).
- IUCN. Sanganeb Marine National Park and Dungonab Bay—Mukkawar Island Marine National Park 2020. Available online: https://worldheritageoutlook.iucn.org/ (accessed on 17 February 2023).
- WoRMS Editorial Board. World Register of Marine Species. Available online: https://www.marinespecies.org (accessed on 22 March 2023). [CrossRef]
- Sheppard, C.; Price, A.R.; Roberts, C.M. Marine Ecology of the Arabian Region; Academic Press: London, UK, 1992; 359p. [Google Scholar]
- Klaus, R.; Kemp, J.; Samoilys, M.; Anlauf, H.; El Din, S.; Abdalla, E. Ecological patterns and status of the reefs of Sudan. In Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, FL, USA, 7–11 July 2008; pp. 716–720. [Google Scholar]
- Claudino-Sales, V. Coastal World Heritage Sites; Springer: Dordrecht, The Netherlands, 2019; Volume 28. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of the World. 1 (1. Publ); Australian Institute of Marine Science: Townsville, Australia, 2000; p. 16.
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar] [CrossRef]
- Kleinhaus, K.; Al-Sawalmih, A.; Barshis, D.J.; Genin, A.; Grace, L.N.; Hoegh-Guldberg, O.; Loya, Y.; Meibom, A.; Osman, E.O.; Ruch, J.D.; et al. Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action. Front. Mar. Sci. 2020, 7, 90. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Hoteit, I.; Prihartato, P.K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y. Abrupt warming of the Red Sea. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Chaidez, V.; Dreano, D.; Agustí, S.; Duarte, C.M.; Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 2017, 7, 8144. [Google Scholar] [CrossRef]
- Mergner, H.; Schuhmacher, H. Morphologie, Ökologie und Zonierung von Korallenriffen bei Aqaba, (Golf von Aqaba, Rotes Meer). Helgoländer Wiss. Meeresunters. 1974, 26, 238–358. [Google Scholar] [CrossRef]
- Reinicke, G.B.; Schuhmacher, H. Reef Growth near the Darwin Point: Long-term studies on coral community structure, carbonate production, and bio-erosion at Aqaba (Red Sea). In The Improbable Gulf of Aqaba (Eilat)—Environment, Biodiversity and Preservation; Por, D., Ed.; Magnes Press: Jerusalem, Israel, 2008; pp. 321–336. [Google Scholar]
- Dustan, P.; Halas, J.C. Changes in the reef-coral community of Carysfort Reef, Key Largo, Florida: 1974 to 1982. Coral Reefs 1987, 6, 91–106. [Google Scholar] [CrossRef]
- Done, T.J. Constancy and Change in some Great Barrier Reef Coral Communities: 1980–1990. Am. Zool. 1992, 32, 655–662. [Google Scholar] [CrossRef]
- Porter, J.W.; Meier, O.W. Quantification of Loss and Change in Floridian Reef Coral Populations. Am. Zool. 1992, 32, 625–640. [Google Scholar] [CrossRef]
- Reinicke, G.B.; Kroll, D.K.; Schuhmacher, H. Patterns and Changes of Reef-Coral Communities at the Sanganeb-Atoll (Sudan, Gentral Red Sea). Facies 2003, 49, 271–298. [Google Scholar] [CrossRef]
- Somerfield, P.J.; Jaap, W.C.; Clarke, K.R.; Callahan, M.; Hackett, K.; Porter, J.; Lybolt, M.; Tsokos, C.; Yanev, G. Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 2008, 27, 951–965. [Google Scholar] [CrossRef]
- Bruckner, A.; Hill, R. Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching. Dis. Aquat. Org. 2009, 87, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Yeemin, T.; Pengsakun, S.; Yucharoen, M.; Klinthong, W.; Sangmanee, K.; Sutthacheep, M. Long-term changes in coral communities under stress from sediment. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2013, 96, 32–40. [Google Scholar] [CrossRef]
- Riegl, B.M.; Bruckner, A.W.; Rowlands, G.P.; Purkis, S.J.; Renaud, P. Red Sea Coral Reef Trajectories over 2 Decades Suggest Increasing Community Homogenization and Decline in Coral Size. PLoS ONE 2012, 7, e38396. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Pradhan, Y.; Brewin, R.J.W.; Stenchikov, G.; Hoteit, I. Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 2013, 8, e64909. [Google Scholar] [CrossRef]
- Sandin, S.; Zygliczynski, B.; Bonito, L.; Edwards, C.; Pedersen, N.; Sullivan, C.; Eynaud, Y.; Petrovic, V. Large area imagery collection and processing standard operating procedures (v.2.0). In Standard Operating Procedure Documents for Coral Reef Ecological Monitoring Collection; UC San Diego Library Digital Collections; Scripps Institution of Oceanography, UC: San Diego, CA, USA, 2019; pp. 1–65. [Google Scholar] [CrossRef]
- Veron, J.E.N.; Stafford-Smith, M.G.; Turak, E.; Devantier, L.M. Corals of the World. 2016. Available online: http://www.coralsoftheworld.org/page/home/ (accessed on 13 July 2023).
- Scheer, G.; Pillai, C.S.G. Report on the stony corals from the Red Sea. Zoologica 1983, 133, 1–198. [Google Scholar]
- Sheppard, C.; Sheppard, A.L.S. Corals and Coral Communities of Arabia. Fauna Saudi Arab. 1991, 12, 3–170. [Google Scholar]
- Schoener, T.W. Rate of Species Turnover Decreases from Lower to Higher Organisms: A Review of the Data. Oikos 1983, 41, 372–377. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.; Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis, 3rd ed.; Primer-E Ltd.: Plymouth, UK, 2014; 256p, Available online: https://plymsea.ac.uk/id/eprint/7656 (accessed on 20 March 2023).
- Vine, P. Red Sea Research: A Personal Perspective. In Oceanographic and Biological Aspects of the Red Sea; Rasul, N.M.A., Stewart, I.C.F., Eds.; Springer Oceanography: Cham, Switzerland, 2019; pp. 215–237. [Google Scholar] [CrossRef]
- Montaggioni, L.F. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth-Sci. Rev. 2005, 71, 1–75. [Google Scholar] [CrossRef]
- Dullo, W.C. Coral growth and reef growth: A brief review. Facies 2005, 51, 33–48. [Google Scholar] [CrossRef]
- Virgen-Urcelay, A.; Donner, S.D. Increase in the extent of mass coral bleaching over the past half-century, based on an updated global database. PLoS ONE 2023, 18, e0281719. [Google Scholar] [CrossRef]
- Cramer, K.L.; Donovan, M.K.; Jackson, J.B.C.; Greenstein, B.J.; Korpanty, C.A.; Cook, G.M.; Pandolfi, J.M. The transformation of Caribbean coral communities since humans. Ecol. Evol. 2021, 11, 10098–10118. [Google Scholar] [CrossRef]
- Mergner, H. Über den Hydroidenbewuchs einiger Korallenriffe des Roten Meeres. Z. Morphol. Okol. Tiere 1967, 60, 35–104. [Google Scholar] [CrossRef]
- Glynn, P.W.; Manzello, D.P. Bioerosion and Coral Reef Growth: A Dynamic Balance. In Coral Reefs in the Anthropocene; Birkeland, C., Ed.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Genevier, L.G.C.; Jamil, T.; Raitsos, D.E.; Krokos, G.; Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 2019, 25, 2338–2351. [Google Scholar] [CrossRef] [PubMed]
- Gergis, J.L.; Fowler, A.M. A history of ENSO events since AD 1525: Implications for future climate change. Clim. Chang. 2009, 92, 343–387. [Google Scholar] [CrossRef]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.; Kleypas, J. Coral reefs in the Anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef]
- Abelson, A. Are we sacrificing the future of coral reefs on the altar of the “climate change” narrative? ICES J. Mar. Sci. 2020, 77, 40–45. [Google Scholar] [CrossRef]
- Cantin, N.E.; Cohen, A.L.; Karnauskas, K.B.; Tarrant, A.M.; McCorkle, D.C. Ocean warming slows coral growth in the central Red Sea. Science 2010, 329, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Kemp, J.; Klaus, R.; Salem, M.; Awadalla, Y.; Saleh, B. Survey of the Proposed Marine Protected Area at Dunganob Bay and Mukkawar Island, Sudan. In PERSGA SAP Component 5 A, Regional Network of Marine Protected Areas; IUCN World Heritage Outlook: Gland, Switzerland, 2002; 164p. [Google Scholar]
- DeVantier, L.; Turak, E.; Al-Shaik, K. Coral bleaching in the central northern Saudi Arabian Red Sea, August-September 1998. In Proceedings of the International Symposium on the Extent and Impact of Coral Bleaching in the Arabian Region, Riyadh, Saudi Arabia, 5–9 February 2000; pp. 110–127. [Google Scholar]
- Furby, K.A.; Bouwmeester, J.; Berumen, M.L. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 2013, 32, 505–513. [Google Scholar] [CrossRef]
- Monroe, A.A.; Ziegler, M.; Roik, A.; Röthig, T.; Hardenstine, R.S.; Emms, M.A.; Jensen, T.; Voolstra, C.R.; Berumen, M.L. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 2018, 13, e0195814. [Google Scholar] [CrossRef] [PubMed]
- DeCarlo, T.M. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ 2020, 8, e10200. [Google Scholar] [CrossRef] [PubMed]
- Agulles, M.; Jordà, G.; Jones, B.; Agustí, S.; Duarte, C.M. Temporal evolution of temperatures in the Red Sea and the Gulf of Aden based on in situ observations (1958–2017). Ocean Sci. 2020, 16, 149–166. [Google Scholar] [CrossRef]
- Riegl, B.; Velimirov, B. The Structure of Coral Communities at Hurghada in the Northern Red Sea. Mar. Ecol. 1994, 15, 213–231. [Google Scholar] [CrossRef]
- Gouezo, M.; Olsudong, D.; Fabricius, K.; Harrison, P.; Golbuu, Y.; Doropoulos, C. Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Sci. Rep. 2020, 10, 2471. [Google Scholar] [CrossRef] [PubMed]
- Mergner, H. Structure, ecology and zonation of Red Sea coral reefs (in comparison with South Indian and Jamaican reefs). Symp. Zool. Soc. Lond. 1971, 28, 141–161. [Google Scholar]
- Schuhmacher, H. On the conditions accompanying the first settlement of corals on artificial reefs with special reference to the influence of grazing sea urchins (Eilat, Red Sea). In Proceedings of the 2nd International Symposium Coral Reefs, Brisbane, Australia, 22 June–2 July 1973; Conducted on Board the MV Marco Polo. Great Barrier Reef Community: Brisbane, Australia, 1974; Volume 1, pp. 257–267. [Google Scholar]
- Mergner, H. Hydroids as indicator species for ecological parameters in Caribbean and Red Sea coral reefs. In Proceedings of the 3rd International Coral Reef Symposium, Miami, FL, USA, May 1977; Volume 1, pp. 119–125. [Google Scholar]
- Attalla, T.; Hanafy, M.; Aamer, M. Growth rates of the two reef-building species, Acropora humilis and Millepora platyphylla at Hurghada, Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 2011, 15, 1–15. [Google Scholar] [CrossRef]
- Tortolero-Langarica, J.d.J.A.; Rodríguez-Troncoso, A.P.; Cupul-Magaña, A.L.; Carricart-Ganivet, J.P. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 2017, 5, e3191. [Google Scholar] [CrossRef]
- Osman, E.O.; Smith, D.J.; Ziegler, M.; Kürten, B.; Conrad, C.; El-Haddad, K.M.; Voolstra, C.R.; Suggett, D.J. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 2018, 24, e474–e484. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, R.; Aylagas, E.; Pearman, J.K.; Curdia, J.; Lozano-Cortés, D.; Coker, D.J.; Jones, B.; Berumen, M.L.; Carvalho, S. Inter-annual variability patterns of reef cryptobiota in the central Red Sea across a shelf gradient. Sci. Rep. 2022, 12, 16944. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.; Osborne, K.; Emslie, M.; Rivero, M.G. AIMS Reef Monitoring 7 May 2021. AIMS Reef Monitoring 2021. Available online: https://storymaps.arcgis.com/stories/4a491a1712f94a779c06d339e6310fdf (accessed on 17 February 2023).
- Bowden-Kerby, A. Coral-Focused Climate Change Adaptation and Restoration Based on Accelerating Natural Processes: Launching the “Reefs of Hope” Paradigm. Oceans 2023, 4, 13–26. [Google Scholar] [CrossRef]
- El-Sorogy, A.S. Contributions to the pleistocene coral reefs of the Red Sea Coast, Egypt. Arab Gulf J. Sci. Res. 2008, 26, 63–85. [Google Scholar]
- Ivkić, A.; Kroh, A.; Mansour, A.; Osman, M.; Hassan, M.; Zuschin, M. Millepora in Pleistocene coral reefs of Egypt. Lethaia 2022, 55, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dubé, C.E.; Bourmaud, C.A.; Mercière, A.; Planes, S.; Boissin, É. Ecology, Biology and Genetics of Millepora Hydrocorals on Coral Reefs. In Invertebrates—Ecophysiology and Management; Ray, S., Diarte-Plata, G., Escamilla-Montes, R., Eds.; IntechOpen: London, UK, 2020; pp. 1–36. [Google Scholar] [CrossRef]
- Riegl, B.; Piller, W.E. Distribution and environmental control of coral assemblages in northern Safaga Bay (Red Sea, Egypt). Facies 1997, 36, 141–162. [Google Scholar] [CrossRef]
- Lenihan, H.S.; Holbrook, S.J.; Schmitt, R.J.; Brooks, A.J. Influence of corallivory, competition, and habitat structure on coral community shifts. Ecology 2011, 92, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Lenihan, H.S.; Edmund, P.J. Response of juvenile branching corals to damage from corallivores in varying water flow and temperature. Mar. Ecol. Prog. Ser. 2010, 409, 51–63. [Google Scholar] [CrossRef]
- Clements, C.S.; Hay, M.E. Biodiversity has a positive but saturating effect on imperilled coral reefs. Sci. Adv. 2021, 7, eabi8592. [Google Scholar] [CrossRef]
- Ali, M.E.; Elhag, E.A. Coral diversity and similarity along Sudanese Red Sea Fringing reef. Int. J. Adv. Res. 2016, 4, 720–727. [Google Scholar] [CrossRef]
- Karlson, R.H. Dynamics of Coral Communities; Population and Community Biology Series 23; Kluwer: Dordrecht, The Netherlands, 1999; pp. i–x + 1–150. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.H. Disturbance and recovery of coral assemblages. Coral Reefs 1997, 16, S101–S113. [Google Scholar] [CrossRef]
- Banc-Prandi, G.; Evensen, N.R.; Barshis, D.J.; Perna, G.; Moussa Omar, Y.; Fine, M. Assessment of temperature optimum signatures of corals at both latitudinal extremes of the Red Sea. Conserv. Physiol. 2022, 10, coac002. [Google Scholar] [CrossRef] [PubMed]
Year of survey | 1980 | 1991 | 2019 |
A: Bottom coverage | |||
Substrate | 43.9 | 55.5 | 52.2 |
Cnidarian cover | 52.8 | 42.5 | 44.5 |
Non-cnidarian cover | 2.5 | 2 | 3.3 |
Sum*: total area cover | 99.2 | 100 | 100 |
B: Coverage of Cnidarian Taxa (%) | |||
Scleractinia | 45.2 | 32.4 | 41.7 |
Hydroidea | 5.2 | 5.9 | 2.3 |
Alcyonaria | 1 | 2.7 | 0.1 |
Other Cnidaria | 1.4 | 1.5 | 0.6 |
C: Non-cnidarian cover (%) | |||
Coralline algae | 1.9 | 1.1 | 3.2 |
## of patches | 53 | 51 | 286 |
Porifera | 0.5 | 0.9 | 0.1 |
## of individual units | 149 | 70 | 13 |
D: Cnidarian growth forms, total hard and soft corals (%) | |||
Branching corals | 38.3 | 31.7 | 28.4 |
Massive corals | 6.3 | 3 | 4.9 |
Encrusting corals | 5.6 | 3.2 | 7.3 |
Total hard corals | 50.2 | 38.2 | 40.6 |
Soft corals | 2.4 | 4.2 | 0.7 |
Turnover Rate | |||
---|---|---|---|
1980–1991 | 1991–2019 | 1980–2019 | |
Iabs | 14 | 15 | 11 |
Eabs | 18 | 15 | 15 |
S1 | 47 | 43 | 47 |
S2 | 43 | 46 | 46 |
Trel (%/yr) | 3.23 | 1.2 | 0.72 |
Former Names in the 1980 and 1991 Surveys | Updated Taxa Names [9] |
---|---|
Acropora corymbosa (Lamarck, 1816) | Acropora cytherea (Dana, 1846) |
Acropora squarrosa (Ehrenberg, 1834) | Acropora maryae * Veron, 2000 |
Acropora superba (Klunzinger, 1879) | Acropora “superba” * (Klunzinger, 1879, sensu [5]) |
Acropora variabilis (Klunzinger, 1879) | Acropora valida (Dana, 1846) |
Clathraria rubrinodis (Gray, 1859) | Melithaea rubrinodis (Gray, 1859) |
Favia favus (Forskål, 1775) | Dipsastraea favus (Forskål, 1775) |
Favia rotumana (Gardiner, 1899) | Dipsastraea rotumana (Gardiner, 1899) |
Favia speciosa (Dana, 1846) | Dipsastraea speciosa (Dana, 1846) |
Favia stelligera (Dana, 1846) | Goniastrea stelligera (Dana, 1834) |
Favia pallida (Dana, 1846) | Dipsastraea pallida (Dana, 1846) |
Goniastrea aspera Verrill, 1866 | Coelastrea aspera (Verrill, 1866) |
Goniopora minor Crossland, 1952 | Goniopora pedunculata Quoy and Gaimard, 1833 |
Symphyllia erythraea (Klunzinger, 1879) | Lobophyllia erythraea (Klunzinger, 1879) |
Fungia scutaria Lamarck, 1801 | Lobactis scutaria (Lamarck, 1801) |
Fungia horrida Dana, 1846 | Danafungia horrida (Dana, 1846) |
Fungia klunzingeri Döderlein, 1901 | Danafungia horrida (Dana, 1846) |
Fungia echinata (Pallas, 1766) | Ctenactis echinata (Pallas, 1766) |
Xenia spp. Lamarck, 1816 | Ovabunda spp. Alderslade, 2001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhamid, S.; Reinicke, G.B.; Klaus, R.; Höhn, J.; Saad, O.S.; Grenzdörffer, G. Red Sea Coral Reef Monitoring Site in Sudan after 39 Years Reveals Stagnant Reef Growth, Continuity and Change. Diversity 2024, 16, 379. https://doi.org/10.3390/d16070379
Abdelhamid S, Reinicke GB, Klaus R, Höhn J, Saad OS, Grenzdörffer G. Red Sea Coral Reef Monitoring Site in Sudan after 39 Years Reveals Stagnant Reef Growth, Continuity and Change. Diversity. 2024; 16(7):379. https://doi.org/10.3390/d16070379
Chicago/Turabian StyleAbdelhamid, Sarah, Götz B. Reinicke, Rebecca Klaus, Johannes Höhn, Osama S. Saad, and Görres Grenzdörffer. 2024. "Red Sea Coral Reef Monitoring Site in Sudan after 39 Years Reveals Stagnant Reef Growth, Continuity and Change" Diversity 16, no. 7: 379. https://doi.org/10.3390/d16070379
APA StyleAbdelhamid, S., Reinicke, G. B., Klaus, R., Höhn, J., Saad, O. S., & Grenzdörffer, G. (2024). Red Sea Coral Reef Monitoring Site in Sudan after 39 Years Reveals Stagnant Reef Growth, Continuity and Change. Diversity, 16(7), 379. https://doi.org/10.3390/d16070379