Diversity of Endophytic Fungi and Bacteria Inhabiting the Roots of the Woodland Grass, Festuca gigantea (Poaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Root Sampling and Sterilization
2.2. Microscopy and Estimation of the Abundance of Endophytic Fungi in F. gigantea Roots
2.3. Isolation of Fungi
2.4. Isolation of Bacteria
2.5. DNA Extraction from Fungi and Bacteria Culture Colonies
2.6. Standard DNA Amplification and Sequencing
2.7. Morphological Characterization of Endophytic Fungi
2.8. Photography
3. Results
3.1. Cytological Morphotypes of Endophytes and Their Abundance in the Roots of F. gigantea
3.2. Fungal Endophyte Isolation and Taxonomic Assignment
3.3. Bacterial Endophyte Isolation and Taxonomic Assignment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kandel, S.L.; Joubert, P.M.; Doty, S.L. Bacterial endophyte colonization and distribution within plants. Microorganisms 2017, 5, 77. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Toju, H.; Kurokawa, H.; Kenta, T. Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a grassland. Front. Microbiol. 2019, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Porras-Alfaro, A.; Herrera, J.; Sinsabaugh, R.L.; Odenbach, K.J.; Lowrey, T.; Natvig, D.O. Novel root fungal consortium associated with a dominant desert grass. Appl. Environ. Microbiol. 2008, 74, 2805–2813. [Google Scholar] [CrossRef]
- Mandyam, K.; Loughin, T.; Jumpponen, A. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 2010, 102, 813–821. [Google Scholar] [CrossRef]
- Glynou, K.; Ali, T.; Buch, A.-K.; Haghi Kia, S.; Ploch, S.; Xia, X.; Çelik, A.; Thines, M.; Maciá-Vicente, J.G. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 2016, 18, 2418–2434. [Google Scholar] [CrossRef]
- Knapp, D.G.; Imrefi, I.; Boldpurev, E.; Csíkos, S.; Akhmetova, G.; Berek-Nagy, P.J.; Otgonsuren, B.; Kovács, G.M. Root-colonizing endophytic fungi of the dominant grass Stipa krylovii from a mongolian steppe grassland. Front. Microbiol. 2019, 10, 2565. [Google Scholar] [CrossRef]
- Menoyo, E.; Teste, F.P.; Ferrero, M.A.; Lugo, M.A. Associations between fungal root endophytes and grass dominance in arid highlands. Fungal Ecol. 2020, 45, 100924. [Google Scholar] [CrossRef]
- Mandyam, K.; Jumpponen, A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol. 2005, 53, 173–189. [Google Scholar] [CrossRef]
- Knapp, D.G.; Pintye, A.; Kovács, G.M. The dark side is not fastidious—Dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE 2012, 7, e32570. [Google Scholar] [CrossRef]
- Andrade-Linares, D.; Franken, P. Fungal endophytes in plant roots: Taxonomy, colonization patterns, and functions. In Symbiotic Endophytes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 311–334. [Google Scholar] [CrossRef]
- Knapp, D.G.; Németh, J.B.; Barry, K.; Hainaut, M.; Henrissat, B.; Johnson, J.; Kuo, A.; Lim, J.H.P.; Lipzen, A.; Nolan, M.; et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci. Rep. 2018, 8, 6321. [Google Scholar] [CrossRef] [PubMed]
- Addy, H.D.; Piercey, M.M.; Currah, R.S. Microfungal endophytes in roots. Can. J. Bot. 2005, 83, 1–13. [Google Scholar] [CrossRef]
- Wearn, J.A.; Sutton, B.C.; Morley, N.J.; Gange, A.C. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J. Ecol. 2012, 100, 1085–1092. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L. The epichloae, symbionts of the grass subfamily Poöideae. Ann. Mo. Bot. Gard. 2010, 97, 646–665. [Google Scholar] [CrossRef]
- Tadych, M.; Bergen, M.S.; White, J.F. Epichloë spp. associated with grasses: New insights on life cycles, dissemination and evolution. Mycologia 2014, 106, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Saikkonen, K.; Ahlholm, J.; Helander, M.; Lehtimäki, S.; Niemeläinen, O. Endophytic fungi in wild and cultivated grasses in Finland. Ecography 2000, 23, 360–366. [Google Scholar] [CrossRef]
- Leyronas, C.; Raynal, G. Presence of neotyphodium-like endophytes in European grasses. Ann. Appl. Biol. 2001, 139, 119–127. [Google Scholar] [CrossRef]
- Müller, C.B.; Krauss, J. Symbiosis between grasses and asexual fungal endophytes. Curr. Opin. Plant Biol. 2005, 8, 450–456. [Google Scholar] [CrossRef]
- Soto-Barajas, M.; Azquez-De-Aldana, B.; Alvarez, A.; Zabalgogeazcoa, I. Sympatric Epichloë species and chemotypic profiles in natural populations of Lolium Perenne. Fungal Ecol. 2019, 39, 231–241. [Google Scholar] [CrossRef]
- Krauss, J.; Vikuk, V.; Young, C.A.; Krischke, M.; Mueller, M.J.; Baerenfaller, K. Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 2020, 8, 498. [Google Scholar] [CrossRef]
- Hume, D.E.; Stewart, A.V.; Simpson, W.R.; Johnson, R.D. Epichloë fungal endophytes play a fundamental role in New Zealand grasslands. J. R. Soc. N. Z. 2020, 50, 279–298. [Google Scholar] [CrossRef]
- Garces, K.R.; Sage, H.E.; Christian, N.; Emery, S.M. Epichloë increases root fungal endophyte richness and alters root fungal endophyte composition in a changing world. J. Fungi 2022, 8, 1142. [Google Scholar] [CrossRef]
- Tichý, L.; Axmanová, I.; Dengler, J.; Guarino, R.; Jansen, F.; Midolo, G.; Nobis, M.P.; Van Meerbeek, K.; Aćić, S.; Attorre, F.; et al. Ellenberg-type indicator values for European vascular plant species. J. Veg. Sci. 2023, 34, e13168. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.M.; Bush, L.P.; Fannin, F.F.; Rowan, D.D.; Tapper, B.A.; Bacon, C.W.; Johnson, M.C. Fungal endophyte-infected grasses: Alkaloid accumulation and aphid response. J. Chem. Ecol. 1990, 16, 3301–3315. [Google Scholar] [CrossRef] [PubMed]
- Leuchtmann, A. Isozyme relationships of Acremonium endophytes from twelve Festuca species. Mycol. Res. 1994, 98, 25–33. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Schmidt, D.; Bush, L.P. Different levels of protective alkaloids in grasses with stroma-forming and seed-transmitted Epichloë/Neotyphodium endophytes. J. Chem. Ecol. 2000, 26, 1025–1036. [Google Scholar] [CrossRef]
- Popkova, E.G.; Blagoveshchenskaya, E.Y. Fungal endophyte colonization within different organs of Festuca gigantea (L.) VILL. Bull. Mosc. Soc. Nat. Scientists. Dep. Biol. 2019, 124, 65–69. [Google Scholar]
- de Souza, R.S.C.; Okura, V.K.; Armanhi, J.S.L.; Jorrín, B.; Lozano, N.; da Silva, M.J.; González-Guerrero, M.; de Araújo, L.M.; Verza, N.C.; Bagheri, H.C.; et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 2016, 6, 28774. [Google Scholar] [CrossRef]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth promoting Rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Aloo, B.N.; Nyongesa, B.O.; Were, J.O.; Were, B.A.; Tumuhairwe, J.B. Rhizobacterial biomolecules for sustainable crop production and environmental management: Plausible functions and molecular mechanism. In Microbial Biomolecules Emerging Approach in Agriculture, Pharmaceuticals and Environment Management, 1st ed.; Kumar, A., Bilal, M., Ferreira, L.F.R., Madhuree, K., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–30. [Google Scholar]
- Coy, R.M.; Held, D.W.; Kloepper, J.W. Rhizobacterial colonization of bermudagrass by Bacillus spp. in a Marvyn loamy sand soil. Appl. Soil Ecol. 2019, 141, 10–17. [Google Scholar] [CrossRef]
- White, J.F.; Chen, Q.; Torres, M.S.; Mattera, R.; Irizarry, I.; Tadych, M.; Bergen, M. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB Plants 2015, 7, plu093. [Google Scholar] [CrossRef]
- Roberts, E.L. Plant growth promoting fungal and bacterial endophytes of Tall Fescue: A Review. Grass Res. 2022, 2, 2. [Google Scholar] [CrossRef]
- Kiheri, H.; Heinonsalo, J.; Timonen, S. Staining and microscopy of mycorrhizal fungal colonization in preserved ericoid plant roots. J. Berry Res. 2017, 4, 231–237. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Groenewald, J.Z.; Nakashima, C.; Nishikawa, J.; Shin, H.-D.; Park, J.-H.; Jama, A.N.; Groenewald, M.; Braun, U.; Crous, P.W. Species concepts in cercospora: Spotting the weeds among the roses. Stud. Mycol. 2013, 75, 115–170. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.-H.; Sung, J.-M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 2007, 44, 1204–1223. [Google Scholar] [CrossRef]
- Coombs, J.T.; Franco, C.M.M. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 2003, 69, 5603–5608. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Potvin, L.R.; Richter, D.L.; Jurgensen, M.F.; Dumroese, R.K. Association of Pinus Banksiana Lamb. and Populus Tremuloides Michx. seedling fine roots with Sistotrema Brinkmannii (Bres.) J. Erikss. (Basidiomycotina). Mycorrhiza 2012, 22, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Kovács, G.; Szigetvári, C. Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the Great Hungarian Plain. Phyton-Ann. Rei Bot. 2002, 42, 211–223. [Google Scholar]
- Alibrandi, P.; Schnell, S.; Perotto, S.; Cardinale, M. Diversity and structure of the endophytic bacterial communities associated with three terrestrial orchid species as revealed by 16S rRNA gene metabarcoding. Front. Microbiol. 2020, 11, 604964. [Google Scholar] [CrossRef] [PubMed]
- Hassani, M.A.; Durán, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Márquez, S.; Bills, G.; Zabalgogeazcoa, I. The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers. 2007, 27, 171–195. [Google Scholar]
- Toju, H.; Yamamoto, S.; Sato, H.; Tanabe, A.S.; Gilbert, G.S.; Kadowaki, K. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “Codominance” of mycorrhizal and root-endophytic fungi. Ecol. Evol. 2013, 3, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, M.; Kushveer, J.S.; Sarma, V.V. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 2019, 10, 798–1079. [Google Scholar] [CrossRef]
- Pereira, E.; Vázquez de Aldana, B.R.; San Emeterio, L.; Zabalgogeazcoa, I. A survey of culturable fungal endophytes from Festuca rubra subsp. pruinosa, a grass from marine cliffs, reveals a core microbiome. Front. Microbiol. 2019, 9, 3321. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B.P.H.J. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol. Prog. 2015, 15, 3. [Google Scholar] [CrossRef]
- El Gobashy, S.F.; Mikhail, W.Z.A.; Ismail, A.M.; Zekry, A.; Moretti, A.; Susca, A.; Soliman, A.S. Phylogenetic, Toxigenic and virulence profiles of Alternaria species causing leaf blight of tomato in Egypt. Mycol. Prog. 2018, 17, 1269–1282. [Google Scholar] [CrossRef]
- DeMers, M. Alternaria alternata as endophyte and pathogen. Microbiol. Read. Engl. 2022, 168, 001153. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Márquez, S.; Bills, G.; Herrero, N.; Zabalgogeazcoa, I. Non-systemic fungal endophytes of grasses. Fungal Ecol 2011, 5, 289–297. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Groenewald, J.Z.; Binder, M.; Crous, P.W. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef]
- Armitage, A.D.; Barbara, D.J.; Harrison, R.J.; Lane, C.R.; Sreenivasaprasad, S.; Woodhall, J.W.; Clarkson, J.P. Discrete lineages within Alternaria alternata species group: Identification using new highly variable loci and support from morphological characters. Fungal Biol. 2015, 119, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Armitage, A.D.; Cockerton, H.M.; Sreenivasaprasad, S.; Woodhall, J.; Lane, C.R.; Harrison, R.J.; Clarkson, J.P. Genomics evolutionary history and diagnostics of the Alternaria alternata species group including apple and asian pear pathotypes. Front. Microbiol. 2020, 10, 3124. [Google Scholar] [CrossRef]
- Wei, X.K.; Xue, L.H.; Li, C.J. First report of leaf spot caused by Alternaria alternata on italian ryegrass (Lolium multiflorum) in China. Plant Dis. 2021, 105, 1211. [Google Scholar] [CrossRef]
- Jumpponen, A. Dark septate endophytes—Are they mycorrhizal? Mycorrhiza 2001, 11, 207–211. [Google Scholar] [CrossRef]
- Knapp, D.G.; Kovács, G.M.; Zajta, E.; Groenewald, J.Z.; Crous, P.W. Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia-Mol. Phylogeny Evol. Fungi 2015, 35, 87–100. [Google Scholar] [CrossRef]
- Maciá-Vicente, J.G.; Piepenbring, M.; Koukol, O. Brassicaceous roots as an unexpected diversity hot-spot of helotialean endophytes. IMA Fungus 2020, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Gramaje, D.; Mostert, L.; Armengol, J. Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathol. Mediterr. 2011, 50, 112–126. [Google Scholar]
- Travadon, R.; Lawrence, D.P.; Rooney-Latham, S.; Gubler, W.D.; Wilcox, W.F.; Rolshausen, P.E.; Baumgartner, K. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol. 2015, 119, 53–66. [Google Scholar] [CrossRef]
- Schol-Schwarz, M.B. Revision of the genus Phialophora (Moniliales). Persoonia-Mol. Phylogeny Evol. Fungi 1970, 6, 59–94. [Google Scholar]
- Ames, L.M. A Monograph of the Chaetomiaceae; Army Research Office: Durham, NC, USA, 1961. [Google Scholar]
- Sánchez Márquez, S.; Bills, G.; Zabalgogeazcoa, I. Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers. 2008, 33, 87–100. [Google Scholar]
- Barbosa, F.; Raja, H.; Gusmao, L. Three Chaetomium species (Chaetomiaceae, Ascomycota) from the semi-arid region of Brazil. Sitientibus Sér. Ciênc. Biológicas 2012, 12, 115–118. [Google Scholar] [CrossRef]
- Fortes, N.; Vitoria, N. New records of Chaetomium and Chaetomium-like species (Ascomycota, Chaetomiaceae) on Syagrus coronata from the Raso da Catarina Ecological Station (ESEC), Caatinga, Bahia, Brazil. Mycotaxon 2023, 137, 171. [Google Scholar] [CrossRef]
- Sánchez Márquez, S.; Bills, G.F.; Domínguez Acuña, L.; Zabalgogeazcoa, I. Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers. 2010, 41, 115–123. [Google Scholar] [CrossRef]
- Moya, P.; Cipollone, J.; Sisterna, M. The fungal genus Chaetomium and its agricultural applications. In Plant Defence: Biological Control; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2020; Volume 22, pp. 289–308. [Google Scholar]
- Soytong, K.; Kahonokmedhakul, S.; Song, J.; Tongon, R.; Soytong, K.; Kahonokmedhakul, S.; Song, J.; Tongon, R. Chaetomium application in agriculture. In Technology in Agriculture; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Wirsel, S.G.R.; Leibinger, W.; Ernst, M.; Mendgen, K. Genetic diversity of fungi closely associated with common reed. New Phytol. 2001, 149, 589–598. [Google Scholar] [CrossRef]
- Gao, Y.; Ren, G.-C.; Wanasinghe, D.; Xu, J.-C.; Farias, A.; Gui, H. Two new species and a new record of Microdochium from grasses in Yunnan province, South-West China. J. Fungi 2022, 8, 1297. [Google Scholar] [CrossRef]
- David, A.S.; Seabloom, E.W.; May, G. Plant host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb. Ecol. 2016, 71, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.J.; Deacon, J.W. Control of the take-all fungus by Microdochium bolleyi, and interactions involving M. Bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant Soil 1987, 98, 231–237. [Google Scholar] [CrossRef]
- Ünal, F. Phylogenetic analysis of Microdochium spp. associated with turfgrass and their pathogenicity in cereals. PeerJ 2024, 12, e16837. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.K.; Kim, W.G.; Choi, H.W.; Lee, S.Y. Identification of Microdochium bolleyi associated with basal rot of creeping bent grass in Korea. Mycobiology 2008, 36, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Yagame, T.; Fukiharu, T.; Yamato, M.; Suzuki, A.; Iwase, K. Identification of a mycorrhizal fungus in Epipogium roseum (Orchidaceae) from morphological characteristics of basidiomata. Mycoscience 2008, 49, 147–151. [Google Scholar] [CrossRef]
- Yagame, T.; Funabiki, E.; Yukawa, T.; Nagasawa, E. Identification of mycobionts in an achlorophyllous orchid, Cremastra aphylla (Orchidaceae), based on molecular analysis and basidioma morphology. Mycoscience 2018, 59, 18–23. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, S.; Hang, Y.; Xie, G.; Ji, N.; Zhang, M. Mycorrhizal fungus Coprinellus Disseminatus influences seed germination of the terrestrial orchid Cremastra Appendiculata (D. Don) Makino. Sci. Hortic. 2022, 293, 110724. [Google Scholar] [CrossRef]
- de Errasti, A.; Carmarán, C.C.; Novas, M.V. Diversity and significance of fungal endophytes from living stems of naturalized trees from Argentina. Fungal Divers. 2010, 41, 29–40. [Google Scholar] [CrossRef]
- Martin, R.; Gazis, R.; Skaltsas, D.; Chaverri, P.; Hibbett, D. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 2015, 107, 284–297. [Google Scholar] [CrossRef]
- Menkis, A.; Vasiliauskas, R.; Taylor, A.F.S.; Stenström, E.; Stenlid, J.; Finlay, R. Fungi in decayed roots of conifer seedlings in forest nurseries, afforested clear-cuts and abandoned farmland. Plant Pathol. 2006, 55, 117–129. [Google Scholar] [CrossRef]
- Son, E.; Kim, J.-J.; Lim, Y.W.; Au-Yeung, T.T.; Yang, C.Y.H.; Breuil, C. Diversity and decay ability of basidiomycetes isolated from lodgepole pines killed by the mountain pine beetle. Can. J. Microbiol. 2011, 57, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Steiner, U.; Ahimsa-Müller, M.A.; Markert, A.; Kucht, S.; Groß, J.; Kauf, N.; Kuzma, M.; Zych, M.; Lamshöft, M.; Furmanowa, M.; et al. Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 2006, 224, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Burņeviča, N.; Kļaviņa, D.; Lione, G.; Pellicciaro, M.; Silbauma, L.; Zaļuma, A.; Nikolajeva, V.; Gonthier, P. In vitro screening of Latvian isolates of Bjerkandera adusta and Sistotrema brinkmannii as potential biocontrol agents against Heterobasidion root and butt rots. Balt. For. 2022, 28, 1–9. [Google Scholar] [CrossRef]
- Hallenberg, N. Speciation and distribution in Corticiaceae (Basidiomycetes). Plant Syst. Evol. 1991, 177, 93–110. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhu, J.N.; Liu, Q.F.; Liu, Y.; Liu, M.; Liu, L.; Zhang, Q. Comparison of the diversity of root-associated bacteria in Phragmites Australis and Typha Angustifolia L. in artificial wetlands. World J. Microbiol. Biotechnol. 2013, 29, 1499–1508. [Google Scholar] [CrossRef]
- Wemheuer, F.; Kaiser, K.; Karlovsky, P.; Daniel, R.; Vidal, S.; Wemheuer, B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 2017, 7, 40914. [Google Scholar] [CrossRef]
Locus | Primers | Primer Sequences (5′–3′) | Tm °C | Reference |
---|---|---|---|---|
ITS | ITS1 | TCCGTAGGTGAACCTGCGG | 54 | [38] |
ITS4 | TCCTCCGCTTATTGATATGC | |||
TEFa | EF1-728F | CATCGAGAAGTTCGAGAAGG | 54 | [39] |
EF-2 | GGARGTACCAGTSATCATGTT | |||
SSU | NS1 | GTAGTCATATGCTTGTCTC | 49 | [38] |
NS4 | CTTCCGTCAATTCCTTTAAG | |||
RPB2 | RPB2-5F2 | GGGGWGAYCAGAAGAAGGC | 58 | [40] |
fRPB2-7cR | CCCATRGCTTGYTTRCCCAT |
Locus | Primers | Primer Sequences (5′–3′) | Tm °C | Reference |
---|---|---|---|---|
16S rDNA | 27f CM | AGAGTTTGATCMTGGCTCAG | 52 | [41] |
1492R | TACGGYTACCTTGTTACGACTT | |||
16S rDNA | 704F | GTAGCGGTGAAATGCGTAGA | 56 | [41] |
765R | CTGTTTGCTCCCCACGCTTTC | |||
16S rDNA | S-D-Bact-0341-b-S-17 | CCTACGGGNGGCWGCAG | 56 | [42] |
S-D-Bact-0785-a-A-21 | GACTACHVGGGTATCTAATCC |
Location | Roots Fragments | Roots with Endophytic Fungi, % | Microscopical Fields of View | |||
---|---|---|---|---|---|---|
* No. Analysed | No. with Fungi Structures Detected | No. Analysed | No. with Fungi Structures Detected | Endophytic Fungi Abundance, % | ||
Kairėnai | 60 | 28 | 46.7 | 600 | 155 | 25.8 |
Vingis | 60 | 25 | 41.7 | 600 | 141 | 23.5 |
Fungus | Isolate Code | DNA Locus | DNA Identities, bp | Congruence, % | BLAST ID |
---|---|---|---|---|---|
Alternaria alternata | BSG001 BSG002 | ITS | 440/440 | 100.0 | PP218262.1 |
RPB2 | 587/587 | 100.0 | MN922279.1 | ||
SSU | 647/647 | 100.0 | OR453387.1 | ||
TEF | 373/373 | 100.0 | MK386655.1 | ||
Cadophora fastigiata | BSG003 | ITS | 531/531 | 100.0 | MN833359.1 |
508/508 | 100.0 | MF077223.1 | |||
Chaetomium funicola | BSG039 | ITS | 248/249 | 99.6 | FN394680 |
570/570 | 100.0 | PP165499.1 | |||
RPB2 | 527/540 | 97.6 | XM_062782192.1 | ||
SSU | 417/417 | 100.0 | AF048794.1 | ||
Microdochium bolleyi | BSG008 | ITS | 460/460 | 100.0 | MT276137.1 |
RPB2 | 543/543 | 100.0 | MN817764.1 | ||
Coprinellus sp. | BSG004 | ITS | 390/397 | 98.2 | JN689938 |
464/471 | 98.5 | FN386275 | |||
Sistotrema brinkmannii | BSG005 | ITS | 514/514 | 100.0 | DQ093653.1 |
650/650 | 100.0 | JQ912675.1 | |||
SSU | 567/567 | 100.0 | KM222227.1 |
Bacteria | Bacteria Isolate Code | Colony Characteristics | Congruence, % | BLAST ID | ||
---|---|---|---|---|---|---|
Colony Shape, Surface, Edge Shape | Color | DNA Identities, bp | ||||
Bacillus pumilus | BSB021 | Almost round, opaque, shiny, uneven edge | Yellow | 1086/1087 | 99.91 | MK521063.1 |
Bacillus sp. | BSB013 | Round, opaque, rough, uneven edge | White | 986/1012 | 97.43 | CP026662.1 |
Lysinibacillus sp. | BSB054 | Round, flat, opaque, smooth edge | White | 1084/1087 | 99.72 | MH385002.1 |
Priestia aryabhattai | BSB045 | Round, straight edges, shiny oil, fluff-shaped colony | Cream | 1084/1088 | 99.63 | MH321608.1 |
Kosakonia sp. | BSB028 | Round, the surface is smooth, shiny, uneven edge | White | 1068/1088 | 98.16 | MG835978.1 |
Pedobacter sp. | BSB034 | Round, convex, opaque, shiny, smooth edge | Pink | 1039/1092 | 95.15 | CP079218.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pašakinskienė, I.; Stakelienė, V.; Matijošiūtė, S.; Martūnas, J. Diversity of Endophytic Fungi and Bacteria Inhabiting the Roots of the Woodland Grass, Festuca gigantea (Poaceae). Diversity 2024, 16, 453. https://doi.org/10.3390/d16080453
Pašakinskienė I, Stakelienė V, Matijošiūtė S, Martūnas J. Diversity of Endophytic Fungi and Bacteria Inhabiting the Roots of the Woodland Grass, Festuca gigantea (Poaceae). Diversity. 2024; 16(8):453. https://doi.org/10.3390/d16080453
Chicago/Turabian StylePašakinskienė, Izolda, Violeta Stakelienė, Saulė Matijošiūtė, and Justas Martūnas. 2024. "Diversity of Endophytic Fungi and Bacteria Inhabiting the Roots of the Woodland Grass, Festuca gigantea (Poaceae)" Diversity 16, no. 8: 453. https://doi.org/10.3390/d16080453
APA StylePašakinskienė, I., Stakelienė, V., Matijošiūtė, S., & Martūnas, J. (2024). Diversity of Endophytic Fungi and Bacteria Inhabiting the Roots of the Woodland Grass, Festuca gigantea (Poaceae). Diversity, 16(8), 453. https://doi.org/10.3390/d16080453