Exploring Biodiversity and Food Webs in Sulfur Cave in the Vromoner Canyon on the Greek–Albanian Border
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sulfur Cave
2.2. Sampling
2.2.1. Microbial Communities
2.2.2. Vertebrate and Invertebrate Communities
2.2.3. Carbon and Nitrogen Stable Isotope Analysis
2.2.4. Molecular Identification
3. Results
3.1. Microbial Communities
3.2. Vertebrate and Invertebrate Community
3.3. Carbon and Nitrogen Stable Isotope Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, R.D. Notes on a major oceanographic find. Oceanus 1997, 20, 34–44. [Google Scholar]
- Sarbu, S.M. Movile Cave: A Chemoautotrophically Based Groundwater Ecosystem in Subterranean Ecosystems; Wilkens, H., Culver, D.C., Humphreys, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 319–343. [Google Scholar]
- Hutchins, B.T.; Engel, A.S.; Nowlin, W.H.; Schwartz, B.F. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities. Ecology 2016, 97, 1530–1542. [Google Scholar] [CrossRef] [PubMed]
- Brad, T.; Iepure, S.; Sarbu, S.M. The chemoautotrophically based Movile Cave groundwater ecosystem, a hotspot of subterranean biodiversity. Diversity 2021, 13, 128. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. The Biology of Caves and Other Subterranean Habitats; Oxford University Press: Oxford, UK; New York, NY, USA, 2019. [Google Scholar]
- Engel, A.S. Observations on the biodiversity of sulfidic karst habitats. J. Cave Karst Stud. 2007, 69, 187–206. [Google Scholar]
- Nealson, K.H.; Inagaki, F.; Takai, K. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): Do they exist and why should we care? Trends Microbiol. 2005, 13, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Areniello, M.; Matassa, S.; Esposito, G.; Lens, P.N. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol. 2023, 41, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Benassi, A. Lengarices 2023. Inseguendo il soffio del Drago (Albania). Speleologia SSI 2024, 89, 4–6. [Google Scholar]
- Audy, M.; Bouda, R.; Bruthans, J.; Rÿžiÿka, V. Albanian hypogene caves in the area of Vromoner thermal springs on the Sarandaporo River. Speleoforum 2022, 41, 42–49. [Google Scholar]
- Audy, M.; Bruthans, J.; Mareš, J.; Sarbu, S.; Galdenzi, S.; Bouda, R. Sulfur 2023, hypogenni jeskyne Albanie a Recka Kavasila, Vromoner, Langarica. Speleoforum 2024, 43, 104–111. [Google Scholar]
- Eftimi, R.; Frashëri, A. Regional hydrogeological characteristics of thermal waters of Albania. Acta Geogr. Silesiana 2018, 12, 29. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Colgan, D.J.; Hutchings, P.A.; Brown, S. Phylogenetic relationships within the Terebellomorpha. J. Mar. Biol. Assoc. United Kingd. 2001, 81, 765–773. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Wei, C.; Chan, D.; Agda, J.; Agda, J.; Ballesteros-Mejia, L.; Ait Boutou, H.; El Bastami, Z.M.; Ma, E.; Manjunath, R.; et al. BOLD v4: A Centralized Bioinformatics Platform for DNA-based Biodiversity Data. arXiv 2024, arXiv:2404.05696. [Google Scholar]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Kovařík, F.; Audy, M.; Sarbu, S.M.; Fet, V. Euscorpius sulfur sp. n.(Scorpiones: Euscorpiidae), a new cave scorpion from Albania and northwestern Greece. Euscorpius 2023, 376, 1–14. [Google Scholar]
- Culver, D.C.; Sket, B. Hotspots of Subterranean Biodiversity in Caves and Wells. J. Cave Karst Stud. 2000, 62, 11–17. [Google Scholar]
- Por, F.; Dimentman, C.; Frumkin, A.; Naaman, I. Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): A summing up. Nat. Sci. 2013, 5, 7–13. [Google Scholar] [CrossRef]
- Frumkin, A.; Chipman, A.D.; Naaman, I. An isolated chemolithoautotrophic ecosystem deduced from environmental isotopes: Ayyalon cave (Israel). Front. Ecol. Evol. 2023, 10, 1040385. [Google Scholar] [CrossRef]
- Sarbu, S.; Galdenzi, S.; Menichetti, M.; Gentile, G. Geology and biology of the Frasassi caves in Central Italy: An ecological multi-disciplinary study of a Hypogenic underground ecosystem. In Subterranean Ecosystems; Wilkens, H.C.D., Ed.; Elsevier: New York, NY, USA, 2000; pp. 359–378. [Google Scholar]
- Hose, L.D.; Pisarowicz, J.A. Cueva de villa luz, Tabasco, Mexico: Reconnaissance study of an active sulfur spring cave and ecosystem. J. Cave Karst Stud. 1999, 61, 13–21. [Google Scholar]
- Palmer, A.N. Sulfuric acid caves: Morphology evolution. In Treatise on Geomorphology; Shroder, J., Frumkin, A., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 241–257. [Google Scholar]
- White, W.B.; Culver, D.C. (Eds.) Encyclopedia of Caves; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Klimchouk, A.B. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective NCKRI-Special Paper 1; National Cave and Karst Research Institute: Carlsbad, CA, USA, 2007. [Google Scholar]
- Bristowe, W.S. World of Spiders; Collins New Naturalist: London, UK, 1958. [Google Scholar]
- Fenchel, T.; Blackburn, H.; King, G.M. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Frumkin, A.; Chipman, A.D. A Subsurface Stepping Stone Hypothesis for the Conquest of Land by Arthropods. Diversity 2023, 16, 6. [Google Scholar] [CrossRef]
- Sarbu, S.M.; Kane, T.C.; Kinkle, B.K. A chemoautotrophically based cave ecosystem. Science 1996, 272, 1953–1955. [Google Scholar] [CrossRef]
- Karima, Z. Chironomidae: Biology, ecology and systematics. In The Wonders of Diptera: Characteristics, Diversity, and Significance for the World’s Ecosystems; IntechOpen: Rijeka, Croatia, 2021; pp. 1–25. [Google Scholar]
- Bartrons, M.; Sardans, J.; Hoekman, D.; Peñuelas, J. Trophic transfer from aquatic to terrestrial ecosystems: A test of the biogeochemical niche hypothesis. Ecosphere 2018, 9, e02338. [Google Scholar] [CrossRef]
Higher Rank Taxon | Family | Species | Habitat | Identification | Endemic |
---|---|---|---|---|---|
Vertebrates | |||||
Anguilliformes | Anguillidae | Anguilla sp. | aquatic | taxonomic | no |
Cypriniformes | Cyprinidae | Alburnoides sp. | aquatic | taxonomic | no |
Chiroptera | Rhinolophidae | Rhinolophus ferrumequinum (Screber, 1774) | terrestrial | taxonomic | no |
Chiroptera | Rhinolophidae | Rhiolophus hipposideros (André, 1797) | terrestrial | taxonomic | no |
Chiroptera | Rhinolophidae | Rhinolophus blasii (Peters, 1866) | terrestrial | taxonomic | no |
Chiroptera | Rhinolophidae | Rhinolophus euryale (Blasius, 1853) | terrestrial | taxonomic | no |
Chiroptera | Miniopteridae | Miniopterus schreibersii (Natterer in Kuhl, 1817) | terrestrial | taxonomic | no |
Chiroptera | Vespertillionidae | Myotis emarginatus (É. Geoffroy Saint-Hilaire, 1806) | terrestrial | taxonomic | no |
Chiroptera | Vespertillionidae | Myotis bechsteinii (Kuhl, 1817) | terrestrial | taxonomic | no |
Invertebrates | |||||
Oligochaeta | Naididae | Tubifex tubifex (O. F. Müller, 1774) | aquatic | taxonomic | no |
Gastropoda | Lymnaeidae | Radix labiata (Rossmässler, 1835) | aquatic | molecular | no |
Gastropoda | Hydrobiidae | Grossuana euxina (Wagner, 1928) | aquatic | molecular | no |
Amphipoda | Niphargidae | Niphargus lourensis Fišer, Trontelj & Sket, 2006 | aquatic | molecular | no |
Isopoda | Trichoniscidae | gen. sp. | terrestrial | taxonomic | yes |
Isopoda | Trichoniscidae | Alpioniscus sp. | terrestrial | taxonomic | no |
Pseudoscorpiones | Neobisiidae | Neobisium (Ommatoblothrus) sp. | terrestrial | taxonomic, molecular | yes |
Pseudoscorpiones | Chthoniidae | Chthonius sp. | terrestrial | taxonomic, molecular | yes |
Scorpiones | Euscorpiidae | Euscorpius sulfur Kovařík et al., 2023 | terrestrial | taxonomic | yes |
Acarina | Astigmata | gen. sp. | terrestrial | taxonomic | no |
Acarina | Labidostommatidae | Eunicolina nova Sellnick, 1931 | terrestrial | taxonomic | no |
Araneae | Leptonetidae | Cataleptoneta sp. | terrestrial | molecular | yes |
Araneae | Tetragnathidae | Metellina merianae (Scopoli, 1763) | terrestrial | taxonomic | no |
Araneae | Agelenidae | Tegenaria domestica (Clerck, 1757) | terrestrial | molecular | no |
Araneae | Nesticidae | Kryptonesticus eremita (Simon, 1880) | terrestrial | molecular | no |
Araneae | Linyphiidae | Prinerigone vagans (Andouin, 1826) | terrestrial | taxonomic | no |
Araneae | Linyphiidae | Lepthyphantes magnesiae Brignoli, 1979 | terrestrial | taxonomic | no |
Chilopoda | Lithobiidae | Lithobius viriatus Sseliwanoff, 1880 | terrestrial | taxonomic, molecular | no |
Chilopoda | Cryptopidae | Scolopocryptops sp. | terrestrial | taxonomic, molecular | yes |
Chilopoda | Cryptopidae | Cryptops hortensis (Donovan, 1810) | terrestrial | taxonomic | no |
Collembola | Hypogastruridae | Acheroxenylla sp. | terrestrial | taxonomic | yes |
Collembola | Hypogastruridae | Ceratophysella denticulata (Bagnall, 1941) | terrestrial | taxonomic | no |
Collembola | Onychiuridae | Deuteraphorura cf. frasassii (Fanciulli, 1999) | terrestrial | taxonomic | yes |
Collembola | Entomobryidae | Pseudosinella sexoculata Schött, 1902 | terrestrial | taxonomic | no |
Collembola | Entomobryidae | Heteromurus nitidus (Tempelton, 1836) | terrestrial | taxonomic | no |
Collembola | Paronellidae | Troglopedetes sp. | terrestrial | taxonomic | no |
Collembola | Sminthuridae | Disparrhopalites patrizii (Cassagnau & Delamare, 1953) | terrestrial | taxonomic | no |
Collembola | Neelidae | Neelus sp. | terrestrial | taxonomic | yes |
Diptera | Chironomidae | Tanytarsus triangularis Goetghebuer, 1928 | amphibiotic | taxonomic | no |
Diptera | Chironomidae | Chironomus sp. | amphibiotic | taxonomic | no |
Coleoptera | Scirtidae | Contacyphon palustris (C. G. Thomson, 1855) | amphibiotic | molecular | no |
Coleoptera | Dytiscidae | Hydroglyphus geminus (Fabricius, 1792) | aquatic | taxonomic | no |
Coleoptera | Hydrophilidae | Coelostoma hispanicum (Küster, 1848) | amphibiotic | taxonomic | no |
Coleoptera | Staphylinidae | Tychobythinus sp. | terrestrial | taxonomic | yes |
Sample ID | Taxon | Life Stage | δ15N Org ‰ | δ13C Org. ‰ |
---|---|---|---|---|
01-2023 | Lithobius viriatus | adult | −3.37 | −31.47 |
02-2023 | Lithobius viriatus | adult | −3.97 | −32.00 |
03-2023 | Lithobius viriatus | adult | −4.07 | −32.08 |
04-2023 | Contacyphon palustris | larvae | −9.58 | −27.24 |
05-2023 | Contacyphon palustris | pupae | −9.72 | −27.66 |
06-2023 | Contacyphon palustris | adults | −9.75 | −28.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarbu, S.M.; Brad, T.; Băncilă, R.I.; Ştefan, A. Exploring Biodiversity and Food Webs in Sulfur Cave in the Vromoner Canyon on the Greek–Albanian Border. Diversity 2024, 16, 477. https://doi.org/10.3390/d16080477
Sarbu SM, Brad T, Băncilă RI, Ştefan A. Exploring Biodiversity and Food Webs in Sulfur Cave in the Vromoner Canyon on the Greek–Albanian Border. Diversity. 2024; 16(8):477. https://doi.org/10.3390/d16080477
Chicago/Turabian StyleSarbu, Serban M., Traian Brad, Raluca I. Băncilă, and Andrei Ştefan. 2024. "Exploring Biodiversity and Food Webs in Sulfur Cave in the Vromoner Canyon on the Greek–Albanian Border" Diversity 16, no. 8: 477. https://doi.org/10.3390/d16080477
APA StyleSarbu, S. M., Brad, T., Băncilă, R. I., & Ştefan, A. (2024). Exploring Biodiversity and Food Webs in Sulfur Cave in the Vromoner Canyon on the Greek–Albanian Border. Diversity, 16(8), 477. https://doi.org/10.3390/d16080477