Factors Affecting the Adoption of Anti-Predation Measures by Livestock Farmers: The Case of Northern Chile
Abstract
:1. Introduction
2. Background on Livestock and Conflict in the Coquimbo Region
3. Materials and Methods
3.1. The Study Area
3.2. Survey and Sampling
3.3. The Model
3.4. Measures Adopted and Variables
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNeill, J.R. Animal Domestication in World History. Hist. Teach. 2008, 41, 335–355. [Google Scholar]
- Naranjo-Ramírez, J.F.; Ruíz-Buitrago, J.D. Regarding some myths and realities about cattle livestock production. Cienc. Tecnol. Agropecu. 2020, 21, e1524. [Google Scholar] [CrossRef]
- Bökönyi, S. Definitions of Animal Domestication, Clutton-Brock, J., Ed.; The Walking Larder: Patterns of Domestication, Pastoralism, and Predation, 1st ed.; Routledge: London, UK, 1989; pp. 22–26. [Google Scholar]
- Diamond, J. Armas, Gérmenes y Acero. Breve Historia de la Humanidad en los Útimos 13000 Años; DeBolsillo: Barcelona, Spain, 2007. [Google Scholar]
- Zeder, M.A. The Domestication of Animals. J. Anthropol. Res. 2012, 68, 161–190. Available online: https://www.jstor.org/stable/23264664 (accessed on 10 May 2024). [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations World Livestock. Transforming the Livestock Sector through the Sustainable Development Goals; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/3/CA1201EN/ca1201en.pdf (accessed on 10 May 2024).
- FAO. Ayudando a Desarrollar una Ganadería Sustentable en Latinoamérica y el Caribe: Lecciones a Partir de Casos Exitosos; Organización de las Naciones Unidas para la Agricultura y la Alimentación: Rome, Italy; Oficina Regional para América Latina y el Caribe: Santiago, Chile, 2008; Available online: https://openknowledge.fao.org/handle/20.500.14283/i0082s (accessed on 15 May 2024).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Haan, C.D. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006; Available online: https://www.fao.org/4/a0701e/a0701e00.htm (accessed on 10 May 2024).
- Nelson, G.; Rosegrant, M.; Palazzo, A.; Gray, I.; Ingersoll, C.; Robertson, R.; You, L. Food Security, Farming and Climate Change to 2050: Scenarios, Results and Policy Options; International Food Policy Research Institute: Washington, DC, USA, 2010. [Google Scholar] [CrossRef]
- FAO. Estado Mundial de la Agricultura y la Alimentación; FAO: Rome, Italy, 2012; Available online: http://www.fao.org/docrep/017/i3028s/i3028s.pdf (accessed on 10 May 2024).
- Costales, A.C.; Pica-Ciamarra, U.; Otte, J. Livestock in a Changing Landscape: Social Consequences for Mixed Crop-Livestock Production Systems in Developing Countries. Informe de Investigación de la Iniciativa de Políticas Pecuarias en Favor de los Pobres n. 07-05. 2007. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/cef59015-34b7-471b-88a6-e98f830cf90e/content (accessed on 10 May 2024).
- Rodríguez, D.I.; Anriquez, G.; Riveros, J.L. Food security and livestock: The case of Latin America and the Caribbean. Cienc. Investig. Agrar. 2016, 43, 5–15. [Google Scholar] [CrossRef]
- Upton, M. The Role of Livestock in Economic Development and Poverty Reduction; Pro-Poor Livestock Policy Initiative, PPLPI Working Paper No. 10; Food and Agriculture Organization-Animal Production and Health Division: Rome, Italy, 2004; Available online: https://openknowledge.fao.org/handle/20.500.14283/bp224e (accessed on 10 May 2024).
- Sansoucy, R. Livestock-a driving force for food security and sustainable development. World Anim. Rev. 1995, 84–85, 5–17. [Google Scholar]
- CAST-Council for Agricultural Science and Technology. Role of Animal Agriculture in the Human Food Supply; CAST: Ames, IA, USA, 2001; Available online: https://www.fao.org/4/v8180t/v8180t07.htm (accessed on 10 May 2024).
- Fafchamps, M.; Gavian, S. The determinants of livestock prices in Niger. J. Afr. Econ. 1997, 6, 255–295. [Google Scholar] [CrossRef]
- Horowitz, M. The Culture Role of Agriculture: Scope Documentation and Measurement; Documento presentado en la Primera reunión de expertos sobre documentación y medición de los diversos roles de la agricultura en los países en desarrollo; FAO: Roma, Italy, 2001; Available online: https://www.fao.org/4/Y2599S/y2599s00.htm (accessed on 10 May 2024).
- FAO. El sector Pecuario en el Mundo: Transformando el Sector Pecuario a Través de los Objetivos de Desarrollo Sostenible; Resumen; FAO: Roma, Italy, 2019; 12p, Licence: CC BY-NC-SA 3.0 IGO; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/0f9d81ed-4b18-4d45-a462-87ee3bb5403e/content (accessed on 5 May 2024).
- Pezo, D.; Muschler, R.; Tobar, D.; Pulido, A. Intervenciones y Tecnologías Ambientalmente Racionales (TAR) para la Adaptación al Cambio Climático del Sector Agropecuario de América Latina y el Caribe; Inter-American Development Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- INE (Instituto Nacional de Estadísticas). Censo Agropecuario y Forestal. 2007. Available online: https://www.ine.gob.cl/estadisticas/economia/agricultura-agroindustria-y-pesca/censos-agropecuarios (accessed on 20 May 2024).
- INE (Instituto Nacional de Estadísticas). Censo Agropecuario y Forestal. 2021. Available online: https://www.ine.gob.cl/estadisticas/economia/agricultura-agroindustria-y-pesca/censos-agropecuarios (accessed on 20 May 2024).
- ODEPA. Desafíos del Sector Bovino de Carne. 2022. Available online: https://bibliotecadigital.odepa.gob.cl/bitstream/handle/20.500.12650/71666/Art_DesafiosSectorBovinodeCarne202206.pdf (accessed on 5 May 2024).
- Dhakal, S.; Rimal, S.; Paudel, P.; Shrestha, A. Spatio-Temporal Patterns of Livestock Predation by Leopards in Bardia National Park, Nepal. Land 2023, 12, 1156. [Google Scholar] [CrossRef]
- Liu, B.; Du, Y.; Zhao, M.; Xie, Y. Input Behavior of Farmer Production Factors in the Range of Asian Elephant Distribution: Survey Data from 1264 Households in Yunnan Province, China. Diversity 2023, 15, 1147. [Google Scholar] [CrossRef]
- Inskip, C.; Zimmermann, A. Human-felid conflict: A review of patterns and priorities worldwide. Oryx 2009, 43, 18–34. [Google Scholar] [CrossRef]
- Saberwal, V.K.; Gibbs, J.P.; Chellam, R.; Johnsingh, A.J.T. Lion-Human conflict in the Gir Forest, India. Conserv. Biol. 1994, 8, 501–507. [Google Scholar] [CrossRef]
- Graham, K.; Beckerman, A.P.; Thirgood, S. Human-predator-prey conflicts: Ecological correlates, prey losses and patterns of management. Biol. Conserv. 2005, 122, 159–171. [Google Scholar] [CrossRef]
- Bonacic, C.; Galvez, N.; Ibarra, J.; Amar, M.; Sanhueza, D.; Murphy, T.; Guarda, N. Evaluación del Conflicto Entre Carnívoros Silvestres y Ganadería; Technical Report; Pontificia Universidad Católica de Chile (PUC): Santiago, Chile, 2007; Available online: https://www.sag.gob.cl/ (accessed on 5 May 2024).
- Ahmed, R.A.; Prusty, K.; Jena, J.; Dave, C.; Das, S.K.; Sahu, H.K.; Rout, S.D. Prevailing human carnivore conflict in Kanha-Achanakmar corridor, Central India. World J. Zool. 2012, 7, 158–164. Available online: http://idosi.org/wjz/wjz7(2)12/14.pdf (accessed on 10 May 2024).
- Iriarte, A.; Jaksic, F. Los Carnivoros de Chile; Ediciones Flora & Fauna-CASEB Pontificia Universidad Católica de Chile: Santiago, Chile, 2012; 257p, Available online: http://www.florayfauna.cl/muestras%20libros/muestraCarnivoros.pdf (accessed on 5 May 2024).
- Sepúlveda, C. Puma Concolor como Amenaza para Ganaderos de Cautín, Región de la Araucanía, y Evaluación de Perros Protectores de Rebaño como Herramienta de Mitigación del Conflicto. Agronomy Degree Thesis, Facultad de Cs, Agronómicas, Universidad de Chile, Santiago, Chile, 2015. Available online: https://repositorio.uchile.cl/handle/2250/151000 (accessed on 10 May 2024).
- Dickman, A.J. Complexities of conflict: The importance of considering social factors for effectively resolving human–wildlife conflict. Anim. Conserv. 2010, 13, 458–466. [Google Scholar] [CrossRef]
- Gittleman, J.L.; Funk, S.M.; Macdonald, D.W.; Wayne, R. Carnivore Conservation; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Amar, M.F. Evaluación Económica, Ecológica y Socio-Cultural Del Conflicto de Predación de Ganado Doméstico por la Especie Puma Concolor (Linnaeus 1771) en las Comunas de San José de Maipo y Putre, Chile. Master’s Thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2008. [Google Scholar]
- Silva-Rodríguez, E.A.; Soto-Gamboa, M.; Ortega-Solís, G.R.; Jiménez, J.E. Foxes, people and hens: Human dimensions of a conflict in a rural area of southern Chile. Rev. Chil. Hist. Nat. 2009, 82, 375–386. [Google Scholar] [CrossRef]
- Rodríguez, V.; Poo-Muñoz, D.A.; Escobar, L.E.; Astorga, F.; Medina-Vogel, G. Carnivore-livestock conflicts in Chile: Evidence and methods for mitigation. Hum.-Wildl. Interact. 2019, 13, 10. [Google Scholar] [CrossRef]
- Washburn, B.E. Hawks and owls. Wildlife Damage Management Technical Series. 2016, Volume 6, p. 17. Available online: http://www.biodiversitylibrary.org/bibliography/15130 (accessed on 10 May 2024).
- Almuna, R.; Cruz, J.M.; Vargas, F.H.; Ibarra, J.T. Landscapes of coexistence: Generating predictive risk models to mitigate human-raptor conflicts in forest socio-ecosystems. Biol. Conserv. 2020, 251, 108795. [Google Scholar] [CrossRef]
- Montecino-Latorre, D.; San Martín, W. Evidence supporting that human-subsidized free-ranging dogs are the main cause of animal losses in small-scale farms in Chile. Ambio 2019, 48, 240–250. [Google Scholar] [CrossRef]
- Villatoro, F.J.; Sepulveda, M.A.; Stowhas, P.; Silva-Rodriguez, E.A. Urban dogs in rural areas: Human-mediated movement defines dog populations in southern Chile. J. Environ. Manag. 2019, 229, 67–75. [Google Scholar] [CrossRef]
- Crespin, S.J.; Simonetti, J.A. Reconciling farming and wild nature: Integrating human–wildlife coexistence into the land-sharing and land-sparing framework. Ambio 2019, 48, 131–138. [Google Scholar] [CrossRef]
- WCS. Diagnóstico de la Relación Entre la Ganadería y los Carnívoros en la Isla Grande de Tierra del Fuego, Chile: Situación de los Perros Asilvestrados y los Zorros Chilla y Culpeo; Wildlife Conservation Society: Punta Arenas, Chile, 2019; 61p, Available online: https://chile.wcs.org/Portals/134/DIAGNS~1.PDF?ver=2020-09-30-193420-347 (accessed on 20 April 2024).
- Davies-Mostert, H.; Hodkinson, C.; Komen, H.; Snow, T. Predators and Farmers; Endangered Wildlife Trust: Johannesburg, South Africa, 2007; 30p, Available online: https://dargleconservancy.org.za/documents/Predators%20and%20Farmers%20book.pdf (accessed on 20 May 2024).
- Mascote, C.; Castillo, A.; Peña-Mondragón, J.L. Perceptions and Knowledge of the Jaguar Among Children in Communities Neighboring the Montes Azules Biosphere Reserve in Chiapas, Mexico. Trop. Conserv. Sci. 2016, 9, 1940082916679407. [Google Scholar] [CrossRef]
- Khattak, R.H.; Teng, L.; Mehmood, T.; Ahmad, S.; Rehman, E.U.; Basak, S.M.; Liu, Z. A Perspective of the Human–Grey Wolf (Canis lupus) Conflicts in Kumrat Valley, Northern Pakistan. Diversity 2022, 14, 887. [Google Scholar] [CrossRef]
- Sepúlveda, C.; Pino, R.; Donoso, D.; Iriarte, A. El Puma en la Región de Coquimbo: Develando su Ecología e Interacción con la Ganadería; Ediciones SAG Región de Coquimbo y Flora & Fauna: Santiago, Chile, 2016; p. 59. [Google Scholar]
- Amit, R.; Rojas, K.; Carrillo, E. Conservación de Felinos y sus Presas Dentro de Fincas Ganaderas; (Inf. Tec.), Programa Jaguar del Instituto Internacional en Conservación y Manejo de Vida Silvestre (ICOMVIS) Universidad Nacional de Costa Rica (UNA); UNA: Heredia, Costa Rica, 2009; 100p. [Google Scholar]
- De Azevedo, F.C.C. Food habits and livestock depredation of sympatric jaguars and pumas in the Iguazu National Park area, south Brazil. Biotropica 2008, 40, 494–500. [Google Scholar] [CrossRef]
- Marchini, S.; Macdonald, D.W. Predicting ranchers’ intention to kill jaguars: Case studies in Amazonia and Pantanal. Biol. Conserv. 2012, 147, 213–221. [Google Scholar] [CrossRef]
- Alvarado, L.D.A.; Fernández, M.S.M.G.; Rossi, M.A.S.; Fernández, M.S.F.M.; Jiménez, E.C. Interacciones entre los grandes felinos silvestres (Jaguar y Puma) y las comunidades humanas en Costa Rica. In UNA-SCU-ACUE-1923-2017; Universidad Nacional: Heredia, Costa Rica, 2017; p. 55. [Google Scholar]
- Nowak, P. Why farmers adopt production technology. J. Soil Water Conserv. 1992, 47, 14–16. Available online: https://www.jswconline.org/content/47/1/14.short (accessed on 15 April 2024).
- Cáceres, D.; Silvetti, F.; Soto, G.; Rebolledo, W. La adopción tecnológica en sistemas agropecuarios de pequeños productores. Agro Sur 1997, 25, 123–135. Available online: http://revistas.uach.cl/html/agrosur/v25n2/body/art01.htm (accessed on 10 May 2024). [CrossRef]
- Legesse, G.; Siegmund-Schultze, M.; Abebe, G.; Zárate, A.V. Determinants of the adoption of small ruminant related technologies in the highlands of Ethiopia. Trop. Subtrop. Agroecosystems 2013, 16, 13–23. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1519/802 (accessed on 5 April 2024).
- Nederlof, E.S.; Dangbégnon, C. Lessons for farmer-oriented research: Experiences from a West African soil fertility management project. Agric. Hum. Values 2007, 24, 369–387. [Google Scholar] [CrossRef]
- Roco Fuentes, L.; Engler Palma, A.; Jara-Rojas, R. Factores que influyen en la adopción de tecnologías de conservación de suelos en el secano interior de Chile Central. Rev. Fac. Cienc. Agrar. 2012, 44, 31–45. Available online: http://www.scielo.org.ar/pdf/refca/v44n2/v44n2a03.pdf (accessed on 10 May 2024).
- Nyberg, Y.; Wetterlind, J.; Jonsson, M.; Öborn, I. Factors affecting smallholder adoption of adaptation and coping measures to deal with rainfall variability. Int. J. Agric. Sustain. 2021, 19, 175–198. [Google Scholar] [CrossRef]
- Jara-Rojas, R.; Russy, S.; Roco, L.; Fleming-Muñoz, D.; Engler, A. Factors affecting the adoption of agroforestry practices: Insights from silvopastoral systems of Colombia. Forests 2020, 11, 648. [Google Scholar] [CrossRef]
- Rust, N.A. Can stakeholders agree on how to reduce human-carnivore conflict on Namibian livestock farms? A novel Q-methodology and Delphi exercise. Oryx 2016, 50, 339–346. [Google Scholar] [CrossRef]
- Madden, F.; McQuinn, B. Conservation conflict transformation: The missing link in conservation. In Conflicts in Conservation: Navigating towards Solutions; Redpath, S., Gutiérrez, R., Wood, K., Young, J., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2015; pp. 257–270. [Google Scholar] [CrossRef]
- Currey, K.; Kendal, D.; Van der Ree, R.; Lentini, P.E. Land Manager Perspectives on Conflict Mitigation Strategies for Urban Flying-Fox Camps. Diversity 2018, 10, 39. [Google Scholar] [CrossRef]
- FIA, Fundación para la Innovación Agraria. Resultados y Lecciones en Producción de Carne Caprina en Lonquimay; Fundación para la Innovación Agraria: La Reina, Chile, 2008; Available online: https://bibliotecadigital.fia.cl/handle/20.500.11944/2026 (accessed on 10 April 2024).
- Ramírez, I. Evolución y perspectivas de la producción caprina en la IV Región de Coquimbo. In Dinámicas de los Sistemas Agrarios en Chile: La Región de Coquimbo; IRD Editions; Livenais, P., Aranda, X., Eds.; IRD Editions: Marseille, France, 2003; pp. 188–197. [Google Scholar] [CrossRef]
- Villalobos, S. Ocupación de tierras marginales en el Norte Chico: Un proceso temprano. Cuad. Hist. 1983, 3, 63–78. Available online: https://cuadernosdehistoria.uchile.cl/index.php/CDH/article/view/46466 (accessed on 10 April 2024).
- INE (Instituto Nacional de Estadísticas). Sistema Estadístico Regional, Región de Coquimbo; Instituto Nacional de Estadísticas: Santiago, Chile, 2010. [Google Scholar]
- INE (Instituto Nacional de Estadísticas). Compendio Estadístico 3.1 Estadísticas del Medio Ambiente; Publicación Anual; INE: Santiago, Chile, 2010; pp. 459–484. [Google Scholar]
- Flora y Fauna. Informe Técnico Final: Diagnóstico del Estado Poblacional del Puma (Puma Concolor) y Evaluación de la Interacción con la Ganadería de la Región de Coquimbo; Consultora Flora y Fauna Chile: Santiago, Chile, 2016. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. Available online: https://www.ipcc.ch/report/ar6/wg2/chapter/summary-for-policymakers/ (accessed on 15 June 2024).
- Dirección Meteorológica de Chile. Reporte Anual de la Evolución del Clima en Chile 2018. 2019. Available online: https://climatologia.meteochile.gob.cl (accessed on 10 May 2024).
- Squeo, F.; Arroyo, M. Presentación Científica del Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo; Ediciones Universidad de La Serena: La Serena, Chile, 2001; pp. 3–11. [Google Scholar]
- Börgel, R. Geografia de Chile: Geomorphologia Volume 2 of Geografia de Chile; Instituto Geográfico Militar: Santiago, Chile, 1983. [Google Scholar]
- Myers, N.; Mittermeier, R.; Mittermeier, C.; Da Fonseca, G.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Cowling, R.; Rundel, P.; Lamont, B.; Arroyo, M.; Arianoutsou, M. Plant diversity in Mediterranean-climate regions. Trends Ecol. Evol. 1996, 11, 362–366. [Google Scholar] [CrossRef]
- ODEPA. Panorama de la Agricultura Chilena. 2019. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/09/panorama2019Final.pdf (accessed on 10 April 2024).
- Cragg, J.G. Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods. Econometrica 1971, 39, 829–844. [Google Scholar] [CrossRef]
- Roco, L.; Engler, A.; Bravo-Ureta, B.; Jara-Rojas, R. Farm level adaptation decisions to face climatic change and variability: Evidence from Central Chile. Environ. Sci. Policy 2014, 44, 86–96. [Google Scholar] [CrossRef]
- Boza, S.; Jara-Rojas, R. Peri-urban family farming and agricultural earnings: The effect of long-term participation in an extension program in a metropolitan area. Cienc. Investig. Agrar. 2018, 45, 200–209. [Google Scholar] [CrossRef]
- De Kartzow, R. Situación de la Institucionalidad de Apoyo a la Innovación Comercial de la Agricultura Familiar y de los Procesos de Gestión Comercial de la Agricultura Familiar en Chile; IICA: Buenos Aires, Argentina, 2016; Available online: http://repositorio.iica.int/handle/11324/2544 (accessed on 15 June 2024).
- Silva, E. Evaluación de Conflictos Entre Zorros Chilla (Pseudalopex griseus) y Agricultura de Subsistencia en una Localidad Rural del sur de Chile: ¿mito o realidad? Veterinary Medicine Degree Thesis, Universidad Austral de Chile, Valdivia, Chile, 2006. [Google Scholar]
- Pérez, P. Depredación en la producción de pequeños rumiantes. TecnoVet 2009, 15, 12–17. Available online: https://revistaterapiaocupacional.uchile.cl/index.php/RT/article/view/39118 (accessed on 15 June 2024).
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Pilarova, T.; Bavorova, M.; Kandakov, A. Do farmer, household and farm characteristics influence the adoption of sustainable practices? The evidence from the Republic of Moldova. Int. J. Agric. Sustain. 2018, 16, 367–384. [Google Scholar] [CrossRef]
- Ahmad, S.; Xu, H.; Ekanayake, E.M.B.P. Socioeconomic Determinants and Perceptions of Smallholder Farmers towards Agroforestry Adoption in Northern Irrigated Plain, Pakistan. Land 2023, 12, 813. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Change 2009, 19, 248–255. [Google Scholar] [CrossRef]
- Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of climate-smart agricultural practices on household food security in smallholder production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [Google Scholar] [CrossRef]
- Roco, L.; Poblete, D.; Meza, F.; Kerrigan, G. Farmers’ options to address water scarcity in a changing climate: Case studies from two basins in Mediterranean Chile. Environ. Manag. 2016, 58, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Amsalu, A.; de Graaff, J. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed. Ecol. Econ. 2007, 61, 294–302. [Google Scholar] [CrossRef]
- Gebre, G.G.; Isoda, H.; Rahut, D.B.; Amekawa, Y.; Nomura, H. Gender differences in the adoption of agricultural technology: The case of improved maize varieties in southern Ethiopia. Women’s Stud. Int. Forum 2019, 76, 102264. [Google Scholar] [CrossRef] [PubMed]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Determinants of the Adoption of Climate-Smart Agricultural Practices by Small-Scale Farming Households in King Cetshwayo District Municipality, South Africa. Sustainability 2020, 12, 195. [Google Scholar] [CrossRef]
- Mujeyi, A.; Mudhara, M.; Mutenje, M.J. Adoption determinants of multiple climate Smart agricultural technologies in Zimbabwe: Considerations for scaling-up and out. Afr. J. Sci. Technol. Innov. Dev. 2020, 12, 735–746. [Google Scholar] [CrossRef]
- Klein, L.; Hessling-Zeinen, S.; Adler, F.; Gerdes, U.; Blome, S.; Beilage, E.; Campe, A. Exploring pig farmers‘ decision-making concerning biosecurity measures against African Swine Fever. Prev. Vet. Med. 2023, 217, 105949. [Google Scholar] [CrossRef]
- Okata, E.O.; Al-Hassan, R.M. Does publishing poultry vaccination schedule increase awareness and compliance among small-scale farmers? Evidence from Eastern Ghana. Cogent Food Agric. 2023, 9, 2241709. [Google Scholar] [CrossRef]
- González, L. Consideraciones sobre algunos de los factores socio-psicológicos que influyen en la difusión y adopción de tecnologías. Pastos Forrajes 2012, 27, 395–403. Available online: https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=769&path%5B%5D=271 (accessed on 5 May 2024).
- Berzi, D.; Cerri, J.; Musto, C.; Zanni, M.L. Use of European Funds and Ex Post Evaluation of Prevention Measures against Wolf Attacks (Canis lupus italicus) in the Emilia-Romagna Region (Italy). Animals 2021, 11, 1536. [Google Scholar] [CrossRef] [PubMed]
- Garforth, C. Livestock Keepers’ Reasons for Doing and Not Doing Things Which Governments, Vets and Scientist Would Like Them to Do. Zoonoses Public Health 2015, 62, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Álvarez, D.; Napolitano, C.; Salgado, I. Puma (Puma concolor) in the Neighborhood? Records Near Human Settlements and Insights into Human-Carnivore Coexistence in Central Chile. Animals 2021, 11, 965. [Google Scholar] [CrossRef]
- Jaime, E. Relaciones Geográficas y Prácticas Culturales Entre los Cabreros y la Fauna Depredadora en la Región de Coquimbo (Chile); Revista Huellas; Instituto de Geografía, EdUNLPam: Santa Rosa, CA, USA, 2017; Volume 21, Available online: http://cerac.unlpam.edu.ar/index.php/huellas (accessed on 10 July 2014).
- García-Huidobro, N. Politicas Públicas Adecuadas, que Compensen Economicamente a los Criadores Pecuarios ante Ataque de Depredadores Salvajes, Permiten Tutelar el Derecho de Vivir en un Medioambiente Libre de Contaminación. Law Degree Thesis, Universidad de Chile, Santiago, Chile, 2018; p. 79. Available online: https://repositorio.uchile.cl/handle/2250/153360 (accessed on 10 July 2024).
Province | Observations | |
---|---|---|
n | % | |
Choapa | 165 | 34.7 |
Limarí | 176 | 37.0 |
Elqui | 135 | 28.3 |
Full sample | 476 | 100.0 |
Measure | Description | n (%) |
---|---|---|
Herd protection dog | A dog that may or may not be of a breed specific to this work, but that generally has a large size and is trained with the livestock to protect. | 41 (8.6) |
Night confinement | This is a traditional practice in the area, in which the herd is enclosed in a pen with restricted space to spend the night. This may or may not be covered, and is generally located close to the home or a rustic building named “ruco”. | 336 (70.5) |
Grazing | This is the action of accompanying, guiding, and supervising livestock, establishing sectors where they graze or browse. | 87 (18.2) |
Pen against depredators | This is a corral that usually has higher fences than is common in the area, with a roof and sometimes even a mesh between the roof and the fence. | 33 (6.9) |
Capture or death of the predator | This is action by farmers to kill, by different means (shots, poison, hanging, dogs trained in hunting), the animal accused of the attacks, or to capture it through cages or snares (huaches). | 18 (3.7) |
Drive away the predator | This involves scaring away the animal causing predation through different techniques, such as lights, loud sounds, or chasing. | 16 (3.3) |
Non-adoption of measures | 85 (17.8) |
Variable | Description | Mean | Min–Max | Std Dev |
---|---|---|---|---|
Dependent variables | ||||
Measure adoption | Dichotomous variable takes value 1 if the farmer takes at least one measure, or 0 otherwise | 0.821 | ||
Intensity | Number of measures adopted ranging from 1 to 4 | 1.115 | 0.80 | |
Independent variables | ||||
Sociodemographic | ||||
Age | Age of the farmer in years | 54.9 | 18–94 | 13.8 |
Gender | Male | 0.586 | ||
Female | 0.413 | |||
Family size | Number of family members | 3.16 | 1–12 | 1.58 |
Location | ||||
Elqui | Dichotomous variable takes value 1 if the farm is located in Elqui Province (north), or 0 otherwise (omitted) | 0.28 | ||
Limarí | Dichotomous variable takes value 1 if the farm is located in Limarí Province (center), or 0 otherwise | 0.37 | ||
Choapa | Dichotomous variable takes value 1 if the farm is located in Choapa Province (south), or 0 otherwise | 0.34 | ||
Productive | ||||
Sanitary management | Dichotomous variable takes value 1 if the farmer implemented sanitary management of herd regularly (deworming and vaccination), or 0 otherwise | 0.56 | ||
Intensive system | Dichotomous variable takes value 1 if the production system is intensive (confined animals), or 0 otherwise | 0.082 | ||
Semi-intensive system | Dichotomous variable takes value 1 if the production system is semi-intensive (animals are released during a period of the day or by season), or 0 otherwise | 0.563 | ||
Extensive system | Dichotomous variable takes value 1 if the production system is extensive (animals graze freely on extensive lands), or 0 otherwise (omitted) | 0.355 | ||
Herd size | Number of standardized animal units (AUE) in the farm | 20.1 | 0.25–336.3 | 22.6 |
Losses | Number of standardized animal units (AUE) loosed due to predators | 2.218 | 0–32.0 | 2.98 |
Meat | Dichotomous variable takes value 1 if the production system is oriented to meat production, or 0 otherwise (omitted) | 0.096 | ||
Milk | Dichotomous variable takes value 1 if the production system is oriented to milk production, or 0 otherwise | 0.252 | ||
Double purpose | Dichotomous variable takes value 1 if the production system is oriented to double purpose production (meat and milk), or 0 otherwise | 0.546 | ||
Self-subsistence | Dichotomous variable takes value 1 if the production system is oriented to self-subsistence, or 0 otherwise | 0.098 | ||
Agricultural income | Agricultural income in dollars according to year of survey completion | 1403 | 0–17,532.1 | 1701 |
Associativity | Dichotomous variable takes value 1 if the farmer declares to belong to some organization, or 0 otherwise | 0.64 | ||
Technical assistance | Dichotomous variable takes value 1 if the farmer declares to receive technical assistance, or 0 otherwise | 0.37 |
Species | Total Livestock | Total Losses |
---|---|---|
Sheep | 10,498 | 1058 |
Goats | 40,851 | 6645 |
Equines | 1705 | 130 |
Cattle | 1300 | 96 |
Poultry | 8880 | 1839 |
Others (pigs; rabbits) | 422 | 0 |
Specie | Damage Perception | ||||
---|---|---|---|---|---|
Non-Damage (0) | Scarce Damage (1) | Medium Damage (2) | Important Damage (3) | High Damage (4) | |
Cougar | 1 | 300 | 43 | 54 | 78 |
Fox (chilla) | 2 | 210 | 159 | 280 | 25 |
Fox (culpeo) | 1 | 200 | 90 | 115 | 70 |
Wildcat | 5 | 460 | 10 | 1 | 0 |
Quique | 4 | 466 | 6 | 0 | 0 |
Prey bird | 11 | 383 | 67 | 11 | 4 |
Variable | Poisson | Two-Stage Model | ||||
---|---|---|---|---|---|---|
Logit | Zero Truncated | |||||
Coeff (Rob. Std. Err.) | dy/dx (Std. Err.) | Coeff (Rob. Std. Err.) | dy/dx (Std. Err.) | Coeff (Rob. Std. Err.) | dy/dx (Std. Err.) | |
Age | 0.000 | 0.000 | −0.14 | −0.001 | 0.009 | 0.004 |
(0.002) | (0.002) | (0.011) | (0.001) | (0.006) | (0.003) | |
Gender | −0.011 | −0.012 | 0.115 | 0.012 | −0.148 | −0.078 |
(0.064) | (0.069) | (0.305) | (0.033) | (0.176) | (0.091) | |
Family size | 0.039 * | 0.042 | 0.082 | 0.009 | 0.097 ** | 0.051 |
(0.020) | (0.022) | (0.090) | (0.010) | (0.046) | (0.026) | |
Limarí | 0.125 | 0.137 | −0.350 | −0.040 | 0.668 ** | 0.395 |
(0.084) | (0.095) | (0.336) | (0.041) | (0.250) | (0.157) | |
Choapa | 0.162 ** | 0.179 | 0.571 * | 0.060 | 0.251 | 0.138 |
(0.077) | (0.088) | (0.346) | (0.034) | (0.235) | (0.136) | |
Sanitary management | −0.181 ** | −0.197 | −0.645 * | −0.071 | −0.301 * | −0.162 |
(0.063) | (0.070) | (0.288) | (0.030) | (0.171) | (0.094) | |
Intensive system | 0.386 ** | 0.485 | 2.186 ** | 0.140 | −0.032 | −0.016 |
(0.100) | (0.141) | (0.573) | (0.022) | (0.294) | (0.152) | |
Semi-intensive system | 0.303 ** | 0.322 | 1.916 ** | 0.244 | −0.141 | −0.076 |
(0.084) | (0.085) | (0.304) | (0.039) | (0.198) | (0.110) | |
Herd size (AUE) | 0.000 | 0.000 | 0.001 | 0.000 | 0.002 * | 0.001 |
(0.000) | (0.001) | (0.007) | (0.000) | (0.001) | (0.000) | |
Losses (AUE) | 0.015 | 0.017 | −0.011 | −0.001 | 0.035 ** | 0.019 |
(0.013) | (0.014) | (0.048) | (0.005) | (0.018) | (0.010) | |
Milk | 0.007 | 0.008 | −0.055 | −0.006 | 0.002 | 0.001 |
(0.114) | (0.124) | (0.561) | (0.064) | (0.280) | (0.148) | |
Double purpouse | −0.194 * | −0.211 | −0.412 | −0.046 | −0.459 * | −0.250 |
(0.099) | (0.109) | (0.539) | (0.059) | (0.266) | (0.158) | |
Self-subsistence | −0.255 * | −0.249 | −1.157 * | −0.179 | −0.167 | −0.082 |
(0.151) | (0.132) | (0.582) | (0.114) | (0.408) | (0.188) | |
Agricultural income | 0.000 ** | 0.000 | 0.000 | 0.000 | 0.000 ** | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Associativity | 0.073 | 0.077 | 0.547 | 0.065 | −0.032 | −0.017 |
(0.089) | (0.094) | (0.404) | (0.051) | (0.218) | (0.116) | |
Technical assistance | −0.236 ** | −0.247 | −0.802 ** | −0.098 | −0.396 ** | −0.199 |
(0.0869) | (0.088) | (0.382) | (0.050) | (0.258) | (0.134) | |
Log pseudolikelihood | −568.9 | −183.6 | −284.2 | |||
Pseudo R2 | 0.032 | 0.181 | 0.075 | |||
N | 476 | 476 | 391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez, C.; Roco, L.; Moreira, V. Factors Affecting the Adoption of Anti-Predation Measures by Livestock Farmers: The Case of Northern Chile. Diversity 2024, 16, 567. https://doi.org/10.3390/d16090567
Núñez C, Roco L, Moreira V. Factors Affecting the Adoption of Anti-Predation Measures by Livestock Farmers: The Case of Northern Chile. Diversity. 2024; 16(9):567. https://doi.org/10.3390/d16090567
Chicago/Turabian StyleNúñez, Camila, Lisandro Roco, and Victor Moreira. 2024. "Factors Affecting the Adoption of Anti-Predation Measures by Livestock Farmers: The Case of Northern Chile" Diversity 16, no. 9: 567. https://doi.org/10.3390/d16090567
APA StyleNúñez, C., Roco, L., & Moreira, V. (2024). Factors Affecting the Adoption of Anti-Predation Measures by Livestock Farmers: The Case of Northern Chile. Diversity, 16(9), 567. https://doi.org/10.3390/d16090567